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We give details of our precise determination of the lightrguaassesn,; = (m,+mg)/2
andmg in 2+1 flavor QCD, with simulated pion masses down to 120 MeV, at fatéde
spacings, and in large volumes. The details concern thereatid algorithm employed, the
HMC force with HEX smeared clover fermions, the choice of slale setting procedure
and of the input masses. After an overview of the simulatiarameters, extensive checks
of algorithmic stability, autocorrelation and (practicatgodicity are reported. To corrobo-
rate the good scaling properties of our action, explicitste$ the scaling of hadron masses
in Ny =3 QCD are carried out. Details of how we control finite volumgeets through
dedicated finite volume scaling runs are reported. To cheokistency with SU(2) Chiral
Perturbation Theory the behavior &f2/m.q and F;; as a function ofn,,4 is investigated.
Details of how we use the RI/MOM procedure with a separatéitwonm limit of the run-
ning of the scalar density®s(u, /) are given. This procedure is shown to reproduce the
known value ofrgm, in quenched QCD. Input from dispersion theory is used td spii
value ofm,y into separate values of,, andmgy. Finally, our procedure to quantify both
systematic and statistical uncertainties is discussed.
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1 Introduction

The goal of this paper is to give technical details of our glatton of the average light quark
massm,q = (m,+mgy)/2 and of the strange quark mass at the physical mass point and in
the continuum([1]. This calculation is from first principlasd sets new standards in terms of
controlling all systematic aspects of a direct calculatibmguark masses. Because the values
m, andm, are also of fundamental importance, we determine them byboong our results
for m,q andmg with dispersive information based on— 37 decays. A summary of recent
determinations of light quark massesin =2 andN;=2+1 QCD is found in[1].

Let us begin by stating the minimum requirements for a firgtgiples determination of
m.q andm, with fully controlled systematics:

1. The action should belong to the universality class of Q€Eoeding to standard argu-
ments, based on locality and unitarity, and an exact alyorghould be used.

2. The light quark masses should be sufficiently close ta thigysical values such that an
extrapolation, if necessary, can be performed withoutragldon-trivial assumptions. Our
simulations are performedat the physical mass poiht.e. with values of M, and My
which bracket the physical values; this eliminates the rieed “chiral extrapolation”.

3. Simulations should be performed in volumes large enoagimsure that finite-volume
effects are well under control (we use box sizes up 196 fm).

4. Simulations should be performed at no less than threedatpacings to make sure that
a controlled extrapolation of all results to the continuamy 0, can be performed.

5. All renormalizations should be performed nonpertustedyi and the final result should
be given in a scheme which is well-defined beyond perturbdtieory (we will give our
results in the RI/MOM scheme).

6. The scale and other input masses should be set by qusmtit@se relation to experiment
are direct and transparent (we use the masses 61 tfayon, the pion and the kaon).

The present work contains additional innovative featurbglvare not required to give an
ab-initio result, but help to keep all systematic errorsléma

7. We devise a method, tailored to needs of studies with \Wild@ fermions, to reconstruct
the renormalized quark masses,; andm, from the much simpler renormalization of the
quantitiesn,/m,q andms—m,4. We call it the “ratio-difference method”.

8. We propose an approach which overcomes the RI/MOM “wingooblem”. It is based
on taking a separate continuum limit of the evolution fuoictiRs (1, 1/) of the scalar
densityS from a scale. ~ 2 GeV, where the RI/MOM procedure yields reliable results,
to a scale/’ ~4 GeV where one may make (controlled) contact with perturbatieoty.

9. We use an advanced analysis procedure to assess the biath tie statistical and the
systematic uncertainties (the same one aslin [2]).
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Figure 1: Summary of our simulation points. The pion masses and theasgé&es of the
lattices are shown for our five lattice spacings. The peaggntabels indicate regions, in which
the expected finite volume effect [3] avi,. is larger than 1%, 0.3% and 0.1%, respectively. In
our runs this effect is smaller than about 0.5%, but we stiftect for this tiny effect.

In our view, item 2 marks the beginning of a new era in numéiattice QCD, because it
avoids an extrapolation in quark masses which, generjaatpires strong assumptions, thus
relinquishing the first-principles approach (see the dismn in [1]).

To give the reader an overview of where we are in terms of stedlpion massek/,; and
spatial box sized,, a graphical survey of (some of) our simulation points isvted in Fig[1
(with more details given in Sec.5). We have data at 5 lattpacsgs in the rang8.054 —
0.116 fm, with pion masses down t® 120 MeV and box sizes up te- 6 fm. Comparison with
Chiral Perturbation suggests that our finite volume effactstypically below 0.5%, and close
to the physical mass point (which is the most relevant paghesmaller. Still, we correct for
them by means of Chiral Perturbation Theary [3], and testctireectness of this prediction
through explicit finite volume scaling runs (see below).

The remainder of this paper is organized as follows. In Séetails are given concerning
the action and algorithm employed, while Sec. 3 specifies twogvdetermines the HMC force
with HEX smeared clover fermions. Our choice of the scalé@rggprocedure and of the in-
put masses is discussed in Sec. 4, with simulation parasn&tbulated in Sec.5. Checks of
algorithmic stability are summarized in Sec. 6, while aotoelation and (practical) ergodicity
issues are reported in Sec. 7. To corroborate the good gqalaperties of our action, explicit
tests of the scaling of hadron masses\in=3 QCD are carried out, see Sec. 8. Details of how
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we control finite volume effects through dedicated finiteuwné scaling runs are reported in
Sec. 9. To test consistency with SU(2) Chiral Perturbatibecry the behavior af/2 /m,4 and
F,. as a function ofn,4 is investigated in Sec. 10. Details of how we use the RI/MONCpr
dure with a separate continuum limit of the running of thdarcdensityRs(u, 1) are given in
Sec. 11. To show the reliability of this procedure the knoalug ofrym, in quenched QCD is
reproduced, see Sec 12. In Sec. 13 itis discussed how oneseayput from dispersion theory
to split our value ofn,4 into separate values af,, andm,. Sec. 14 specifies our procedure to
guantify both systematic and statistical uncertaintias: fhal result is summarized in Sec. 15.

2 Action and algorithm details

We use a tree-leved (a?)-improved Symanzik gauge actidn [4] together with treesl@over-
improved Wilson fermions||5], coupled to links which havedergone two levels of HEX
smearing. The latter derives from the HYP setup [6], but witbut/EXP smearing [7] as the
effective ingredient — see][8] for details. In terms of thigmral [U,,(z)] and smeared}|,(xz)]
gauge links (see below) our action takes the farm|[4, 5]

S = S S
Sgsym = 0 {@ ZReTr Uplaq) ZReTr — mct)}

3 plaq rect

SV = SFVI- LY Y (o EulV]v)() (1)

T pu<v

with ¢, = $[7,,,7.,] and S}’ denoting the standard Wilson action, and where the exjone$si
the field strength can be found in [5]. H‘fym only the original thin linksU,,(z) are used. The
parameters, c; [4] andcsw [5] are set to their tree-level values

cg=-1/12, c¢=1—-8c;=5/3, csw=1. (2)

Note that both the hopping part and the clover ternﬁ*ﬁW use the same type of HEX-smeared
links V,,(z) = V,? (). Those are constructed from the thin link&’ (z) = U, (z) via [8]

M@ = 3 Ve @y D ara) Vi )’
o (1,v,p)

Vi) = exp (2 P T @Ve @) Ve @)

0@ = Y VED@VED @)V i)
+o#(p,v)

nyn)(x) = exp( 1 PTA{F ( )V(” 1( )T})Vu(n_l)(x)

Pe@) = 3 VEI@VED @+n)VE @)
Tr#(p)



n a n n— n— J— n
ViEn(@) = exp (& Pru{TPm @V V@) )V V(e) = Vi) (3)
without summation over repeated indices. Here
1 1
Pra{M} = §[M—MT] — gTr[M—MT] (4)

denotes the traceless anti-hermitean part o#3ematrix //. We use the parametets = 0.95,
as = 0.76 andaz = 0.38. In terms of the standard stout/EXP smearing convention [7]

rMa) = Y V@V @+o)V D (a+p)!
tv#p
V(@) = exp (p Py T @)V D (@) Vi () (5)

the values ofy;, i = 1, 2, 3, above correspond 0=0.158333, 0.19 and 0.19, respectively. This
smearing differs from the one we usedlin [2, 9] in that the fers interact even more locally
with the gauge fields here (cf. the discussion in the supphang online material of [2] and the
appendix of[[8]). Note, finally, that our action is exactlywdgalocal (in position space) as the
original Wilson/clover action, sinc®(z,y) =0 for |z —y|> 1.

As we use the hybrid Monte-Carlo (HMC) algorithm [10], a nioiial ingredient with this
action is the coding of the molecular dynamics (MD) forcejchtwill be discussed in the next
section. The MD updates are performed in quadruple pregismensure exact reversibility
in our target (double precision) accuracy. Further paldisuof our implementation — even-
odd preconditioning [11], multiple time-scale integrati3Sexton-Weingarten schemef) [12],
mass preconditioning (“Hasenbusch trick™) [13], Omelyategrator([14], RHMC acceleration
with multiple pseudofermions$ [15] and mixed-precisiongol[9] — have been described in [9].
As has been noted in the literature [[16, 17], combining sdvafr these ingredients yields a
dramatic reduction of the critical slowing down that haslitianally been observed for light
guark masses. As we show in this paper, the thorough conitninat all these ingredients
allows for simulations directly at the physical mass pamtarge volumes, with several lattice
spacings, such that a controlled extrapolation to the nantn can be performed.

3 HMC forcewith smeared links

We use two steps of HEX smearirig [8] in our fermion actin both for the Wilson and for
the clover term. Ouf; depends on the thin (unsmeared) links only through the ssddiks

Sy = Sp(VAVHVO=1))) (6)

whereV (™ denotes the HEX smeared links, withndicating the smearing level. Generically,
the fermionic contribution to the HMC force is given by theuga derivative)S;/oU. In order



to obtain the derivative of ; with respect tdJ for our two-step smearing recipe, we will apply
the chain rule twice, which leads us to the following scheFiest one calculates

dS
A
which encodes the details of how the fermions are coupletidsineared gauge fields. This

part of the calculation is not related to the smearing, ose takes)S,[U]/éU and replaces
U — V®. The main consequence of the nested dependhce (6) is theicecformula

(7)

RTI CTR L
SV-D 5y m * sy 1)

where the proper definition of the star-product and of theséderm will be given below.
Thinking in terms of routines of the computer code, one stiep takes the previous derivative
§S;/6V ™ and the links/ ™, V("= as input and yields the next derivativg; /6V ", This
procedure needs to be calledimes, at the end we obtain the final fermion force

(8)

5S; 88

SU sV -

Since the extension to a second and possibly more stepaigigforward, we will only consider
the derivation for one level of HEX smearing in the following

We now specify the two main ingredients in the derivationled HMC force for fat-link
actions, that is the gauge derivative and the pertineninchde. Since anSU(3) matrix in
the fundamental representation is a comg@ex 3 matrix with only 8 independent degrees of
freedom, it is a structured matrix and the derivative hastddfined properly.

The Lie algebraFor U € SU(3) an infinitesimal change can be written as

(9)

U~ U =exp (D uala)U (10)
A

with real parameters, and the sef74|A = 1...8} forming a basis in the space of the
traceless, anti-hermitian matrices, i.e. of the tangeatsmf the group. These matrices are
normalized througAr(74Tg) = —04p. Using the trace, one can define a scalar product on this
vector space; foX = > 4, x4T4 andY = > 4, yaT4 in the Lie algebra the scalar product

(X.Y) = ~Tr(XY) = Y wapa (11)
A

allows one to build a projector which restricts an arbitrar3 matrix, M, to the tangent space
Pra(M) = =Y 4 TaRe Tr(T4 M), with P, (M) defined in[(4). Furthermore, itis easy to show
that for arbitrary matriced/ and N

Re Tr(Ppy (M)N) = Re Tr(Ppy (N)M) . (12)
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Complex valued functiond.et f be a complex valued function on the gro§p/(3). Its
derivative with respect to the group element is a vector énLtie algebra

of of
0 =2, (19
where the components are defined as

[ %l _ofW)

‘ 0
S = Jim [F(ep(uaTr) - 10)] s = (T 3) @)

Throughout, the partial derivative with respectlfounder the trace is to be understood as a
derivative with respect to unconstrained matrix elemdntparticular, this means that

aU'cd
a(]ab

= 68,0004 - (15)

If f depends on the adjoint matriX', then using the identity/T = U~! this dependence is
converted into a dependence BGnwith the consequence that

oul,

— g7ty 1
aUab Ucand : ( 6)

Real valued functiong-or a real valued functiofi the group derivative takes the form

Sf 5f of af
= ZA:TA [W]A — ZA:TATr(TAUW) = —PTA(UW) : 17)

SU(3) valued functiond.et V € SU(3) be a function ofJ, such thal” : SU(3) — SU(3)
is a mapping on the group space.Ufchanges as in_(10), with small parameters= O(e),
thenV will also undergo a small change, which may be written as

V=V =V({U)=exp(d_vpTs)V (18)
B

where the small parameterg = O(¢) are real-valued functions of the original parameters
Below we shall need the, derivative ofl/’, that is

8V’ 0(23 UB(U)TB)

= 19
8uA 8UA v ( )
which, upon taking the limit. 4, — 0, implies
1% . 8@3
[W] T ZB: 50, u:OTBV . (20)
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Chain rule. Let the functionf depend orlJ only via V, and let us calculate its deriva-
tive with respect td/. Again, U transforms with infinitesimal parameteig, resulting in an
infinitesimal change of the variableg = v (u) of V. The usual chain rule yields

OF _ 5~ 0f Ovs

= 21
Ou & Ovp Ouy (21)
and, after taking the limit, — 0, we arrive at
5f 5f 01)]3
) B L =L _ 22
léU‘| A ; 5V B auA u=0 ( )
With (1) and the definition of the gauge derivative framl 28), this may be rewritten as
Sof | of ;
i) =l (), V) @
This formula is the chain rule for the gauge derivative, ahtan formally be stated as
of 0 f %
SU 8V “eU (24)

With these ingredients we can now specify the HMC force foeranion action with one
step of HEX smearing. In the following we will simplify our tagion by replacing’ ™ with
V(). One HEX smearing/, — V¥, is built from three substeps (cf. £g. 3)

V() = exp (Pry[CL)(2)U(2)]) - Un(x)
)

P
Vi2(2) = exp (Pry[CR(2)Uf(x)]) - Un(w)
VO (z) = exp(Pr [O};” (@)U} (@)]) - Uu(2) (25)
whereP;,, has been defined ifl(4) add?, C?, C® represent staples constructed via
« N N
O o) = 73 > Usn@)Up(a+6)Uk(z+0)
To#(p.v,p)
COE = Y VL@V, (@+a)V (+)
4 To#(p, V)
C¥(x) = 0‘1 S V@)V (2 46)V A (x4 ) (26)
ia#u

with the factorsy; /(2(d—1)) included (for reasons to become obvious below). In the Wahg
we will drop Lorentz indices and space-time arguments fopdicity.
The task is to calculate the HMC force [with= V(3]
05y 6Sf %
sU oV T oU

9
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wheredS;/0V is already known. Thel component of the star product reads [$e€ (23)]

OSr| @i 95 Ve | @ Wiy
W] . VY ol | 5| = e T (UG (28)
whereX®) contains the part of the force which is already known
5SH(V®)
B — e )
29 = VI (29)
SinceS; is a real-valued function we can write this in the compaatifor
0.5y 5 Via
s = P (VS 55%) (30)

To improve readability, let us temporarily dendté®) by V. The last substep is thén =
exp(A)U, whereA = Pr, (CUT) and thus

55y Wi 0 exp(A)se
oU ouT ouT

The derivative of the exponential of a traceless anti-heamid reads [see Eg. (68) afl[7]]

= Prp(USavzr7r ) = Pra(US exp(A)) + Pry (USw U) . (31)

d(exp(A)) = Tr(A - dA)B, + Tr(A? - dA)By + fidA+ fA-dA + fodA- A (32)

with B, , being second-order polynomials df and f; » complex constants which depend on
the trace and determinant df Using the cyclicity of the trace in the color indices, we\arat

W
Py (USa anT) = Pry (US exp(4)) +

OA,
Py (U 8U7? [Tr(USB1)A + Tr(USBy) A* + AUS + fLUSA + f,AUS ) (33)

where the second term contains the derivativel ef P, (CUT). We use the identity

OPra (M) ap
ouT

valid for arbitraryM and N [see [12)] to shuffle the projector in= P, (CUT) to the matrix
in square brackets ifi (B3). Next, we use that the derivafivéld’ can be written as

oCcuh, ac,
%PTA[W]M = UaU;f(UTPTA[...])ba — Pral.] - cut (35)

and introduce a convenient notation for the expressionusgbrackets in(33) by means of

OM gy,

Py (U Nia) = Pya (U527 Pra (Vi) (34)

U

7 = U'Pry [Tr(USB) A+ Te(USB) A + AU + LUSA+ LAUS| . (36)
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With this at hand, and using the relatiexp(A) =V UT, we arrive at the compact expression

8%(1 aC’ab
ouT ouT

Finally, we reintroduce the superscrig®) and note that thé/ dependence af® comes
exclusively fromV (2, With these adjustments, relatidn[37) takes the form

Pry(USwy 5 ) = Pra (U(SV = ZOVWUT + U2 Za) - (37)

(5 O,y
ab aUT

) = Pra(U(EOVE = Z2OCO)UT) + Pry (US,) av;j)) (38)

PTA (UE ab oUT

whereX? is defined as

Z<3 (39)

meaning that the teri(® can be calculated in the similar way 88" . This procedure can be
iterated, and we find for an action with one step of HEX smegrin

95¢

STE= P, (UEOVD — 20CO)Ut) + Py (Un©) (40)

i=3,2,1
whereX® is defined as

2+1
30 Z(2+1)

s - %

for i=0,1,2. (41)

The objectdC*Y /oV () is a straightforward staple derivative, where some careséz be
taken w.r.t. the Lorentz indices. With this formula, one nraplement a routine which calcu-
lates the HMC force for a fermion action with one step of HEXeaming. The extension to a
second smearing step is realized through a second calktodthiine as shown in{6).

This calculation of the HMC force with HEX smeared fermioniaias extends the results
of [7,[18]. An early treatise of the HMC force for fat-link faron actions is found ir [19].

4 Scale setting and input masses

To set the scale and to adjust the light and strange quarkeswasg = (m, +mg)/2 andm
to their physical values, we need to identify three quaetitvhich can be precisely computed
on the lattice and measured in experiment. We will use thesmoathe() baryon and of the
pseudoscalar mesonskK for this purpose, in the latter case with a small correctamdospin-
breaking and electromagnetic effects (see below).

In other words, at the point wherd,./Mq and M /M, agree with the physical values of
these ratios, the measured value:8f, is identified with the lattice spacing timés72 GeV
[20], and this yields: . In [2] we used also th& baryon to set the scale. As discussed there,
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correlation functions of spifl/2 baryons are somewhat noisier than those of $pinbaryons.
On the other hand, the more light valence quarks presentanyeb, the larger the fluctuations.
In [2] with M, down to190 MeV these two effects balanced each other, rendering2thad
the= equally good choices. In the present paper we go dowr te- 120 MeV, and the) with

no light valence quark is the better choice. We use the stdmdass-independent scale-setting
scheme, in which this lattice spacing is subsequentlybaitteid to all ensembles with the same
coupling3=6/g2 and N;.

Our ensembles bracket the physical quark massgsandm, in the sense that the span of
simulatedM? and M2 =2M?% — M? encompass the physical values given below. As a result, it
suffices to use a parametrizationadf/, as a function ofa M, )? and(aM,s)? which describes
the entire data set. We find that the Taylor angatlz, = co+ci(a M, )?+co(aMys)?+c3(aMs)*
works perfectly.

Since our lattice simulations are performed in the isospmraetric limitm,=m, and do
not account for electromagnetic interactions, the physipait meson masses must be corrected
for these effects. The account of this as given by FLAG [2Hdsentially a refined version of
the analysis presented by MILC [22] some time ago. The botioenis that in the framework
mentioned above one should use the input masges- 134.8(3) MeV, My = 494.2(5) MeV,
which means that the electromagnetically corrected, isesperaged pseudoscalar input meson

masses essentially agree with the PDG value® pf and \/ %(Mf(+ +M?3,), respectively.

5 Simulation parameters

An overview of ourNy = 2+1 QCD simulations is presented in Tab. 1. For each ensemble
we indicate the bare parameters, the lattice geometry, lmndrisemble length in= 1 units
(after thermalization). In addition, the pion mass for tieg parameters (determined with a
specific choice of the fitting interval) is given. Note thag thuoted error is only statistical —
a detailed account of our procedure to keep track of the syate uncertainties is given in
Sec. 14. With Wilson fermions negative bare masses are sttrbing; after renormalization
they will evaluate to positive quark masses (see Sec. 11wavke with spatial volumes as large
asL?~ (6 fm)?® and temporal extents up o~ 8 fm. Besides reducing finite-volume corrections
and excited-state contaminations, large (four-dimerad)orolumes tend to decrease statistical
uncertainties to the same extent as increasing the numbesje€tories (in a fixed volume)
would do. For instance, in A* box 1300 trajectories at/, L =4 are approximately equivalent
to 4100 trajectories at/,, L = 3. With an HMC-type algorithm, the effort (at fixed pion mass)
grows likeL®. Nevertheless, in view of the increased algorithmic stigi{see below), choosing
large four-dimensional volumes is a beneficial strategy.

The integrated autocorrelation times of the smeared pttejaad of the number of conju-
gate gradientiterations in the HMC accept/reject steptareatO(10) trajectories. Depending
on this autocorrelation time, the gauge field after everf fiit every tenth trajectory is stored
as a configuration to be used for calculating hadronic oladdes.
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s ambare — gmP¥e volume  #traj.  aM, M, L
-0.07000 -0.0400 163 x 32 1650 0.3530(12) 5.61
-0.09000 -0.0400 24% x 48 1600 0.2083(08) 5.0(
-0.09300 -0.0400 243 x 48 4350 0.1775(06) 4.3(
-0.09300 -0.0400 323 x 48 2500 0.1771(05) 5.64
-0.09530 -0.0400 323 x 48 1225 0.1500(13) 4.81

331 -0.09756 -0.0400 323 x 48 2600 0.1202(11) 4.0(¢

' -0.09900 -0.0400 48% x 48 1700 0.0887(06) 4.26
-0.09933 -0.0400 483 x 48 1240 0.0804(13) 3.94
-0.09000 -0.0440 243 x 64 1065 0.2024(10) 4.86
-0.09300 -0.0440 323 x 64 1030 0.1717(08) 5.5(
-0.09530 -0.0440 323 x 64 1300 0.1457(09) 4.66
-0.04800 -0.0023 32% x 64 1500 0.1354(06) 4.33
-0.02500 -0.0060 163 x 32 12000 0.2898(07) 4.62
-0.03100 -0.0060 24% x 48 3000 0.2535(05) 6.07
-0.03600 -0.0060 243 x 48 1800 0.2250(08) 5.41
-0.04100 -0.0060 24> x 48 4000 0.1921(05) 4.61

35 -0.04370 -0.0060 243 x 48 3900 0.1725(04) 4.13

' -0.04900 -0.0060 32% x 64 1100 0.1212(08) 3.9(
-0.05294 -0.0060 64% x 64 1100 0.0613(06) 3.92
-0.04100 -0.0120 24% x 64 1020 0.1884(08) 4.52
-0.04630 -0.0120 323 x 64 1065 0.1445(06) 4.62
-0.04900 -0.0120 323 x 64 1000 0.1174(06) 3.76
-0.05150 -0.012048% x 64 1200 0.0835(07) 4.01
-0.02000 0.0045 32% x 48 2100 0.1993(3) 6.36
-0.02800 0.0045 323 x 48 3910 0.1488(4) 4.75
-0.03000 0.0045 323 x 48 2000 0.1322(4) 4.24
-0.03121 0.0045 323 x 48 2200 0.1211(2) 3.87

3.61 -0.03300 0.0045 483 x 48 2100 0.1026(4) 4.93
-0.03440 0.0045 483 x 48 1100 0.0864(4) 4.15
-0.03650 -0.0030 64% x 72 1004 0.0468(5) 3.00
-0.02000 -0.0042 323 x 48 1750 0.1969(4) 6.30
-0.03000 -0.0042 323 x 48 1450 0.1297(5) 4.17
-0.00500 0.0500 32% x 64 1000 0.2227(04) 7.13
-0.01500 0.0500 32° x 64 1170 0.1711(03) 5.44
-0.02080 0.0010 32° x 64 1150 0.1251(04) 4.0(
-0.01500 0.0000 32° x 64 1115 0.1644(04) 5.2€

3.7 -0.02080 0.0000 32% x 64 1030 0.1245(06) 3.99
-0.02540 0.0000 48% x 64 1420 0.0821(03) 3.94
-0.02700 0.0000 643 x 64 1045 0.0603(03) 3.86
-0.02080 -0.0050 32° x 64 1405 0.1249(04) 4.0(
-0.02540 -0.0050 48% x 64 1320 0.0806(03) 3.87

4

... to be continued on next page ...
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... continued from previous page ...
-0.01400 0.0300 323 x 64 1325 0.1242(5) 3.9]
-0.01900 0.0300 483 x 64 1045 0.0830(4) 3.99
-0.00900 0.0000 323 x 64 2280 0.1523(4) 4.8]
-0.01400 0.0000 323 x 64 1055 0.1249(5) 4.0(
-0.01900 0.0000 48 x 64 1080 0.0836(4) 4.01
-0.02100 0.0000 643x144 1200 0.0598(2) 3.81

3.8

OO N O

Table 1:Overview of ourN; =241 simulations. The scales at= 3.31, 3.5,3.61,3.7, 3.8 are
a”t = 1.697(6),2.131(13), 2.561(26), 3.026(27), 3.662(35) GeV, respectively. Accordingly,
the minimum pion mass per couplinghé, = 136(2), 131(2), 120(2), 182(2), 219(2) MeV.

We put sources for the correlation functions on up to eigheslices. For the precise form
of the meson and baryon interpolating operators seele.}). [#8Breduce the relative weight
of excited states in correlation functions Gaussian seuacel sinks are used, with a radius of
about0.32 fm, which was found to be a good choice [2].

6 Algorithm stability

To detect potential instabilities of the HMC algorithm,fdient stability tests need to be per-
formed. A rather complete battery of such tests was destibf9]. The pion masses used in
this work are considerably smaller than those encounter¢?l/€]. For this reason, we repeat
the relevant stability tests for the smallest-mass enseatt#achs, in particular for those with
the physical pion mass.

With D the Wilson or clover operator, the spectrumf D D has no strict lower bound,
i.e. the operatoA is positive semi-definite, but not positive definite. If oneuld integrate
the HMC trajectories exactly, this would not cause any mohlsince an eigenvalueof A
approaching zero would introduce an unbounded back-dyifonce in the HMC, so that the
exact zero would be avoided. In practice, the trajectonfegganerated with a finite step-size
integrator. Therefore, a very small,;, in the MD evolution may experience a smaller back-
driving force than it would in an exact evolution scheme, #msl may trigger an instability.

If a particularly small eigenvalue appears during the makcdynamics (MD) evolution,
the solver in the MD force calculation will require more @&ons to arrive at its target precision.
More precisely, the inverse of the iteration colig is closely related to the smallest eigen-
value of A. In a given ensembley; shows an approximately Gaussian distribution [9]. As
long as its median is away from zero by several standard tlew&g the simulation is deemed
safe [9,24]. In Fid.2 we show the “worst case scenario”the situation for the smallest quark
masses in our set of ensembles. As one can see, even for pggesras small d20—135 MeV
the inverse iteration count and hence the spectrum is bausday from zero.

Alternatively, one can monitor the magnitude of the varioastributions to the MD force
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in the MD evolution. This is done in Figl 3, where the maximumagr space-time) of each
individual contribution to the total MD force during the MBtegration is shown over a period
of 10,000 MD steps. As usual, the maximum of each contribution to the fdide fluctuates.
However, it is important that the magnitude of these fluatunet is not too large. The more
frequent spikes with large magnitude occur at any given Mip-stize, the lower is the HMC
acceptance rate, to the point where the algorithm beconstahle. For small pion masses and
coarse lattice spacings, the situation becomes even wohsg is why we show the ensemble
with our smallest pion mass (around the physical pion maseacoarsest lattice spacing in
Fig.[3. As one can see there are no dangerously large fluntisgiresent.

Finally, it is good practice to monitor the violatiahF,p of the MD energy conservation.
In Fig.[4 we show again the “worst case scenario”, that is tieemble with our smallest pion
mass at the coarsest lattice spacing. As one can see, thaltpi in this simulation is small.
For most of our simulations the acceptance rate is above $086e the acceptance probability
is given byp,.. = min(1, exp(—AEy\p)), it is reasonable to use the data accumulated in the
monitoring of the MD energy violation to check th@kp(—AFy\p)) =1 within errors.

In summary, because) our algorithm is free of dangerous fluctuations of the ciaigen-

Inverse iteration count (1OOO/NCg)

B=3.31, M;135 MeV == B=3.61, M;=120 MeV

B=3.5, M, =130 MeV mmmmmm

0 0.04 0.08 0.12 0 0.04 0.08 0.12

Figure 2: Histogram of the inverse iteration cour g’ of the lightest pseudofermion) in the
ensemble with the lightest quark mass peiThere is no danger of a tail stretching out to zero.
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Figure 3: Evolution of the maximum of each MD force during the MD intatjon. 256 steps
correspond to one=1 trajectory. Shown is one production stream of our “physah mass”
ensemble at =3.31. The other streams with the same parameters give a simdtnpi
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Figure 4: Evolution of the energy violation over 250 units of MD timethe same simulation
as in FigLB. All other simulations show similar or smalleeggy violations.
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Topological charge =3.8, m 4=-0.02, m;=0
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Figure 5: Topological charge history at our finest lattice spacifig-$.8 corresponds ta=! ~
3.7 GeV) using two vigorous smearings (10 or 30 HYP steps) in thergluoharge definition.

value spectrum,b) there are no dangerous fluctuations in the MD forces apd/¢ therefore
see that large violations of the MD energy conservation bseat in the simulation (resulting
in high acceptance rates), we conclude that our setup is safe

7 Autocorrelation and ergodicity checks

A known source of concern about HMC simulations in the regafieght quark masses and/or
small lattice spacings is whether the Markov chain managesample configuration space
sufficiently well, i.e. whether the algorithm is (in pra@i¢erms) ergodid [25-27].

We monitor two cheap gluonic quantities which are supposaibinal suspicious behavior,
if there is any. The first one is the plaquette and/or Symagailge action. With the plaquette
it makes sense to consider smeared varieties, todi¢.&r V., WhereV is a smeared gauge
link, as described in Sec.2. We find integrated autocoragldtmes of such quantities to be
at mostO(10) in units of unit-length £ = 1) trajectories. The second quantity is the bare
field-theoretical (global) topological charge = a'/(167%) ¥, ., Tr[F,.(z) ., (z)] where
F,.,(z) is constructed from links which have undergone 10 or 30 stéptYP smearing([6].
The result for our finest lattice spacing which, accordin§2&®-+27] represents the worst-case
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Figure 6:Scaling of the nucleon and delta mass, at fixég/ M, = 0.67, versusva anda®.

scenario, is shown in Figl 5. First of all, the 10HYP and 30 HXfarges are always close to
each other. Second, binning them with bin boundarieg/at+1/4 yields a clear abundance
of integer centered bins over half-integer centered bing, this effect is more pronounced
with the more vigorous smearing recipe. Last but not least,histogram of either charge is
reasonably symmetric after abaiufi00 trajectories, and the integrated autocorrelation time is
O(10) trajectories. Since this is the highgssimulated, we see no reason for concerns about
the (practical) ergodicity of our simulations.

One should keep in mind that the topological tunneling radg ohepend sensitively on the
details of the action (e.g. whether Wilson, Symanzik or lakag)lue is used, whether smeared
or unsmeared links are used in the fermionic part) and onltfugithm (e.g. the number of time
scales and the specific choice of Hasenbusch masses).

8 N;=3 scaling test for hadron masses

Since the link smearing of the 2HEX action used in the presenk differs from the smearing
used in[2, 9], we decided to repeat the entire scaling tegiresented in [9], in all its detail for
the new action.

To this end, we run a number of; = 3 simulations at various lattice spacings and various
M, /M, ratios. For eaclt we interpolate the (common) octet and decuplet baryon mass,
My /M, and Ma /M, to the point wherel/ /M, assumes the value 0.67. The latter value
coincides with{2( M5*)2 — (MPh*)2]1/2 /MP™, hence providing a way to tune to a quark mass
which roughly corresponds to the physical strange quarksmabe results foi\/ /A, and
Ma /M, at this interpolation point are then extrapolated, lingarlva anda?, to the continuum.
Throughout this reporte = ¢2/(47) denotes the strong coupling constant. kémwe use
the perturbative values, at our lattice spacings, at 4-twoler (see below). The result of this
procedure is shown in Figl 6. Three points are worth empimagizFirst of all, the data are
consistent with either scaling hypothesis over a large gaofglattice spacings (out to ~
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Figure 7: Dedicated finite-volume analysis @t=3.31, with M, ~250 MeV (lower set of data)
andM,. ~300 MeV (upper set). Results are compared to the prediction fromaCRerturbation
Theory. The fit tol(42) is shown by solid red curves and the jptiesh of ChPT [[3] is the green
set of dashed curves. The steep dotted lines indicate thedaoes\, L. =3 andM,.L=4.

0.15 fm), with a slight preference faP (a?) overO(aa) scaling, and this suggests that our tree-
level value ofcgyy (see Sec. 2 for the definition and details) is close to the adnbative value
(which is not known for our action). This finding is in acconda with the results of [8]. Next,
the continuum extrapolated values shown in Eig. 6 are irsgeeigreement with the continuum
extrapolated baryon masses found!ih [9] with a differentoact Last but not least, the slope
in either panel of Fid.16 is sméJland an action which shows generically a flat slope in scaling
guantities is useful for obtaining precise predictionshia tontinuum.

In summary we find that both the 6stout action used inl[2, 9]tAed?HEX action used in
the present work exhibit small cut-off effects on standadrbn masses over a broad range of
lattice spacings.

9 Finitevolume corrections

For a fixed set of bare parametefsin.4, ms, energies and matrix elements of hadronic states
depend on the spatial siZe of the lattice. Typically, the finite volume tends to incredke

1The deviation of the result on the coarsest lattice from thrginuum is 2.0% at mosty with O(aa) ansatz].
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effective mass and to decrease the decay constant, rdlativeir infinite volume counterparts.
As a first step it is important to assess by how much such effgould affect the data. For
the theoretical treatment of these finite-volume effectaakes a difference whether the state
considered is stable under strong interactions (desmtiatt that, in a finite volume, the energy
spectrum is discrete and all states are stable). The reéapéemeworks have been established
by Luischer, both for stablé [28,29] and unstablé [30, 34fest. They allow us to quantify and
eventually correct for finite-volume effects in a self-cistsnt manner (i.e. in a way in which
only the results of our calculations and axioms of quantutd fleeory are used).

The structure of these corrections is most transparenhéocase of a pion at 1-loop order
in Chiral Perturbation Theory (ChPT) [32-34]. Up to higheder terms, the relative shift is

M (L)

R.(L) = A

— 1 = const - M?- (ML) (42)

where the shape functian (z) has a well behaved expansion in terms of a Bessel function of
the second kind, which itself has a largexpansion of the form

24K, (x)  48K;(\27)
+ +
x \/§x

1/2
Ki(z) = (%) / exp(—x)[l + 8% + } (44)
implying that finite volume corrections are exponentiallyppressed at largé [28]. Higher
loop orders fork, (L) have been worked out inl[3]. For completeness we mentioratteli/tic
results for finite volume corrections of the nucleon are give[35,36]. The second reference
predicts that for physical quark masses dne- 5 fm box size (which is what we use in our
smallest box at the physical mass point, the ong-at3.61, cf. Tab.1) the nucleon experiences
just a 2 permil finite-size shift. The point is that ChPT potslithe numerical value of the
coefficient “coeff” in (42). In the chiral literature, theweenergy constants that enter “coeff”
are pinned down from experiment (at leading order itj$.

To avoid using external input, we decide to stay content yustusing the functional form
of (42). This is permissible, since the shape functigfx) is just the free Green’s function
of a massive scalar particle, summed over all spatial moomies (due to periodic boundary
conditions in the spatial directions) [32], see also thewksion in[[3]. We find that we can
establish a global fit to all of our data in various volumeséf adjust the free coefficient in (42).
A similar conclusion is reached for other stable hadrorziaith a different numerical value
of the constant. For the case of the pion, we test the fittisg&rand the analytic predictian [3]
by comparing them to dedicated finite-volume scaling russsteown in Fid.[7. Both the fit
(full line) and the prediction from ChPT [3] (dashed curvgyee with the data. The latter
prediction has a limited range, since ChPT becomes quedtiem boxes with\/, L < 3 [3]. It
is important to emphasize that the data with L < 4 in Fig.[41 have been generatedtéstour
treatment of finite-volume effects, they do not enter the tamalysis.

(43)
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Figure 8:M2/mP$AC (left) andF, (right) versusnL$AC (cf. Sec. 11) for our 4 lightest ensem-
bles at3 = 3.5, at fixedam, = —0.006, which is close tan?"¥*. A joint fit to the NLO chiral
ansatz[(45, 46) yields reasonable values of the low-enemgstants. Error bars are statistical.

These results confirm our rule of thumb that simulations with.. > 4 and/or L>5 fm
yield infinite-volume masses within statistical accuraéy overview of the expected size of
Ry in our simulations is given in Figl 1. In all of these points tihass correction is less than
about 5 permil, and for points close #d""* (which dominate our analysis) it is even smaller.
Nevertheless, we include these (tiny) shifts into our glaioalysis (cf. Sec. 14).

10 Chiral behavior of pion mass and decay constant

To illustrate the quality of our results obtained in lattiQ€D calculations with physical or
larger than physical values of the quark masg, = (m, +m,)/2, we briefly investigate here
whether then,, dependence of the pion mass and decay constant can be dddayilChPT
[37,38] in this range of quark masses.

To this end we compare our results fa? and F, versusm,,q at fixed (nearly physicab):,
(cf. Tab[1) to the NLO predictions of thel/(2) framework. The latter read [37]

M? = M2[1+%xlog(]\f—;)} (45)
F. = F [1—xlog(ﬂf—j)} (46)

4

with x = M? /(47 F)? and M? = 2Bm,q a shorthand expression for the light quark mass (up
to the factor2B, with B = ¥/F?). The NNLO expressions can be found in1[39]. In all of
these expressions, X, B refer to the pion decay constant, the absolute value of tlaekqu
condensate and the condensate parameter in the 2-flavat komit m,, — 0 with m, held
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fixed. The terms in the square brackets proportionafta! represent the tree-level and 1-loop
contributions respectively, ants, A, encode low-energy constants (LECs).

In Fig.[8 the quantitied/?/m>$AC and F;, are plotted versus the PCAC quark magg ¢
(see below) at an intermediate lattice spacing6.5), where we reach down t/,, ~ 130 MeV
(cf. Tab[1). We find that our results with/,, < 400 MeV can be jointly fitted with the NLO
chiral formulae [(4b["46), with acceptabjé/d.o.f. and reasonable values of the low-energy
constants. However, the extraction of Gasser-Leutwyleffiments is beyond the scope of this
paper and will be left for future publications.

11 RI/MOM renormalization of quark masses

Our primary goal is to determine the average up-down quadsmag,; = (m, +my)/2 and the
strange quark mass, at the physical mass point in a “continuum” renormalizatscheme,
such as RI/MOM or RGI, using first-principles lattice conmgigns.

In a lattice study quark masses and the running coupling aaliferent status than other
observables, such as hadron masses and decay constargsthgy are input parameters to
the simulation. Consequently, one has to tune these pagasnattil the low-energy spectrum
of the theory agrees with experiment (¢fl [2] and Sec. 4)oteebne may read them off from
the results of the simulation. To turn them into observalbes has to convert them from the
original cut-off scheme (which is specific to the gluon andmguaction combination used) to a
scheme where the scalds not tied to the lattice spacing

The remainder of this section is organized as follows. Id blr “ratio difference method”
for extracting quark masses in the theory with Wilson femsids explained, using standard
terminology for the renormalization and improvement caoedfits. It is important to notice that
in the dynamical theory there is a subtlety in the renornaéilin pattern, due to quark line dis-
connected diagrams [40-42], but our “ratio difference rodtlsteers around this complication,
as explained in 11.2. In subsection 11.3 details of how werdehe the flavor non-singlet
scalar renormalization constaft(u) via the Rome-Southampton RI/MOM methad [43] are
given. In 11.4 itis specified how we control the systematies arise from the dedicatéd; =3
computations needed in the RI/MOM procedure. In 11.5 a supisaiven.

11.1 Ratio-difference method in a nutshell

With Wilson-type fermions there are two options for obtagithe renormalized quark mass.
On the one hand, one may start from the mass paramet&tc, as present in the Lagrangian,
and apply both additive and multiplicative renormalizatio build the VWI quark mass

1 1 .
mYWh = 7 [1 — §bsamw + O(aQ)} m"W where ~ m" = mP¥e — it 47)
5

22



and VWI mearf$ “vector Ward identity”. HereZs = Z¢(u) denotes the lattice-to-continuum
renormalization factor of the scalar density (it dependtherchosen scheme and scale, BI§.
andyu =2 GeV), bg is an improvement coefficient (see below), anti®® specifies the additive
mass renormalization, i.e. the bare quark mass at whichitimeygcomes massless.

The other way to obtain the renormalized quark mass is aswell For a pseudoscalar
meson made out of valence quatks ¢, with Lagrangian masses®** or Wilson masses:"
(1=1,2), respectively, the sum of the (unrenormalized) PCAC quaakses is defined as

- reac _ Ze(0uAu(x) + acad, P(2)]0(0))
? 2z (P ()0(0))

whereA,, andP denote the axial current and the pseudoscalar densitgaeegly,O represents
an arbitrary operator which couples to the meson (usdaly P to maximize the signal), and
9, = (8,40;)/2 is the symmetric derivative wittd, ¢)(z) = (¢(z +aji) — ¢(x))/(2a). Then
only a multiplicative renormalization is needed to form {renormalized) “AWI quark mass”

mjy “A¢ (48)

awt _ Za 1+baam™ +0(a®)  poac
Zp 1 + bpamW + O(CLQ)

(49)

where AWI stands for “axial Ward identity”. Her8, andZp = Zp (1) denote the lattice-to-
continuum renormalization factor of the axial current amelpseudoscalar density, respectively.

The coefficientdg, b, bp, c4 in (47149) are part of the improvement program. If properly
set,0(a?) scaling of phenomenological quantities can be achievedhey may be set to zero
if one is content withD(a) scaling. We usd (4 7-49) with tree-level values of the improent
coefficients, that i$s =b, =bp =1 andc, =0 . Formally, our results thus show cut-off effects
proportional toaa, but in the scaling tests presented above cut-off effeaipgtional toa?
seem to be numerically dominant. At this point we cannotgraiie whether a similar statement
holds true for renormalized quark masses, and we shall thnsider both possibilities (i.e.
leading cut-off effects proportional tea or a?). In any case the difference (in a given scheme,
at a giveny) scales away witlh, — 0, hencen*V! =mVW!in the continuum.

In principle, mPhys andmggyS may be determined using either definition of the quark mass,
but in practice it proves beneficial to combine the specificaathges of the VWI and AWI
approaches. Let us assume, for a moment, that we were td sepabvement coefficients to
zero. Since the Lagrangian quark mass™ is an exact input quantity which, after a universal
shift has been applied, multiplicatively renormalizeshattie unproblematic scalar density [cf.
@), it is natural to usen" for quark masslifferenceswhere the additive renormalization
termm°t drops out. On the other hand, the PCAC quark ma8SAC is perfectly suited to
measure quark masstios, since in the ratio the multiplicative renormalization stants cancel
[cf. (@9)]. It is thus natural to measure the differenag—m,, via the Wilson or Lagrangian

2Strictly speaking the vector Ward identity constrains ajisark mass differences. Below we will use’"!
only in such differences, and by doing so the dependeneeh will persist only in anO(a)-suppressed term.
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mass differencd = am —amV, = am>*® —amPae and the ration, /m,q via the PCAC mass

ud —

ratior = mPCAC /mPPAC, In this case one obtains the renormalized masses through

1 d amschemc . 1 ’I“d
- chheme r—1 ’ s - chheme r—1

scheme __
am,, 4

(50)

and we shall refer to this strategy as the “ratio-differemeghod”. The renormalization scheme
will be specified below. In practice, things are slightly mamnvolved, as we intend to maintain
tree-level improvement. Setting, = 0 andbs, = bp = 1 does not change anything in_(48,
[49), but having a quadratic term in{47) through= 1 means that the difference}’ —m.)"
does no longer coincide with#¢ —mbare, In the next subsection we will show that even with
improvement, the renormalized quark masses are given pywod — 4™, r — r'™P, where
the latter quantities are defined 61).

11.2 Ratio-difference method in full QCD with improvement

In the dynamical theory, the renormalization pattern ofrgumasses is slightly more involved
than the familiar equation$_(4l7, 149) suggest [42], but ihsuout that our “ratio difference
method” gets rid of these complications and the final reteisounchanged.

We now discuss how the findings of [42] apply to our methodhgigheir notation, ex-
cept that we do not use a “hat” to denote renormalized quesitisince they will come with a
superscript “VWI” or “AWI”, just as in the previous subsemti. Equations (26, 48) of [42] read

1 1 =
my™ = —m¥ [1 - Sbsam) — bsaTr(M) + O(a®)] + .. (51)
J Zg 7 2 J
Z —_ —
mi " = Z_AmeAC {1 + (ba=bp)am;’ + (ba—bp)aTr(M) + O(a2)] (52)
P

whereZ; is the flavomnon-singletrenormalization constant/(= S, A, P) , andb; = 1+ O(«),
by = 0(a?), ca = O(a) denote improvement coefficients (which now depend\gh Finally,
m}¥ =mbe—mit, with m* defined as théV,; =3 critical mass (i.e. in thenitary direction),
m{’CAC just as in[(48), and the ellipses [n (51) denote terms whigedd on the quark masses
only throughTr(M), Tr(M?), Tv*(M), where M is the (flavor diagonal) quark mass matrix.
The new feature of formulas (B1.152) is the terms proportioman; timesTr(M) =, m}".
These terms make the renormalized quark mass of fladapend on all other quark masses,
too. Evidently, these terms come from quark loops in thetional determinant, and the per-
turbative expansion of the new improvement coefficiégt$ 4, b» shows that they start out at
order g5, which means that they come through two-loop effects (oralgloop and a gluon
loop which attaches it to the quark line whose renormalizeis studied).

Upon considering the difference of two VWI masses and the cdttwo AWI masses

myW —m"V = Zi(myv —m)Y) [1 - %bsa(myv%—mzv) — bsaTr(M) + O(aQ)} (53)
s
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mAWL PCAC

iXWI = m%CAC {1 + (ba—bp)a(m W_mkz )+ O(a )} (54)

my,

the term proportional taTr (M) disappears from the second relation, and the term propaitio
to bs involves only the sum of the Wilson masses. Applying thesmtdas tom, andm,, in
N;=2+1 QCD, withd=amb>* —ambae andr =mPAC /mPPAC defined as before, one has

1 1 _
amy™" — am¥Y M = Zs d [1 — ibga(m;’v +ma) — bsa(m) +2mW) + O(a2)} (55)
AW
awt T {1 + (ba—bp)a(my’ —myy) + O(az)} (56)

mMud
where we have useflandr only in the leading term, so far. The point is that
mY /m¥, + 1 r+1

w \\Y%

W
— — ~d 57
am +amY, = (amy —am’) P 1 (57)
am +2amyy, = (am —amy) M ~dl 2 (58)
s ud W mW -1 -1

where the approximately equal sign means “up to terms ofrabde®)”. Accordingly, we can
express the difference of the VWI masses and the ratio of WerAasses througli andr as

VWI VWI L mM! i
ams — amud = Z_S d p s W =T p (59)
whered™? andr™P are defined as
. 1 2
dme — 1 - —bsdr i T~ bd” i T+ 0(a?)] (60)
PP =g [1 + (ba—bp)d + O(az)} - (61)

In total this means that one findss'°m¢ andamseme via (B0) withd — d™P, r — rimp,
In our analysis, the tree-level improvement strategy makesibleading terms in the square
brackets of[(6(, 81) disappear, except for the one propwtimbs (with bg=1).

11.3 Determination of the scalar RI/MOM renormalization factor

Having laid out our overall strategy for obtaining the renatized quark masses”™* (),
mPs(y) at the physical mass point in a standard scheme at a givee gcale now give
details of how we compute the single renormalization facteeded,Zs(1). We implement
the nonperturbative Rome-Southampton method which defireesegularization-independent
(RI/MOM) scheme[[43], with several practical refinementse(®elow). In the terminology
of [40+42] the result is the non-singlet renormalizatioctéa 25> (11). In the RI/MOM scheme
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Figure 9: The ratio((t) as defined in (66). The gauge coupling in this=3 run is/5 =3.61,
the quark mass ism=—0.0045. This procedure yields a stable plateauZgr.

the running oZ¢ (1) is known perturbatively to 4-loop ordér [44]. However, tisionly relevant
for the conversion to other schemes, &g at ;i =2 GeV. Our main resultin,,; andm, in the
RI/MOM scheme aj.=4 GeV is derived without reference to perturbation theory.

In the RI/MOM scheme, renormalization conditions are defimeLandau gauge and re-
quire the forward, truncated quark Green’s function of aarafor to be equal to its tree-level
value at a Euclidean four-momentymwhose magnitude is chosen to be the renormalization
scale. Given a quark bilinear operatof, = ,I'y);, wherey, andv, are mass-degenerate
quark fields and’ is a Dirac matrix, the relevant Green’s function is

Ar(p) = (SO { [ dladly D ()OO0 N | (SE) (62

In this equationS(p) is the propagator of quark flavors 1 and 2. Now, defining a ptojePr
such thatr{ PrI"} = 1 (the trace is over spixcolor), the renormalization condition reads

Zr(p) = Zy(p) / Tr(p)|pr=p2 (63)
whereZ,, is the wavefunction renormalization factor and
I'r(p) = tr{PrAr(p)} - (64)
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Figure 10:Renormalization factorg§;(;*) as a function of the bosonic momentum squared.
For each5 momentau < =/(2a) are included. The data from the coarser lattices have been

multiplied by ayi-independent factor to match thosesat 3.8. The solid line represents a Pade
ansatz where the 1-loop anomalous dimension is built in @satint.

To determineZs from the RI/MOM condition[(6B) witH'= 7, one needs to know,,. In the
original publication|[43] the procedure was supplementét & recipe to obtair¥,, from the
momentum dependence of the trace of the inverse propagitdmr.we avoid the determination
of this wave-function renormalization constant all togettoy calculating the rati@s(u)/Zyv
via the RI/MOM procedure and by combining it with, from the 3-point function with a
vector-current insertion. In other words, on each ensembleomputeZs(.)/Zy using

VA r
S,B,m(ﬂ) _ V(p) (65)
Zv,8m Ls(p) lp2=p2

where the dependence on the coupling andXlhe- 3 quark mass is indicated with subscripts.
The bosonic momentum definitigh = (2/a) sin(ap, /2) is used, and a standard cylinder cut
around hyperdiagonal momenta is applied [45]. In additeadetermineZ,, from the ratio

_ (P2 PO)
= @) Po) (©0)

where

P(t) = (oysn) (@), P(t) =D (hise)(@, 1), Valt) =D (Viyatn)(Z,t)  (67)

x T T
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3.31 16°x32| 3.5 243x48| 3.61 243x48| 3.7 328x64| 3.8 323x64
-0.04 4780 | -0.006 2560 | -0.0045 4620| -0.0060 1010| 0.000 505
-0.06 3320 | -0.010 3140 -0.0085 3680| -0.0085 1050| -0.004 635
-0.07 2420 | -0.012 2580 -0.0100 4140 -0.0110 1020|-0.008 500
-0.08 2500 | -0.020 2700 | -0.0200 3140|-0.0140 1290|-0.012 1030
-0.035 1090 | -0.0250 1230| -0.0160 1020|-0.014 1000

Table 2: Bare masses and number of trajectories of our dedicsted 3 simulations for RI/
MOM renormalization. The-values are the same as in our phenomenological runs, cflTab

andT denotes the temporal extent of the lattice. With tree-lemprovement one has [42,/46]
ZV,B,m (1 +amw) = [C(tl) — C(tg)]_l for O<t1 < T/2<t2<T (68)

whereby =1, by =0 have been used, and Hig). 9 shows the plateau from which wacexir s ,.,.
Combining this factor with the result df (65) yield% s ,..(1+), much in the spirit ofi[47, 48].

11.4 Controlling the systematicsin the RI/MOM procedure

RI/MOM is a mass independent scheme. Applied to the numetata for Z§' (1) this means
that we have to extrapolate all three flavors to vanishingasebvalence quark mass. For this
reason, we have generated a series of dedicatee- 3 lattices (i.e. with three degenerate
guarks), where the actiofi = SSmerS?W and the couplingg = 6/¢? are the same as in the
phenomenological ensembles. The bare parameters arsfissadif these runs are summarized
in Tab[2. The specifics of the extrapolation will be discddselow.

In order to obtain tree-leveD(a)-improved results with Wilson fermions, one has to im-
prove not only the action, but also the interpolating fiekelst standard correlators this has been
discussed in the previous two subsections. In additiorhenRI/MOM procedure, one has to
remove arO(a) contact term in the quark propagator[43]. We apply hererteetsubtraction
described in[49-52], which has the added benefit of greatproving the signal to noise ratio.
This subtraction is implemented by replacing the condif@8) by one in which the modified
propagatoiS(p) = S(p) —Tr(S(p))/4 is used to define the amputated Green’s function, where
the trace is in spinor space.

In order to reliably extract the renormalization constaartd to convert the resulting quark
massesn™ () to other schemes without loosing precision, several canditshould be met:

(a) the scaleu at which we take the continuum limit of the RI/MOM renormalizmasses
needs to be substantially below the momentum cutoff of tlesast lattice: < 27 /a,

(b) the conversion to a perturbative scheme has to be done ateg$evhich is sufficiently
large, such that perturbation theory is reliable, i.e./at Aqcp,

(c) the effect of the chiral extrapolation — 0 needs to be fully controlled.
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Figure 11:Ratio of the nonperturbativéy' to the perturbative prediction at 4-loop level. The

momentum range shown extendsitQ., = w/(2a) at f = 3.8. Foru > 4 GeV the data agree
with the plateau within errors.

The difficulty to fulfill, in one simulation, the first two coittbns is sometimes referred to
as the “window problem” of the RI/MOM procedure. In the fallmg we show how we can
simultaneously satisfy all three requirements.

Ad (a): To renormalize our quark masses and to extrapolate thetinet@ontinuum we
choose a convenient renormalization sqate 2.1 GeV. This scale satisfiegs < 7/(2a) for all
our lattices (on the coarsest one this figure is alouGeV). When plotting the running of
Zs () at differents on top of each other (see Higl10), one finds that discretizatifects are
below our statistical accuracy in this region, and that trenfof the running is almost identical
for our five 5 values.

Ad (b): With the procedure described above and by taking the mouain limit we obtain a
fully nonperturbative determination of the quark massek@&RI/MOM scheme gi =2.1 GeV.

In principle, we could stop here, quoting this as our maimltesHowever, if one wants to
convert this result to another scale or another scheme,atigent from Fig. 1P that doing
so perturbatively would introduce an uncertainty in the2% range. Therefore we use our
renormalization data to run our quark mass results, noagetively, to the scalg’ =4 GeV,
where this perturbative uncertainty is in thé% range and hence subdominant./At=4 GeV
we still have 3 differenti values which satisfy the conditigel < 7/(2a). More specifically,
we use our data to extrapolate the rafif(1.)/Z5 (/) to the continuum, with an extremely
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Figure 12:Ratio of the perturbatively evaluated (1) (top panel) and }>(11) (bottom panel)
at different loop orders. The renormalization group equetihave been numerically integrated,
using 1-loop through 4-loop anomalous dimensions. To eg&rthe remaining uncertainty in
the 4-loop running, we employ the analytic expression atepllevel [44], which differs from
the numerically integrated one by 5-loop effects. In thelalhis is called “4-loop/ana”.

30



mild effect (as one can see from Higl 10, in this interval tivee curves lie essentially on top
of each other), and the resulting ratio provides us with theperturbative running of the scalar
renormalization constant, in the continuum, betwger2.1 GeV andy’=4 GeV. Accordingly

Z8L (4 GeV)
R¥ (4, 4GeV) = lim =20~ "/
s o A GV) = I 7 )

is the continuum extrapolated ratio which allows us to egahata fromall our lattices, in-
cluding the coarser ones, td=4 GeV, where we perform the final continuum extrapolation.
Through this procedure we obtain fully nonperturbativednarmalized quark masses in the
RI/MOM scheme aj/ =4 GeV, which represent our main result. For the reader’s conveeie
we also convert them to other schemes. To this end we usepdgedurbative running to
convert to the RGI framework (where we use the convention38if with b, d, adjusted to
N;=3), and subsequently to tAdS scheme (which is perturbatively defined).

Ad (c¢): As mentioned above, the RI/MOM scheme is a massless reiaation scheme.
Since the dedicated’; = 3 simulations as listed in Td. 2 use finite quark masses (igugh
the rangemP"* /3 < m < mP™s), we have to perform a chiral extrapolation at some point.
In the procedure described in the previous paragraph, theencal data fong‘,%’m(u) were
first extrapolated to the chiral limit to givé’glg(u). Based on this the renormalized quark
massesn ' (1) and the ratiosZs (/') / Zs,5(11) were extrapolated to the continuum, as detailed
in (a) and (b), respectively. To give a reliable estimatehefsystematic uncertainties involved,
we supplement this procedure with a second one where weclvaege the order of limits.
Technically, this means that one defines an intermediate MCime, which is not a massless
one, but instead based on a fixed reference quark mass. Welj}8e= 70 MeV, since, for
all g, this value can be reached by interpolation. In this schdraad¢normalized light and
strange quark masses are determined at the sgal€d .3, 2.1} GeV, and extrapolated to the
continuum. This yieldsn)))' (1) and ditto form,. Staying in this massive scheme, these
quark masses are evolved to the sgéle- 4 GeV. In this step a fully controlled continuum
extrapolation can be performed, since we have three latfiaeings satisfying’ < /(2a). At
this point we have the renormalized quark mass in the form

(69)

MOM / MOM S Myer 7
== C 0
ud,Myef (ru ) ud, Myef ( ) ZS,mref( ,) ( )

where either factor has been extrapolated to the continlruthe last step, we switch from the
intermediate massive MOM scheme to the massless RI/MONhselty multiplying [[Z0) with
the continuum extrapolated ratiy ,,, ..(1')/Zs(x'). This yields the samelt} (1), m (1) as
before, except that the order of limits has been interchédinfjiote that all continuum extrap-
olations are entirely flat and the effect of the mass extetjmoi is about 1%, implying that all
limiting procedures are fully controlled. Having obtainaa main result, the RI/MOM masses
at /=4 GeV, we can transform them to other schemes as described under (
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B L3XT | (mg+muq)ro
57366 12°x24 | 0.3070(50)
5.8726 16°x32 | 0.2801(50)
5.9956 20°x40 | 0.2758(52)
6.1068 24°x48 | 0.2654(42)
6.3000 3264 | 0.2685(29)

Table 3:Details of the quenched overall test. The quark masses #reNiS scheme at GeV.

11.5 Summary of RI/MOM renor malization

Let us summarize this section. We compute the quark mas&§ andmP™* through the
“ratio-difference method” in the RI/MOM scheme at the scale- 4 GeV, nonperturbatively
and with extrapolation to the continuum.

The mild quark mass dependence of the renormalization aésoeliminated through a
chiral extrapolation. Also cut-off effects are removedotigh a continuum extrapolation. In
this step we are extremely conservative — we do not only denshe formally leading cut-off
effectsO(aa), but also subleading effects proportional®¢a?), counting the spread towards
the final systematic error (see Sec. 14). We think this is ssarg, since even with a set of
5 lattice spacings, we cannot exclude the possibility thatshbleading) (a?) cut-off effects
largely affect the continuum extrapolation. If we were tmsider only the leading (aa)
cut-off effects, our systematic error would be significgstinaller.

The quark masses in the RI/MOM scheme at the spate 4 GeV are our main result,
obtained in a way which guarantees that they are truly naagetive. Using perturbation
theory in a regime where it is well behaved, we convert thethéauniversal RGI prescription
and subsequently to the perturbatively defihéslscheme at the scale=2 GeV.

12 Quenched overall check

To demonstrate that our 2-step HEX smeared clover adtioar(d)the nonperturbative renor-
malization of the quark mass yield reliable results in thetcmum, we repeat the quenched
benchmark calculation [53] of the quantity, +m.,4, Using our setup.

We use pure Wilson glue at five couplings betwgen 5.7366 and5 = 6.3, each time saving
about600 well-decorrelated configurations for the analysis (i.) & the Z-factors and 400
for the masses). The couplings and geometries have beeerctioealize a fixed physical box
size of aboutl = 1.84 fm, see Tal.]3 for details. On each set at least 4 quark massaseate
to safely interpolate to the poidt/, ro=1.229, whereMp is the pseudoscalar meson mass and
where the numerical value has been chosen to matgh®r, with 1 =0.49 fm [54].

The computation closely follows the dynamical case. We maadize the VWI quark mass
sum with the methods described in the previous section, amdise the same procedure to
convert to theMS scheme. In more detail, we begin with measuring~¢ as a function of
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(8=5.7366) is shown. The difference counts towards the systematic ee text for details).
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the bare mass:*, which shows a linear relationship. The intercept with thaxis yields
m® and thusn'V as defined in[{47). Next, we determiéig () via RI/MOM [43] to obtain
mYW according to[(47). It is easy to see that this is the flavor siogtet Z5(p), since all
quark disconnected contributions vanish in the quenchedryh In close analogy with our
phenomenological analysis, we choose the matching spate®.1 GeV and /' = 3.5 GeV.
Combining the continuum extrapolated ra#@ (') /Zs(u) with Zg s(1), we obtainZs s(u)
and the renormalized mass’"V!(y/) in the RI/MOM scheme at the scglé=3.5 GeV. Finally,
we use perturbation theory to convert to i€ scheme a2 GeV scale. The result is identified
with m,+m,q in this scheme, at the given lattice spacing, and multipk&t r, to obtain a
dimensionless quantity (cf. Tab. 3). We find that we can @xti@te these values linearly im

or a2, with the data showing a slight preference for the latteiooptas can be seen from the
two panels in Fid. 3. Using the machinery for propagatint istatistical and systematic errors
that will be described in Sec. 14, the combined result in tr@inuum read$m+ m.q4)ro =
0.2609(39)(28) in the MS scheme ati=2 GeV.

Our result is in perfect agreement with the continuum valug + m.,4)r0 = 0.261(9)
quoted by the ALPHA collaboration [53]. It is consistentthin less thario, with the result
0.274(18) given by JLQCD [[55] and, within less thaw, with the value0.312(28) obtained
in a computation with quenched overlap fermions that inetual continuum extrapolatian [56].
There is some tension with the resti293(6) by CP-PACSI[57], but one should keep in mind
that the systematic uncertainty due to the perturbativerralization is not included in their
error. In short, we find good agreement with the most pre@salts in the literature. We take
this as evidence that the renormalization procedure destin Sec. 11 yields reliable results.

13 Using dispersiveinput to obtain m, and my

For decades the most reliable source of information on bigiark masses has been current al-
gebra, in particular in its modern form, known as Chiral edxation Theory (ChPT). A major
drawback of this framework is that only information on quarss ratios can be extracted, not
on absolute values. This is a consequence of the fact thaeichiral Lagrangian all quark
masses appear in the combinatiBpn, and the condensate parameigr does not occur in
any other instance. We have determineg; = (m,+my)/2 andm, in MeV units. Accord-
ingly, by comparing our value of the ratia, /m,, to theirs, we can learn something about the
convergence pattern of SU(3) ChPT. Furthermore, one mayrmmour values forn,, and
m, with the best available information on another rati §ee below) to obtain a result for the
individual quark masses.,,, mg.
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13.1 Comparing our value of mg/m,, tothe onein ChPT

As a starting point one might ignore higher-order terms exchiral expansion and electromag-
netic corrections all together. Upon identifying the leénd sides in

M2 = By(my, +ma) (71)
Mps = Bo(my +ms) (72)
M}y, = By(mg+my) (73)
M} = By(my+ma+4my)/3 (74)

with the experimentally measured meson mabs@se obtains three predictions. On the one
hand, the Gell-Mann—Okubo relation

BM; + M7 ~ 2Mps + 2Mpo (75)

evaluates t0.919 GeV? ~ 0.983 GeV?, which amounts to a 7% accuracy. On the other hand
(Mg + Mio) /M7 = (m + mua) / (a) (76)
MZ/MZ = (2ms + muq)/ (3mua) (77)

yield ms/m,q ~ 25.1 andmg/m,q ~ 23.4, respectively. This spread suggests again a precision
of a few percent. Upon noticing that theundergoes significant mixing with th¢ and, as a
result, that[(76) should be preferred overl(77), one aréke estimates

W MZi— Mo+ M2
Mo D Z V0 T g 66 (78)
mq | M2y — M2+ M2

. M2+ M2, — M2
Mo e P Z Vr L gg 8 (79)
ma | M2, — M2 + M2

which do not take into account electromagnetic contrimgito isospin breaking.

The chiral framework may be extended to include interastisith photons. At leading
order ina.,, and in the3-flavor chiral limit the electromagnetic contribution teetbxcess of the
charged kaon mass squared is the same as for the pida/te— M2)]o, = [ME+ — Mz o]em,
known as “Dashen’s theorem” [568]. This leads to the impra\ﬂiaitiong [59]

W MZ,— M2, +2M2 — M?
M i = Wi T 200 — Mz 56 (80)
ma M2y — M2, + M2,

o Mo+ M2, — M?
Mo Mt Mo = ez 9 (81)
ma | M2, — M.t M2,

which account for electromagnetism at leading order (LOhmchiral expansion. From this
one obtainsn,/myq = 2/(mg/ms + my/mg-mq/ms) ~ 25.9 as the LO result in ChPT.
Comparing this to our valué (85) [see below] indicates th&dr-this quantity — subleading
contributions yield only about 6% of the total result.

3pseudoscalars without superscript refer to isospin aesrad? =1 (M2, + M2,), M} = 2(M7..+M},).
4The numerical values are based on the latest edition of ti@ [20] and differ from those given in [59].
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13.2 Using dispersive information on () to split m,, into m,, and my

As mentioned in the previous subsection, ChPT is well suitedddress the ratios:;/m,
andm, /my. A way to encode such information on quark mass ratios whicim the ChPT
viewpoint, is particularly robust is to introduce the doaibtio

m? —m?
Q= m2 — de (82)
d u

since this quantity is unaffected by next-to-leading oi@rO) effects in the chiral expansion.
Modulo a tiny correction[(82) can be put into a form known bBsutwyler’s ellipse” [59]

1 /mg\2 Mgy \ 2
o) () =1 (83)
and relying on Dashen’s theorem [58] or refinements thessd €.9.[21]), one might attempt
to determine the value @) from the masses of the charged and neutral kaon and pion.

Since we intend to usé (B2) to predict the isospin splittimg®CD (i.e. without electro-
magnetism), it seems more advisable to build on the longtivadn the phenomenological
literature to determin&) from the rate forp — 37 decays or from the branching ratio of
Y — ¢ versusy’ — ¢n decays. The former amplitude seems particularly intargstis
it violates isospin, while being barely affected by elestegnetic corrections [60]. Evidently,
this renders it sensitive to the effectaf, —m, # 0, which is exactly what we are interested in.
In the following, we restrict ourselves to the dispersiveatment of they — 37 amplitude, as
given by Kambor-Wiesendanger-Wylér [61], Anisovich-Lwyter [62], and Colangelo-Lanz-
Passemar [63]. In the first place we note that the centrabvalund in these works has been
remarkably consistent over one and a half decades. Letais@phasize that a dispersive treat-
ment is, conceptually, as much from first principles as &kattomputation — dispersion theory
rests exclusively on the axioms of quantum field theory. Incaldvwith perfect experimental
data, this would be the complete story. However, with prégewailable data, additional input
is required (see e.d. [63]). To account for such provisiafigcts, Leutwyler has assigned his
estimatel) =22.3(8) [64] a much larger error bar than claimed in some of the pahbaos it is
based on. In our view this is the most accurate value availabne is not willing to resort to
model calculations, and we shall thus stay content withaitisar conservative error bar.

We now extend our lattice determinationsraf,; andm,/m, to all three quark masses,
using this dispersive information. Upon rewriting (82] &8jhe form

1 Myd\2 Mg — My,
— =4 4
Q2 ( mg ) mq + My (8 )
it follows that the above-mentioned value@fand our lattice result
Ms _ 97.53(20)(08) (85)

mMuyd
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yield the light quark mass asymmetry parameter

mqg — My,

—— = 0.381(05) (27 86
e = 0381(03)(27) (86)
where the error oK) is considered a systematic error. As an aside we mentiorhisaasym-
metry parameter is equivalent to, /m, = 0.448(06)(29). Combining [(86) with our result
myq = 3.503(48)(49) MeV, we obtain

m,, = 2.17(04)(10) MeV, mgy = 4.84(07)(12) MeV (87)

with all masses given in the RI/MOM scheme at the sgale 4 GeV. These values and our
original results form, andm,q (along with their counterparts in the RGI aktb schemes) are
summarized in Tabl5 (see Sec. 15) and quoted in [1].

To summarize the technical part, let us say that we haverdetedm, andm,, based on
our lattice value ofn,4, our lattice value of the ratie,/m,, and the dispersive treatment of
@. Given that our simulation points bridge the physical valaém,; andm, (cf. Sec. 5), the
chiral framework is no longer needed in the first two quassitiand the use of ChPT is thus
limited to a subdominant contribution in a mostly dispeesramework to determing.

13.3 Physicsimplication, robustnessissues and precision outlook

Physicswise, an important conclusion is that our resulf {&6the light quark mass asymmetry
parameter excludes a vanishing up-quark mas82oy standard deviations. This is a conse-
guence of the dispersive determinationtpbeing entirely inconsistent with3.8, the value of

@ which relation[(84) and our result fot; /m,, would enforce ifm, =0. As can be seen from
(84), the asymmetry parameter depends strongly on therratio, 4, which is the quantity that
we have determined to sub-percent precision. The bottaanidithat our precise lattice results
and the dispersive processing of phenomenological infoomavhich excludes very large cor-
rections to Dashen’s theorem, when combined, rule out thelsst proposed solution to the
so-called “strong CP problem”. This corroborates previtigings [59].

Note that the way in which we have used phenomenologicaltnmdtion is designed to
make sure that the so-called “Kaplan-Manohar ambiguitgirsumvented in our derivation of
m, andmg,. This ambiguity expresses the fact that a redefinition ofgii@k condensate and
of certain low-energy constants allows one to move on Lel#wgyellipse [65]. It represents
an accidental symmetry of those Green’s functions in thecéffe theory which determine
pseudoscalar masses, scattering amplitudes and matmeets of the vector and axial-vector
currents([59]. However, thaspect raticof Leutwyler’s ellipse is not affected by this ambiguity,
and it is this shape informatiBmvhich is encoded i)). In consequence, relation (84) ensures

SWe remark tha@) as defined in(82) picks up, under a Kaplan-Manohar transitiom, terms of order NNLO
and a change proportionalte,—m.,. The latter “deficiency” could be cured by defini@g§ = (m2-m?2)/(m2-m?2)
[66]. Note, however, that the numerical difference betw@eandQ [or Q-, the quantity that shows up b (84)]
is about one permil, i.e. more than an order of magnitudelsnthlan the uncertainty that we have assigne@ to
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that the high precision that we have reachedhiyim,,, together with the robust value ¢fthat
we use, leads to a determination of the asymmetry parani@gand thus of the individual
andd quark masses which is unaffected by the Kaplan-Manohargurtii

We stress that, in our view, there is not much conceptuatmdiffce between using only
M., M as input quantities versus includirdg, too. To computen,,, m,, we needed two
(polished) experimental input numbers to adjust the awelight and the strange quark masses,
apart fromM, to set the overall scale (cf. Sec.4). To computg, m4, m,, evidently, we
need a third one, and we are well advised to choose one whisbnisitive to the effect we
want to quantify. We seleap for its large sensitivity to QCD-induced isospin breakittys
requiring very little theoretical polishing, and for thigtle bit resting on dispersion theory
which is well founded. Still, there is room for improvemens can be seen from the fact
that our value ofmn,, had 2% precision, whilen,, andm, have only 5% and 3% accuracy,
respectively. The problem is that the current valu€)adetermines the asymmetry parameter
(88) to only about 7% precision. While improvements on thieeaf () obtained in this way
may be possible [63], reaching accuraciesgf, m, below the few percent level will most
probably require a different approach, even more heaviéetan lattice field theory. Indeed,
once simulations become available withy = 14141 physical quark flavors (i.e. with non-
degenerate up, down, and strange quark masses, each of iwhéden at its physical value)
and with an additional abelian gauge ffetd account for electromagnetic interactions, it will
become possible to take full advantage of the very accyr&tmebwn K+ and K° masses to
determinen, andm, with even higher precision.

14 Assessment of systematic errors

Our approach is to establish one global fit to interpolatelaur12+9+9+6 = 47 simulations
at 5 different lattice spacings (cf. Tdh. 1) to the physical nyasisit (i.e. physical\/, and M)
and to extrapolate to zero lattice spacing (@.e: 0). In order to obtain a reliable estimate of the
systematic error involved, we repeat the entire analysik wilarge selection of interpolation
formulae, mass cuts, discretization terms, fit ranges, andrmalization procedures.

In order to extrapolate or interpolate a given quantity ®physical quark mass point, one
needs to expand it around some pion and kaon mass point. (Diev =2 or Ny =3 chiral
limit is chosen as an expansion point and hence SU(2) or SCHB)T [37| 38] as the theore-
tical framework. Expressing the dependence on the lightigoeass as a dependence bfy,
this kind of expansion leads, for a quantity which vanishrethie chiral limit, to a quadratic
term oc M2 and higher order chiral logs, e.o. M*log(M?/A?), with known prefactors but
unknown scale\. In many cases the practical usefulness of knowing the gi@fis limited,
since they contain other quantities (e.g. the axial cogplin for octet baryons) which may
not be available from the same simulation and which one mayvaat to borrow from phe-
nomenology. Furthermore, it is rather difficult for a fit tdl te.g., a purel/? contribution from

8For recent progress in this field see €.g] [67].
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an M*log(M?/A?) chiral log. Accordingly, choosing an expansion point foriatgrpolation
somewhere in the middle of the region where one has data (loe imiddle of the region defined
by the data points and the target point in case of an extrapo)aand using a simple Taylor
expansion inV/? leads to rather similar resul{s/ [2].

To flesh out the meaning of these statements, let us consideuiantities of interesty, 4
andm,. In our analysis we use the NLO mass formulag (45) from SUEBT[37], albeit in
reversed form, so that it expresses, as a function of\/,.. To the order we are working at, this
can be done in several ways [the difference is an NNLO effeat]use the relations

M? M? M?

Mg = ﬁ'{l_%(@rﬂ)? log(35)} - (1+e.4) (88)
ma = 5 /{1 oG} (14 e) (89)

where we have introduced a hadronic quantity
A =2M; — M? — [2M3 — MZ]Phvs (90)

to parametrize the small deviation of our strange quark rfragsits physical value [2]. Alter-
natively, for the light quark mass we use a Taylor expansfaheform

Mug = €1 + caM? + cs M2 + cyA (91)
while the strange quark mass is always parametrized as
ms = Cs + cﬁMﬁ + er A+ cgA? . (92)

We have tried to augment these formulas by higher order tdvatlk inA7? andA, but we found
those coefficients to be consistent with zero, with the giwetision of our data. This yields
3 options for the mass interpolation or extrapolation offieeudoscalars. Similarly, for tt&
baryon that serves to set the scale, a Taylor ansat#Ziand2Mz — M? is used (cf. Sec. 4). In
total we have3 functional ansaetze to interpolate our data.

A standard way to test the functional ansatz is to prune the w#h mass cuts. We use
M, < {380,480} MeV for the scale setting and/, < {340,380} MeV for the quark mass
determination, thus a total of 4 mass cuts.

A source of error which, in practice, often proves dominanthie contamination of the
ground state in the two-point correlator by excited statés.reduce this contamination we
use a Gaussian source and sink with a fixed width of aba2fm. We tested 1-state and
2-state fits, and found complete agreement if the 1-statestitd at¢,;, ~ 0.7fm for the
PP,PA,, AP, A;A, meson channels and frotp;, ~ 0.8 fm for the ). In lattice units this
amounts toat,,;, = {6,8,9,11,13} for § = {3.31,3.5,3.61,3.7,3.8} (and ~ 20% later for
baryons). In order to estimate any remaining excited stfiéets, we repeated our analysis
with an even more conservative meson fit range (starting,at = {7,9, 11,13, 15} and again
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cen.val. oga. O | Plateau  scaleset fitform masscut renorm. cont.
3.503 0.048 0.049 0.330 0.034 0.030 0.157 0.080 0.926
96.43 1.13 1.47| 0.207 0.005 0.031 0.085 0.085 0.9)70
27.531 0.196 0.083 0.513 0.200 0.023 0.320 — 0.771

Table 4: Split-up of the total systematic uncertaintyrof™>*, m®»s andm?™s /m™* (from top

to bottom) into the various contributions. Entries in cohs-3 are in MeV and refer to the
RI/MOM scheme ati=4 GeV. Columns 4-10 indicate the relative share of the systersatiz
given in column 3 (the squares of these numbers add up to B.h&aders of these columns
refer to the plateau range in the primary observables, tbeathscale setting, the interpolation
ansatz to tune to the physical mass point, the cut in the pasgsnthe details of the renormal-
ization procedure (read-off scale, chiral extrapolatiamd the continuum extrapolation.

~20% later for baryons). The end of the fit interval was always ends beut .. = 2.7xat i,

or T'/2 — 1 for lattices with a time extent shorter thant x at,;,. In all cases, the fits were
performed in a correlated way. In total this gives 2 différranges to make sure that con-
tamination by excited states is under control.

As a result of the tree-level valugy, = 1 our action has formally)(«a) cut-off effects.
However, due to the smearing the coefficient in front of trstis small, and the formally sub-
leadingO(a?) contributions might numerically dominate over th¢aa) part. To account for
this we augment our global fit by cutoff terms which stipuleitberO(aa) or O(a?) deviation
from the continuum. This ambiguity comes into play in thelation function [69) and in the
continuum extrapolation of the quark masses in the RI/MONeste, which yields 4 options.

Besides the variations described above, we consider 3rapiticthe nonperturbative renor-
malization procedure (scale massless versus massive intermediate scheme), see Sec. 11

All of this serves the goal of quantifying potential systeéimaffects on our final results. In
addition, there are standard methods to assess the size sfdtistical error. Apart from the
autocorrelation analysis detailed in Sec. 7, we used éifiielblocking sizes on our ensembles,
ranging from 1 to 10 configurations, where two adjacent conéiions are separated by tegs
1 MD updates (cf. Sec. 5). Last but not least, we found thdicei thermalization cuts (where
we ignore the first 20-100 configurations of the thermalizesieenbles) induce no noticeable
change in our results, and therefore we conclude that dessbidual thermalization effects
are irrelevant for the error analysis.

Putting everything together we have 3 ansaetze for thepiokation of the quark masses to
the physical point, 4 mass cuts in the scale setting and takkaguoass determination, 2 different
fit intervals for the primary observables, 4 ansaetze foctminuum extrapolation, and 3 ways
of doing the RI/MOM renormalization. This gives a total®f4 - 2 - 4 - 3 = 288 analyses.

In order to quote a final result, we follow the procedure usef]. It is essential to note
that we have n@ priori reason to favor one of these fits over another. Thereforerblysis
method should represent the full spread of all reasonaluléhagoretically justified treatments
of our data. In other words, we use ali8 procedures, and weigh the results by the quality of
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mg My, my, m

RIMOM(4 GeV) | 96.4(1.1)(L5) 3.503(48)@9) 2. 17 (04)(10) 4.84(07) (12
RGI 127.3(1.5)(1.9) 4.624(63)(64)2.86(05)(13) 6.39(09)(15
MS(2 GeV) 95.5(1.1)(1.5) 3.469(47)(48)2.15(03)(10) 4.79(07)(12

g —

N—r

Table 5:Renormalized quark masses in the RI/MOM scheme-at GeV, and after conversion
to RGI and the\IS scheme at,=2 GeV. The RI/MOM values are fully nonperturbative, so the
first line is our main result. The first two columns emerge atlgefrom our lattice calculation,
the last two build, in addition, on dispersive informatiam@. The precision o, andm,

is somewhat below the 2% level, for, andm, it is about 5% and 3%, respectively. The ratio
ms/myq = 27.53(20)(08) is independent of the scheme and accurate to better than 1%.

fit Q = I'(n/2, x?/2) to form a histogram. Next, we compute the mean and standaidtibe

of the distribution, and this yields the central value anel sistematic error which we quote.
Finally, we repeat this extensive procedure on 2000 bagstamples. The standard bootstrap
error of the mean gives the statistical error.

An additional benefit of our method to treat systematic ¢ffés that we can temporarily
suppress one of the variations considered (i.e. abandonfahe factors who'’s product leads
to the288 procedures) to learn about the contribution of this indraifactor to the total error.
The total “error budget” compiled in this way is shown in Tdb.Evidently, it exhibits the
cut-off effects as the dominant source of systematic uag#ytin our results.

All together, our procedure to assess both statistical gatésatic errors is an extended
frequentist method [20] which was already used.in [2].

15 Summary

We have carried out a precise determination of the averagp Guark massn,; = (m., +
mg)/2 and of the strange quark mass, using nonperturbativé/, = 2+ 1 lattice QCD and
nonperturbative renormalization throughout. Our dataecdvlattice spacings in the range
0.054—0.116 fm, with pion masses down te 120 fm and box sizes up t6fm. This allows for
a safe extrapolation to the continuua+§ 0) and to infinite volume f, — o).

We have devised a number of innovative methods, most notalslsheme to exploit the
different renormalization pattern of Wilson and PCAC quamksses with tree-leveD(a)-
improved clover quarks and a procedure to overcome the RMNMIndow problem by taking
a separate continuum limit of the running of the scalar dgrig(u, /).

Our main resultyn, andm,, in the RI/MOM scheme at renormalization scale- 4 GeV
(cf. Tab[®), is from first principles and fully nonperturbvat To ease comparison with the
literature, these values are converted to RGI conventindssubsequently, to thdS scheme.
In this step reference to perturbation theory is unavoildiit we do this in a controlled way,
since we show that the 4-loop anomalous dimension of tharsdahsity is consistent with our
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Figure 14: Continuum extrapolation af.,q (top), ms (middle), m,/m.q (bottom) versusva,

for one of our 288 analyses with a good fit quality (cf. diseoissn Sec. 14).

nonperturbative running for>4 GeV. The ratiom,/m,, is scheme and scale invariant. It turns

out that our action entails favorable scaling propertiesjust for hadron masses, but also for
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renormalized quark masses, as the plot of a representatiténaum extrapolation in Fig. 14
shows. The combination of using pion masses down to (andlesiew) the physical value and
having precise and fully nonperturbative renormalizatawtors allows us to determine, and
m.q With a precision of better than 2%, and their ratio to bettant1%.

A determination of the individual light quark masses andm, by lattice methods alone
is beyond the scope of this paper. Nevertheless, the ppaai$iour values ofn,; andmg/m.q
allows for a fruitful use of the result of the dispersive as#éd of the double rati@) (cf. discus-
sion in Sec. 13). By combining these pieces of informatioa,altain values of the individual
quark masses:,, andm, with a precision of 5% and 3%, respectively (cf. Tdb. 5).
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