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1 Introduction

The purpose of this paper is to give necessary and sufficient conditions for
the orientability of vector bundles over flag manifolds of real semi-simple Lie
groups. We focus on two kinds of vector bundles whose orientability can be
decided by looking at the root systems and Dynkin diagrams associated to
the semi-simple groups.

We look at the tangent bundles of the flag manifolds as well as the stable
and unstable vector bundles of gradient flows on flag manifolds (see the
construction of these bundles in Section [2.4] below).

In both cases there is a Lie group acting on the vector bundle by linear
maps in such a way that the action on the base space is transitive. From
this property we derive our main method which consists in reducing the
orientability question to a computation of signs of determinants. Namely
the vector bundle is orientable if and only if each linear map coming from
the representation of the isotropy subgroup on the fiber at the origin has
positive determinant (see Proposition B.I] below).
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Using this criterion we get closed formulas, in terms of roots and their
multiplicities to decide when one of our vector bundles is orientable (see the-
orems [l and 5] below). In particular, we prove that any of the maximal
flag manifolds is orientable. A result already obtained by Kocherlakota [10]
as a consequence of the computation of the homology groups of the real flag
manifolds. Also in Section [f] we make a detailed analysis of the orientability
of the flag manifolds associated to the split real forms of the classical Lie al-
gebras (4, =sl(l+ 1,R), B, =s0(l,l+ 1), C; =sp (I,R) and D, =s0(l,1)).

The orientability of the stable and unstable bundles were our original
motivation to write this paper. It comes from the computation of the Conley
indices for flows on flag bundles in [I2]. In this computation one wishes
to apply the Thom isomorphism between homologies of the base space and
the disk bundle associated to a vector bundle. The isomorphism holds in 7Z
homology provided the bundle is orientable, asking for criteria of orientability
of such bundles. We develop along this line on Section

2 Preliminaries

We recall some facts of semi-simple Lie groups and their flag manifolds (see
Duistermat-Kolk-Varadarajan [3], Helgason [6], Knapp [9] and Warner [15]).
To set notation let G' be a connected noncompact real semi-simple Lie group
with Lie algebra g. Fix a Cartan involution 6 of g with Cartan decomposition
g==2t®s. The form (X,Y)y = —(X,0Y), where (-,-) is the Cartan-Killing
form of g, is an inner product. An element g € G acts in X € g by the
adjoint representation and this is denoted by ¢gX.

Fix a maximal abelian subspace a C s and a Weyl chamber a* C a. We
let IT be the set of roots of a, IT* the positive roots corresponding to a*, ¥ the
set of simple roots in IIT and II~ = —II" the negative roots. The Iwasawa
decomposition of the Lie algebra g reads g = ¢@ad®n™ with n® =3 11 ga
where g, is the root space associated to a. As to the global decompositions
of the group we write G = KS and G = KAN®T with K = expt, S =exps,
A =expaand N* = expn®.

The Weyl group W associated to a is the finite group generated by the
reflections over the root hyperplanes @ = 0 in a, o € II. W acts on a by
isometries and can be alternatively be given as W = M*/M where M* and
M are the normalizer and the centralizer of A in K, respectively. We write
m for the Lie algebra of M.



2.1 Subalgebras defined by simple roots

Associated to a subset of simple roots © C X there are several Lie algebras
and groups (cf. [I5], Section 1.2.4): We write g (0) for the (semi-simple) Lie
subalgebra generated by g,, @ € ©, put £(©) = g(©)Ntand a (0) = g (©)Na.
The simple roots of g(©) are given by ©, more precisely, by restricting the
functionals of © to a(©). Also, the root spaces of g(©) are given by g,, for
a € (0). Let G(O) and K(©) be the connected groups with Lie algebra,
respectively, g(0) and €(©). Then G(O) is a connected semi-simple Lie
group.

Let ag ={H € a:a(H) =0, a € ©} be the orthocomplement of a(O)
in a with respect to the (-, -)g-inner product. We let K¢ be the centralizer of
ae in K. It is well known that

Ko = M(Ko)y = MK(O).

Let ng = Y actit (o) 8o and Ng = exp(ng). We have that K¢ normalizes
ng and that g = ng @ pe. The standard parabolic subalgebra of type © C X
with respect to chamber a*t is defined by

po=n (O)dmdadn’.

The corresponding standard parabolic subgroup Pg is the normalizer of pgo
in G. It has the Iwasawa decomposition Py = KgAN™T. The empty set
© = () gives the minimal parabolic subalgebra p = m@®a®n*™ whose minimal
parabolic subgroup P = Py has Iwasawa decomposition P = MANT.

Let d = dim(pe) and consider the Grassmanian of d-dimensional sub-
spaces of g, where GG acts by its adjoint representation. The flag manifold
of type © is the G-orbit of the base point bg = pg, which we denote by Fg.
This orbit identifies with the homogeneous space G/Pg. Since the adjoint
action of G factors trough Int(g), it follows that the flag manifolds of G de-
pends only on its Lie algebra g. The empty set © = () gives the maximal flag
manifold F = [y with basepoint b = by.

2.2 Subalgebras defined by elements in a

The above subalgebras of g, which are defined by the choice of a Weyl cham-
ber of a and a subset of the associated simple roots, can be defined alter-
natively by the choice of an element H € a as follows. First note that the



eigenspaces of ad(H) in g are the weight spaces g,. Now define the negative
and positive nilpotent subalgebras of type H given by

rlH - Z{ga : < O} nH - Z{ga : > 0}

and the parabolic subalgebra of type H which is given by

pH - Z{ga . > 0}

Denote by N7 = exp(ny) and by Py the normalizer in G of py. Let
d = dim(py) and consider the Grassmanian of d-dimensional subspaces of g,
where GG acts by its adjoint representation. The flag manifold of type H is the
G-orbit of the base point pgy, which we denote by Fg. This orbit identifies
with the homogeneous space G/ Py, where Py is the normalizer of py in G.

Now choose a chamber a* of a which contains H in its closure, consider
the simple roots ¥ associated to a™ and consider

OH)={aeX:a(H) =0},
the set of simple roots which annihilate H. Since a root o € ©(H) if, and
only if, afay,;, = 0, we have that
UE = ﬂg(H) and P = ]J@(H)
Denoting by Ky the centralizer of H in K, we have that Ky = Kgx). So it
follows that
Fu =Feom),
and that the isotropy of G in py is
Py = Pory = K@(H)AN+ = KygANT,
since Kemy = Kp. Denoting by G(H) = G(O(H)) and by K(H) =
K(O(H)), it is well know that
K= M(Kg)o= MK (H).
We remark that the map
Fg — s, kpg — kH, where k € K, (1)

gives an embeeding of Fy in s (see Proposition 2.1 of [3]). In fact, the isotropy
of K at H is Ky = Key) which is, by the above comments, the isotropy of
K at PH.



2.3 Connected components of Ky

We assume from now on that G is the adjoint group Int (g). There is no
loss of generality in this assumption because the action on the flag manifolds
of any locally isomorphic group factors through Int (g). The advantage of
taking the adjoint group is that it has a complexification G¢ = Autg (gc)
with Lie algebra gc in such a way that G is the connected subgroup of G¢
with Lie algebra g.

For a root «, let a¥ = 2a/{«a, a) so that (a¥,a) = 2. Also, let H, be
defined by a(Z) = (H.,Z), Z € a, and write HY = 2H,/(«, «) for the
corresponding co-root. Finally, let

Yo = exp(iTH,),
where the exponential is taken in g¢, and put
F = group generated by {7, : a € 11},

that is F' = {exp(irH) : H € L}, where L is the lattice spanned by H,
a e Il

It is known that F is a subgroup of M normalized by M* and that
M = FM, (see Proposition 7.53 and Theorem 7.55 of [9]). Also, 7, leaves
invariant each root space gz and its restriction to gg has the only eigenvalue
exp(im(a, ). The next result shows that F' intersects each connected com-
ponent of the centralizer K.

Lemma 2.1 For H € a, we have that Ky = F(Kpg)o. In particular, Ko =
F(Kg)o.

Proof: Take w € W such that Z = wH € cla®™. Thus, since Kz = M(Kyz)o
and M = F'M,, we have that K; = F(Kz)o. Now

Kyp=w'Kyw=w'Fuw 'Kzw)y = F(Kg)o,

since M* normalizes F'. The last assertion follows, since Ko = Ky, where
Hg € cla™ is such that ©(Hg) = O. ]



2.4 Stable and unstable bundles over the fixed points

Take H € clat. The one-parameter group exp(tH) acts on a flag mani-
fold Fg, defining a flow, whose behavior was described in Duistermat-Kolk-
Varadarajan [3]. This is the flow of a gradient vector field, and the connected
components of its fixed points are given by the orbits fixg (H, w) = Kgywbe,
where w runs trough W, bg is the origin of the flag manifold Fg and wbg =
wWbe, where W is any representative of w in M*. Since Ky = K(H)M and
the group M fixes wbe, it follows that

fixg (H,w) = K(H)wbe.

It can be checked that each fixg (H,w) is a flag manifold of the semisimple
group G(H) (see [12]). The stable set of each fixg (H,w) is given by

ste(H,w) = Nywbe,

and the stable bundle, denoted by Vg (H,w), is the subbundle of the tangent
bundle to ste(H,w) transversal to the fixed point set.

In order to write Vg (H,w) explicitly in terms of root spaces we use the
following notation: Given a vector subspace [ C g and x € Fg denote by [-x
the subspace of the tangent space T,Fg given by the infinitesimal action of

[, namely B
(-2 ={X(z) e T,Fe: X €1},

where X (z) = 4 (exptX )ji=o () is the vector field induced by X € g. With
this notation the tangent space TbgF@ at bg ~ wHg is
TbvéuF@ = n;H@ . bg
Now, V5 (H,w) — fixe (H,w) (which we write simpler as V'~ — fixg (H, w))

is given by the following expressions:

L. At bg we put Vyg = (ngp, Nny) - 08

wHeg

2. Atx:gbgeKth,geKH put
V. = (Ad(g) (nyp, N1y)) - 2. (2)

This is the same as dgyy (ng) due to the well known formula g*)? =

—_——

(Ad (g) X). Also, the right hand side of (2]) depends only on x because
N, g, NNy is invariant under the isotropy subgroup Ky N Kype of
fixeg (Hyw) =K (H) /(K (H) N Ky, )-
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For future reference we note that, by taking derivatives, the action of
K (H) on fixg (H,w) lifts to a linear action on Vg (H,w). Also, in terms of
root spaces we have
Moo MU= > 85
BeTlg (H,w)

where

IIg (H,w)={pell: B(H) <0, f(wHe) < 0}.

In a similar way we can define the unstable bundles Vg (H, w) — fixe (H, w)
that are tangent to the unstable sets Njwbg and transversal to the fixed
point set fixg (H,w). The construction is the same unless that ny is re-
placed by nj;, and hence IIg (H, w) is replaced by

I (H,w) = {8 €1l: B(H) >0, 3(wHe) < 0}.

Remark: The stable and unstable bundles Vi (H,w) — fixg (H,w) can
be easily obtained by using the general device to construct a vector bun-
dle from a principal bundle () — X and a representation of the structural
group GG on a vector space V. The resulting associated bundle Q) xg V is
a vector bundle. For the stable and unstable bundles we can take the prin-
cipal bundle K(H) — fixe (H,w), defined by identification of fixg (H,w) =
K (H)/ (K (H)N Kyue), whose structural group is K (H) N Ky p,- Its rep-
resentation on I* = n, Ny yields Vg (H,w), respectively.

3 Vector bundles over homogeneous spaces

We state a general criterion of orientability of vector bundles acted by Lie
groups. Let V' — B be a n-dimensional vector bundle and denote by F'V the
bundle of frames p : R™ — V. It is well known that the vector bundle V is
orientable if and only if F'V has exaclty two connected components, and is
connected otherwise.

Let K be a connected Lie group acting transitively on the base space B in
such a way that the action lifts to a fiberwise linear action on V. This linear
action in turn lifts to an action on F'V by composition with the frames.

Fix a base point xg € B with isotropy subgroup L C K. Then each g € L
gives rise to a linear operator of the fiber [ = V. Denote by det(g|(), g € L,
the determinant of this linear operator.
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The following statement gives a simple criterion for the orientability of
V.

Proposition 3.1 The vector bundle V' is orientable if and only if det(g|;) >
0, for every g € L.

Proof: Suppose that det(g|;) > 0, g € L, and take a basis 5 = {eq,...,ex}
of V,,. Let g1,92 € G be such that g1z9 = goxy. Then the bases ¢;8 =
{gie1, ..., giex}, i = 1,2, obtained by the linear action on V', have the same
orientation since deg (gl_ ! g2|[) > (. These translations orient each fiber con-
sistently and hence V.

Conversely, denote by F'V the bundle of frames of V. If V' is orientable
then F'V splits into two connected components. Each one is a GI* (k, R)-
subbundle, £ = dim V, and corresponds to an orientation of V. The linear
action of G on V lifts to an action on F'V. Since G is assumed to be con-
nected, both connected components of F'V are G-invariant. Hence if g € L
and (3 is a basis of V,,, then # and gf have the same orientation, that is,
det(gl;) > 0. O]

Remark: Clearly, det(g|;) does not change sign in a connected component
of L. Hence to check the condition of the above proposition it is enough to
pick a point on each connected component of L.

4 Vector bundles over flag manifolds

Now we are ready to get criteria for orientability of an stable vector bundle
Vo (H,w) — fixe (H,w) and for the tangent bundle of a flag manifold Fe.
These two cases have the following properties in common:

1. The vector bundles is acted by a connected subgroup of G whose action
on the base space is transitive. Hence Proposition [3.1] applies.

2. There is a subgroup S of the lattice group F' of G that touches ev-
ery connected component of the isotropy subgroup, furthermore S is
generated by

{7a - v e (M)}

with roots belonging to a certain subset A C X..



3. The action of the isotropy subgroup on the fiber above the origin re-
duces to the adjoint action on a space

[=) ga

spanned by root spaces, with roots belonging to a certain subset I' C 1I.
Now, a generator of S, given by
Yo = exp (inH)), a € (A),

acts on a root space gg by exp(im(aV, () -id. Hence the determinant of -,
restricted to [ = Y gq is given by

det(7a]1) = exp <iw2ng(av,ﬁ)> :

gel’

So that det(v,|i) = £1 with the sign depending whether the sum

> nsla’, B)

per

is even or odd. Here, as before ng is the multiplicity dim gg of the root 5.
From this we get the following criterion for orientability in terms of roots:
The vector bundle is orientable if and only if for every root o € (A) the sum

an(av,ﬁ) =0  (mod2)

gel’

where the sum is extended to g € I'. Finally, we note that it is enough
to check the above condition for every simple root @ € A. This is because
the set of co-roots (A)Y = {a¥ : a € (A)} is also a root system having
AY = {a" : o € A} as a simple system of roots. Thus the elements of (A)Y
can be written as a sum of elements of AY and the above condition holds for
any root o € (A) if and only if it holds for the simple roots in A.



4.1 Flag manifolds

In case of orientability of a flag manifold Fg (its tangent bundle) the subspace
to be considered is
[=ng = Z 93,

BeIl~\(O)
that identifies with the tangent space to Fg at the origin, and the acting
group is K.

Theorem 4.1 The flag manifold Fg is orientable if and only if

an (aV,8) =0 (mod2) (3)
B

where the sum is extended to € 117\ (©) (or equivalently to f € IIT\ (©) ).
This condition must be satisfied for any simple root «.

Proof: In order to apply the determinant criterion, note that the isotropy of
the base Fg at bg is K which decomposes as Kg = F'(Kg)o (see Lemma[2.1]).
It follows that that F' touches every connected component of the isotropy Keg.
Hence we can apply the determinant criterion with A = ¥ (so that S = F)
and I' =117\ (©) to get the above result. ]

Now we derive some consequences of the criteria stated above. First we
prove that any maximal flag manifold is orientable, a result already obtained
by Kocherlakota [10] as a consequence that the top Z-homology groups are
nontrivial.

Theorem 4.2 Any mazximal flag manifold F is orientable.

Proof: We write, for a simple root «, II, = {a,2a} NIIT, II§ = {8 €
IIF : (¥, ) = 0} and IIY = {B € IIT : (", ) # 0, 8 ¢ Il,}. Let r, be
the reflection with respect to . It is known that r, (ITT \ II,) = IIT \ II,,.
Moreover, for a root § we have

(0,10 (B8)) = (a, B = (", B)a) = (a”, B) — (a”, a)(a, B) = —(a”, B).

Hence the subsets II§ and II{ are r,-invariant and (", 5 + 7, (8)) = 0.
Now fix o € ¥ and split the sum ;1 ng(a’, B) into Il,, II§ and
II{. For 11, this sum is 2n, + 4ng,, with ng, = 0 if 2a is not a root. For
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IS the sum is zero. In II{ the roots are given in pairs § # 1, (8) with
(¥, B+ 1, (B8)) =0, since IIY is ro-invariant and 5 = 7, (0) if and only if
(", B) = 0. Since n,, g = ng, it follows that Zﬁel‘['{‘ ng(a”, f) = 0. Hence
the total sum is even for every o € ¥, proving the orientability of FF. (]

In particular this orientability result applies to the maximal flag manifold
of the semi-simple Lie algebra g(©). Here the set of roots is (©) having ©
as a simple system of roots. Therefore the equivalent conditions of Theorem
4.1l combined with the orientability of the maximal flag manifold of g(©)
immplies the

Corollary 4.3 If a € © then

an(av,ﬁ) =0 (mod2),
B

where the sum is extended to § € (©)~ (or equivalently to § € (©)7).
This allows to simplify the criterion for a partial flag manifold Fg.

Proposition 4.4 Fg is orientable if and only if, for every root a € ¥\ ©,
it holds

an(av,ﬁ) =0 (mod2), (4)
B
where the sum is extended to 5 € (©)~ (or equivalently to B € (©)7).

Proof: Applying Corollary B3 with © = ¥, we have that » ;- ng(a”, 3)
is even. Hence, by Theorem [4.1], Fg is orientable if and only if, for every root
a € X, the sum ZB€<@>, ng(a, B) is even. By Corollary [4.3] it is enough to
check this for every root a € ¥\ ©. O

Finally we observe that if G is a complex group then the real multiplicities
are ng = 2 so that any flag [Fg is orientable. This is well known since the
Feo are complex manifolds. In Section Bl we make a detailed analysis of the
orientability of the partial flag manifolds for the split real forms (normal real
forms) of the simple complex Lie algebras.

11



4.2 Stable and unstable bundles in flag manifolds
For the stable bundles Vg (H,w) we take

[=n,y, NNy = > g
Bellg (H.w)

where
g (H,w) = {3 € 11: §(H) < 0,  (wHe) < 0}.
and the acting Lie group is K (H).

Theorem 4.5 The vector bundle Vg (H,w) is orientable if and only if

an(av,ﬁ) =0 (mod2),
B

where the sum is extended to § € Ilg (H,w). Here the condition must be
verified for every a € O(H).

Proof: In order to apply the determinant criterion we look at the isotropy of
the base fixg (H,w) at wbg in a suitable way. Looking at Fg as the adjoint
orbit K Hg we have that bg = Hg, wbe = wHg and

fixg (H,w) = K(H)wHe.

Let g : @ — a(H) be the orthogonal projection parallel to ay. Since K(H)
centralizes ag, it follows that the isotropy of K(H) at wHg is the centralizer
K(H)yz, where Z = my(wHg). Since K(H) is the compact component of the
semisimple Lie group G(H), applying Lemma 2.1 we have that the isotropy
is

K(H)z = F(H)(K(H)z)o,

where F'(H) is the lattice group of G(H). It follows that that F'(H) touches
every connected component of the isotropy K(H)z. Since the root system
of G(H) is given by the restriction of (O(H)) to a(H), it follows that F'(H)
is the subgroup of F' generated by

{90 = exp (iTHY) : o € (O(H)))}.

Hence it is enough to check the determinant condition for the simple roots
in © (H). Therefore we can apply the determinant criterion with A = O(H)

12



(so that S = F(H)) and I' = IIg (H, w) to get the above result. O]

Remark: The same result holds for the unstable vector bundles V™ (H, w)
with II§ (H, w) instead of IIg (H,w).

We have the following result in the special case when © = () and w is the
principal involution w™.

Corollary 4.6 For every H € cla™, the vector bundles V— (H,1) and V* (H,w™)
are orientable.

Proof: Applying Corollary 3 with © = ¥ and © = O(H), it follows that

both

Z ng{a”, B) and Z ng{a”, B)

BeTT+ Be(©(H))*
are even for « € ©(H). Hence, for every a € ©(H), it holds that ), nsg(aV, )
is even, where the sum is extended to § € IIT \ (O(H)). If © = (), then Hg
is regular and (w~Hg) < 0 if and only if 5 € TIT. Thus IIT (H,w™) =
II7\ (©(H)) and the result follows from Theorem [L.5

The proof for V* (H,w™) is analogous. O]

Remark: The above result is not true in a partial flag manifold. An example
is given in G = SI(3,R) with H = diag(2, —1,—1) acting on the projective
plane, which is a partial flag manifold of G. Then it can be seen that the
repeller component of H is a projective line and its unstable bundle a Mobius
strip.

5 Split real forms

When gis a split real form every root 8 has multiplicity ng = 1. Hence, the
criterion of Corollary 4] reduces to

S(a,®)= > (a".8)=0  (mod2), (5)
pe(O)*

that can be checked by looking at the Dynkin diagrams. In the sequel we
use a standard way of labelling the roots in the diagrams as in the picture
below.

13



A,l>1 o—o0— -+ —0—0 GQQ%O
(053] [6%) a1 O aq (0%}
B, >2 o—o——o%o Fy
Q1 Qg ap_1/0q Qp Qg /03 Q4

Qg
C,1 >3 o—o——o%o T
PTET A a apy o By o

a1 Qo
Dj,l>4 o0—0— -+ T

a1 Qo Q™ E; 0
oy ap Gz a3 Q4 Qf

o

)

Qp G Q3 Q4 Of

For the diagram (G5 there are three flag manifolds: the maximal F, which
is orientable, and the minimal ones Fy,,y and Fy,,), where a; and «; are the
simple roots with «; the longer one. These minimal flag manifolds are not
orientable since in both cases (Bl reduces to the Killing numbers (o, ) =
—1 and (o, q) = —3. From now on we consider only simple and double
laced diagrams.

Our strategy consists in counting the contribution of each connected com-
ponent A of O to the sum S («, ©) in (B). Thus we keep fixed o and a con-
nected subset A C X. If « is not linked to A then S (a, A) = 0 and we can
discard this case. Otherwise, « is linked to exactly one root of A, because a
Dynkin diagram has no cycles. We denote by § the only root in A linked to
a.

A glance at the Dynkin diagrams show the possible subdiagrams A prop-
erly contained in . We exhibit them in table[Il For these subdiagrams we
can write down explicitly the roots of (A)™ and then compute S («, A), when

14
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A )
A, (k>1) any diagram
By (k> 2) B (I>k),C,(k=2)and Fy (2<k<3)
Cr (k> 3) C, (I >k)and Fy (k=3)
Dy (k>4) | Di(I>Fk), B (4<k<5), B (4<k<6)and Eg (4 <k <T)
FEg E; and Eg
Er Es

Table 1: Connected subdiagrams

A=A
links S(a, A)

a—319 —k
aﬁé —k
a%é —ok

Table 2: A; subdiagrams

« is linked to A. In fact, if § C (A)* then = ¢d + v where 0 is the only
root in A which is linked to a and (y,a") = 0, so that (3,a") = ¢(d,a").
Hence it is enough to look at those roots 8 € A whose coefficient ¢ in the
direction of ¢ is nonzero. In the sequel we write down the values of S («a, A)
and explain how they were obtained.

In the diagram Aj, with roots a1, . . ., aj, the positive roots are a; +- - -+a;,
1 < j. Hence if A = A then the possibilities for § are the extreme roots «;
and ay. In case § = «; the sum S (a, A) extends over the k positive roots
ay + -+ a4, 7 =1,..., k, that have nonzero coefficient in the direction of
aq. (It is analogous for § = ay.)

In the standard realization of By, the positive roots are \; £ \;, @ # j, and
Ai, where {A,..., Az} is an orthonormal basis of the k-dimensional space.
The possibilities for § are extreme roots A\; — Ay (to the left) and A\ (to
the right). If § = A\ — Ay then « and ¢ are linked by one edge, that is,
(0, a¥) = —1. Also, the positive roots in By having nonzero coefficient ¢ in
the direction of A\; — Ay are the 2k — 2 roots Ay £ A;, j > 1 together with A;.
For all of them ¢ = 1, hence the contribution of A to S (a, A) is — (2k — 1).
Analogous computations with § = A yields the table

For () the positive roots are A\; £ \;, ¢ # 7, and 2\;. If § = A\; — Ay then
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A = By,

x S(a, A)
B2<k<l)| —(2k—1)
C (k=2 )

Fy (k=2 “3or —4

Table 3: B; subdiagrams

A=Cy
z S(a, A)
CLB<k<l)| =2k
Fr (k=3) =6

Table 4: C) subdiagrams

(0,) = —1, and we must count the 2k — 2 roots A\; = A;, 7 > 1, having
coefficient ¢ = 1 and 2\; with ¢ = 2. Then the contribution to S (a, A) is
—2k. This together with a similar computation for the other ¢ gives table

For Dy, the positive roots are \; £\, i # j. If § = A\; — Ay then (J,a") =
—1, and we must count the 2k — 2 roots A\; £ A;, 7 > 1, all of them having
coefficient ¢ = 1. Then the contribution to S (a, A) is —2k — 2. We leave to
the reader the computation of the other entries of table

The results for the exceptional cases are included in table [6l To do the
computations we used the realization of Freudenthal of the split real form
of Fy in the vector space sl (9,R) & A*R? & (/\3 Rg)*. The roots of Fg are

A = Dy

z S(a, A)
DiA<k<l)| —20h-1
E (k=4) —6

El (k‘:5) —8,5:(11
E, (k=5) —10, 0 = a5
E, (k=6) —6,0 =y
E, (k=6) —15, 0 = a4
Es (k=1 —21

Table 5: D; subdiagrams
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A = FEj
z S(a, A)
E (k=6)| —16
Bs (k=7)] —27

Table 6: E; subdiagrams

the weights of the representation of the Cartan subalgebra h C s[(9,R) of
the diagonal matrices (see Fulton-Harris [5] and [I3]). The roots are A; — A;,
i # j (with root spaces in sl (9, R)) and £ (\; + \; + \), @ < j < k (with root
spaces in A\°R? @ (A’ R®)"). From the realization of Ey one easily obtains
FEg and E7, and the computations can be performed.

5.1 Classical Lie algebras

The split real forms of the classical Lie algebras are A, = sl(l+1,R),
B, =so(l,l+1), C; = sp(l,R) and D; = so(l,l). Their associated flag
manifolds are concretely realized as manifolds of flags (V; C - -+ C V}) of vec-
tor subspaces V; C R™. For A; one take arbitrary subspaces of R", n =14 1.
Given integers 1 < dy < -+ < dy <[ we denote by F (dy, ..., dj) the manifold
of flags (V4 C -+ C V}) with dim V; = d;.

For the other classical Lie algebras we take similar manifolds of flags, but
now the subspaces V; are isotropic w.r.t. a quadratic form for B; and D;, and
w.r.t. a symplectic form in C;. Again the flag manifolds are given by integers
1<d <. <dp <land we write F! (dy,...,dy) for the manifold of flags
of isotropic subspaces with dimV; = d;. Here V; C R® with n = 2[4+ 1 in B,
and n = 2! in the C} and D; cases.

The way we order the simple roots ¥ in the Dynkin diagrams allows
a direct transition between the dimensions di,...,d, and the roots © C ¥
when F (dy, ..., dy) or F! (dy,. .., dy) is Fg. In fact, except for some flags of D,
the dimensions dj, . . ., dy coincide with the indices of the roots a; ¢ ©. (For
example, the Grassmannian F (r) is the flag manifold Fg with © = ¥\ {«,}.)
We detail this correspondence below.

The orientability criteria for the split real groups uses several times the
following

Condition: We say that the numbers 0 = dy, dy, ..., d satisfy the mod2
condition if the differences d;;1 — d;, i =0, ..., k, are congruent mod2, that
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is, they are simultaneously even or simultaneously odd.

51.1 A =sl(i+1R)

The flag manifolds are F (dy, ..., dy) = Fg such that j € {d,...,ds} if and
only if j is the index of a simple root o; ¢ ©. If we write F (dy,...,d;) =
SO (n) /Kg then Kg = SO (dy) x- - -xSO (n — dy) is a group of block diagonal
matrices, having blocks of sizes d;, 1 — d;.

Proposition 5.1 A flag manifold F (dy,...,dy) of A; is orientable if and
only if dy, ..., dy, dr 1 satisfy the mod2 condition. Here we write dj 1 =n =
[+ 1. Alternatively orientability holds if and only if the sizes of the blocks in
Ko are congruent mod?2.

Proof: By the comments above, the simple roots outside © are «,,, ..., a,,,
where dy,...,d; are the dimensions determining the flag. For an index 1
there either d;1; = d; + 1 or d;11 > d; + 1. In the second case the set
A ={ap41,...,04,,,-1} is a connected component of ©, having d; 1 —d; — 1
elements. We consider two cases:

1. If the second case holds for every a ¢ © then the connected components
of ¥\ © are singletons. If this holds and « ¢ © is not one of the extreme
roots ay or oy then « is linked to exactly two connected components
of ©. By the first row of table [2] these connected components of ©
must have the same mod2 number of elements if F (dy, ..., dy) is to be
orientable. Hence if {ay,q} C © then F(dy,...,ds) is orientable if
and only if the number of elements in the components of © are mod2
congruent. This is the same as the condition in the statement because
a connected component has d;y; —d; —1 elements. On the other hand if
a1 or ¢y is not in © then orientability holds if and only if all the number
of elements of the components of © are even. In this case d;11 — d; is
odd and dy —dy =1 or d1 — d;, = 1. Hence the result follows.

2. As in the first case one can see that if some of the components of ¥\ ©
is not a singleton then all the components of © must have an even
number of elements. Therefore the integers d;,, — d; are odd.

O
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Example: A Grassmannian Gry (n) of k-dimensional subspaces in R" is
orientable if and only if n is even.

Remark: The orientability of the flag manifolds of Sl(n,R) can be decide
also via Stiefel-Whitney classes as in Conde [2].

5.1.2 B, =so0(l,l+1)

Here the flag manifolds are F’ (dy, ..., d) = Fg such that j € {dy,...,dy}
if and only if j is the index of a simple root a; ¢ ©. The subgroup Kg is a
product SO (ny) X --- x SO (ny) with the sizes n; given as follows:

1. If dp = [, or equivalently oy ¢ © then Kg = SO (dy)x---xSO (dg_1 — dg_2).
2. If di, < I, or equivalently «; € © then

(a) Ko =S50 (dy) x +--x SO (dx — dg_1) x SO (2) if d =1 — 1, that
is, {ay} is a connected component of ©.

(b) Ko =80 (dy)x---xSO (d — dp_1) XSO (I — d)xSO (I —dy + 1)
if d;, < 1 —1, that is, the connected component of © containing «
is a Bl—dk-

Proposition 5.2 The following two cases give necessary and sufficient con-
ditions for flag manifold B! (dy, ..., dy) of By to be orientable.

1. Suppose that dy =1, that is, oy ¢ ©. Then F! (dy, ..., d},) is orientable
if and only if dy,...,dx_1, up to k — 1, satisfy the mod2 condition.
Equivalently, the sizes of the SO (n;)-components of Kg are congruent
mod?2.

2. Suppose that dy <1, that is, oy € ©. Then F! (dy,...,dy) is orientable
if and only if dy, ..., ds together with | — dy. satisfy the mod2 condition.

Proof: If o; ¢ O then © is contained in the A;_j-subdiagram {ay,...,aq_1}.
Hence the condition is the same as in the A; case. Furthermore, S (aq, A)
is even for any A because « is a short root. Therefore no further condition
comes in.

In the second case, if A is the connected component of © containing oy
then the contribution S (o, A) of A to the total sum is the number of ele-
ments of A by tables 2] and [Bl Again, the conclusion is as in the A; case. [l
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Example: A Grassmannian Grj, (n) = F/ (k) of k-dimensional isotropic sub-
spaces in R?*1 is orientable if and only if either i) k = or ii) k < [ and [ is
ever.

5.1.3 C;=sp(l,R)

Again the flag manifolds are FI (dy,...,dy) = Fe such that j € {dy,...,dy}
if and only if j is the index of a simple root «; ¢ ©. The subgroup Kg is

1. SO (dy) X -+ % SO (dy_y — dy_s) if djy = L.
2. SO (dl) X .-+ x SO (dk_l—dk_g) x SO (2) if dk:l—l
3. SO(dl) X oo X So(dk_l_dk_2> XU(l—dk) lfdk<l—1

Proposition 5.3 For C; a necessary and sufficitent condition for the ori-
entability of B! (dy, ..., dy) is that dy, ..., dy, satisfy the mod2 condition.

Proof: There are two possibilities:

1. If di, = [, that is, o ¢ O then O is contained in the A;_; and the
condition, up to k—2, comes from the A; case. The difference dj, —dj_1
also enters in the condition because «; is a large root.

2. If di, < [, that is, oy € O then the conditions are necessary as in the A;
case. To see that no further condition appears look at the connected
component A containing «;. If A = {a;} then S (a;_1,A) is even
because a;_; is a short root. Otherwise, A is a '}, and its contribution
is also even by table [l

O
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5.1.4 D, =so0(l,1)

The flag manifolds of so (I,1) are also realized as flags of isotropic subspaces
with a slight difference from the odd dimensional case B, = SO (I,1 + 1).
First a minimal flag manifold Fy\ (4,1 is the Grassmannian of isotropic sub-
spaces of dimension i if 7 < [ — 2. However, both Fx\(o, ,} and Fx\jq,)
are realized as subsets of [-dimensional isotropic subspaces. Fach one is
a closed orbit of the identity component of SO (/,1) in the Grassmannian
Gr/ (20) of I-dimensional isotropic subspaces. We denote these orbits by
Gr)s (21) = Fs\(ay and Gr- (21) = Fs\(a,—1}- (By the way the isotropic
Grassmannian Gr;_; (20) is the flag manifold Fs\ (4, , ..}, Which is not mini-
mal.)

Accordingly, the flag manifolds of so (I,1) are defined by indices 1 < d; <
-+« < dyp < 1—-2 joined eventually to [T and [~. The elements of F’ (d; ..., dy)
are flags of isotropic subspaces Vi C --- C V, with dimV; = d,. When [T
or [~ are present then one must include an isotropic subspace in Grjy (21) or
G (21), respectively, containing V}, and hence the other subspaces.

The group Kg is a product of SO (d)’s components each one for a con-

nected component of © unless a D, component appears. Such a component
contributes to Kg with a SO (k) x SO (k).

Proposition 5.4 The orientability of the flag manifolds of D, = so (,1) is
given as follows:

1. For a flag B! (dy, ..., dy) there are the possibilities:

(a) If dp < 1—4 then orientability holds if and only if dy, . .., dy satisfy
the mod2 condition.

(b) If d, = | — 3 then orientability holds if and only if the differences

diy1—d;, 1=0,...,k—1, are even numbers.
(c) If di, = | — 2 then orientability holds if and only if the differences
diy1—d;, 1=0,....k—1, are odd numbers.

2. For the flag manifolds F! (dy, ..., dy, 1) andF! (dy, ..., dy, ") we have:

(a) If dj, = 1 — 2 then the condition is that diyy —d;, 1 =10,..., k—2,
are even numbers.
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(b) If dp <1 — 2 then the condition is that di 1 —d;, 1 =0,....k — 2,
are odd numbers and d;, — di_1 s even.

3. For the flag manifolds F! (dy, ..., dy,[T,17) we have:

(a) If dy =1 —2 then dy,...,dx_o satisfy the mod2 condition.
(b) If d, <l —2 then diyq1 —d;, 1 =0,...,k — 2, are odd numbers.

Proof: If d;, <[—4 then © contains a connected component A which is a Dy,
(at the right side of the diagram). By table [§] the contribution of A is even,
so that orientability depends on the roots in the A; 4 diagram {ay, ..., a4}
where the condition is as in the statement. If di, = [ — 3 then the differences
diy1 —d;; © = 0,...,k — 1, must be congruent mod2 to have orientability.
But the root «y_3 is linked to the A3 = {a;_2, 1, }, so that the number
of elements of the components of © are odd, that is, the differences d;; — d;
are even. The same argument applies to dy =1 — 2 , but now «;_5 is linked
to the two Ay’s {oy_1} and {ay}.

The other cases are checked the same way. []

6  Vector bundles over flag bundles

In this final section we consider vector bundles over flag bundles. The ori-
entability of vector bundles over the flag manifolds carry over to vector bun-
dles over flag bundles in case the latter are bundles associated to trivial
principal bundles.

With the notations of Section [3 let R be a K-principal bundle. Since
K acts continuously on V' and B, the associated bundle R x g V' is a finite
dimensional vector bundle over R X B whose fibers are the same as the

fibers of V.
Proposition 6.1 Assume that R is trivial. Then the vector bundle

RXKV%RXKB

is orientable if, and only if, the vector bundle V — B is orientable.
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Proof: Since the K-principal bundle R — Y is trivial, we have that R X g
V — R X g B is homeomorphic as a vector bundle to Y x V' — Y x B. Since
the frame bundle of Y x V' can be given by Y x FV, the orientation bundle
of Y x V can be given by Y x OV. If 0 : B — OV is a continuous section,
then (y,z) — (y,o(z)) is a continuous section of ¥ x OV. Reciprocally, if
0:Y x B—Y x OV is a continuous section, then = — o(yo, z) is a contin-
uous section of OV, where yy € Y. U]

Let G be a Lie group acting on its Lie algebra g by the adjoint action.
The vector bundles we will consider in the sequel arise as associated bundles
of the L-principal bundle K — K/L, where K is a subgroup of G. For an
L-invariant subspace [ of g, we will consider the associated vector bundle

V=K X7, [,
whose typical fiber is [.

Corollary 6.2 The associated vector bundle V' is orientable if and only if
det(g|i) > 0, for every g € L.

Proof: We only need to show that V satisfies the hypothesis of Proposition
Bl First we note that its frame bundle is given by FV = K x GI(I).
Defining an action k € K on m- X € FV by

k(m-X)=km- X,

where m € K, X € [, we have that the action of K on K/L lifts to a contin-
uous action of automorphisms on the frame bundle F'V. (]

To conclude we apply our results to the situation of [12], where flows on
flag bundles and their Conley indices are considered. In [I2] one starts with a
principal bundle () — B whose structural group G is semi-simple, and a flow
¢, t € Z or R, of continuous automorphisms of ) which is chain transitive
on the base B. There are induced flows on the associated bundles @) x4 F,
where the typical fiber F' is acted by G on the left. In particular, in [12] it
is taken as a typical fiber F' a flag manifold Fg of GG yielding the flag bundle
E@ = Q Xa F@.

According to the results of [11] and [12], each Morse component Mg(w)
of ¢ is a flag bundle of a certain subbundle @, of Q. Moreover, the unstable

23



set V3 (w) of the Morse component Mg(w) is an associated vector bundle
of @, whose base is Mg(w) and whose typical fiber is the same as the fiber
of V& (Hy, w), where is Hy is a certain element of cla*t, called the parabolic
type of ¢'.

When the base B is a point, the flow of automorphisms ¢ is given by ¢
for some g € G, when t € Z, or by exp(tX) for some X € g, when ¢t € R.
In [4], it is shown that the parabolic type H, of these flows is given by the
hyperbolic component of g or X under the Jordan decomposition.

In [12], we show that the Conley index of the attractor component in the
maximal flag bundle and, under certain hypothesis, the Conley index of each
Morse component, is the Thom space of its unstable vector bundle. The
orientability of the unstable vector bundle then comes to the scene in order
to apply Thom isomorphism and detect the homological Conley indices of
the Morse components. With these results in mind we state the following
criterion of orientability of V3 (w), that follows immediately from Proposition
[6.1]

Proposition 6.3 Assume that the reduction R, is a trivial bundle. The
stable and unstable vector bundles Vg(H, w) are orientable if and only if the
vector bundles Vg (H,w) are orientable.

There are two cases where the hypothesis of the above result are auto-
matically satisfied. Namely for periodic flows, it is shown in [4] that the
reduction @)y is trivial. For the control flow of [I], the reduction Q) is always
trivial since the base space of the control flow is contractible.
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