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f(T') gravity and local Lorentz invariance
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We show that in theories of generalised teleparallel gravity, whose Lagrangians are algebraic
functions of the usual teleparallel Lagrangian, the action and the field equations are not invariant
under local Lorentz transformations. We also argue that these theories appear to have extra degrees
of freedom with respect to general relativity. Both of these facts appear to have been overlooked but
are crucial for assessing the viability of these theories as alternative explanations for the acceleration

of the universe.
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Teleparallel gravity [1, 2] is a gravity theory which uses
the curvature-free Weitzenbock connection [3] to define
the covariant derivative, instead of the conventional tor-
sionless Levi-Civita connection of general relativity, and
attempts to describe the effects of gravitation in terms
of torsion instead of curvature. In its simplest form it
is equivalent to general relativity (GR) but has a differ-
ent physical interpretation [2]. Motivated by attempts to
explain the observed acceleration of the universe in a nat-
ural way, there has been a great deal of recent interest in
a generalisation of this theory in which the Lagrangian
is an arbitrary algebraic function f of the Lagrangian
of teleparallel gravity 7. This is in direct analogy to
creating f(R) gravity theories as a generalisation of GR
(see Ref. [16] for a review). This, so-called f(T') gravity
theory, has cosmological solutions which could provide
alternative explanations for the acceleration of the uni-
verse [4-15]. The field equations for the f(T) gravity
have been claimed to be very different from those for
f(R) gravity, as they are second order rather than fourth
order. This has been considered as an indication that the
theory may be the more interesting relative of GR.

Here we will look further into the symmetries and dy-
namics of f(T) gravity. Our main findings will be that
such theories are not locally Lorentz invariant and appear
to harbour extra degrees of freedom not present in GR.
Remarkably, both of these features have been overlooked
in the literature.

Let us briefly introduce teleparallel gravity and its
f(T') generalisation. Our dynamical variables are the
vierbein or tetrad fields, h, (z*), which form an orthonor-
mal basis for the tangent space at each point of the
manifold with spacetime coordinates z#. Latin indices
label tangent space coordinates while Greek indices la-
bel spacetime coordinates. All indices run from 0 to 3.
Clearly h,, (z*) is a vector in tangent space, and can be
described in a coordinate basis by its components h¥. So,
ht is also a vector in spacetime.

The spacetime metric, g,,, is given by

Guv = nabhzhg (1)

where 7,, = diag(1, —1, -1, —1) is the Minkowski metric
for the tangent space. It follows that

hghg = 0y, hghz = 537 (2)

where Einstein’s summation convention has been used.
GR uses the Levi-Civita connection

1 a
Do = 59" on + Govs = Guw.o) (3)

in which commas denotes partial derivatives. This leads
to nonzero spacetime curvature but zero torsion. In con-
trast, teleparallel gravity uses the Weitzenbock connec-
tion f)‘W (tilded to distinguish it from Ffw),

fAW = hyd,h), = —hbo,hy (4)

which leads to zero curvature but nonzero torsion. The
torsion tensor reads

A, =17, =T, = h) (0.8 —0,hh) . (5)

The difference between the Levi-Civita and Weitzenbock
connections, which are not tensors, is a spacetime tensor,
and is known as the contorsion tensor:

. 1
Ky =10, ~Th, = 5 (T,0 + 1,0, ~T%,)
= hV,he, (6)

where V, denotes the metric covariant derivative.
If one further defines the tensor SP*¥ as

SPHY = [CHVP _ gPVTOR L gPRTY (7)
then the teleparallel lagrangian density is given by

h h
= = SPEYT s 8
167G 327G Pr (8)
in which h = /=g is the determinant of h) and g is
the determinant of the metric g,,, G is the gravitational
constant and

L

1 v v
r= 5513” Topw = =S Kppus

1 v 1 v 17
= 1T Doy + 5T Ty = T, LT, (9)
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Variation with respect to the tetrad h{ after adding a
matter Lagrangian density L,, leads to the field equa-
tions

h—laa (hhgsp)\a) _ thMVATM,/g + %hiT = 871G @2,
(10)
where ©) = h=1§L,,/5h®,. The usual stress-energy ten-
sor is given in terms of ©) as O = ™ OYh.
The f(T') gravity theory generalises T in the lagrangian
density to an arbitrary function of 7"

f(T). (11)

The derivation of field equations is very similar to that
described above for teleparallel gravity. They are

Fr (1710, (WhgS,7) = hg ST, (12)
1
+frrh8 S, 0T + 5hgf(T) = 871G O},

where fr = 0f(T)/0T and frr = 0 f(T)/0T?. Clearly,
for f(T) =T, Eq. (12) reduces to Eq. (10).

We now move on to consider the symmetries of the
action and the dynamical content of the field equations.
When working in terms of tetrads and making explicit
reference to a tangent space, two invariance principles
should hold [17]: the action should be a generally co-
variant scalar, and so invariant under the infinitesimal
coordinate transformations z# — z* + e#(z); and if spe-
cial relativity is to be recovered in locally inertial frames,
the action must also be invariant under local (position-
dependent) Lorentz transformations (i.e. we should be
able to redefine the locally inertial coordinate systems
at each point). Let us check if these properties hold for
f(T) gravity.

We start with the matter action, which in the litera-
ture is assumed to couple to the tetrad so as to couple
effectively only to the metric. In this case the matter ac-
tion is, as usual, both a generally covariant scalar and a
Lorentz scalar'. It is worth considering the consequences
of these assumptions for the matter action as an explicit
example.

We denote an infinitesimal Lorentz transformation as
A% (zt) = 6% + w(x#) with [w%] < 1 and wap = Wa)-
Square brackets denote anti-symmetrisation and paren-
theses symmetrisation. As the vierbein A# is a Lorentz
vector in index a, it changes by §h# = w,’hY under this
Lorentz transformation, where we have suppressed the
dependence on z* for simplicity. The matter action

%:/#Mm (13)

! Dropping this assumption for the matter coupling would lead to
Lorentz violations in the matter sector.

is then changed by [2, 17]
68 = / % hoh)d'e = n' / 0% hwaph d 'z . (14)

wab 1s an arbitrary antisymmetric (Lorentz) tensor, and

nbc®aﬂhcu _ nac®buh5u o @ﬂa _ @OzB, (15)
so we see that S, = 0 yields
0P = @2F, (16)

In other words, if §,, is invariant under local Lorentz
transformations, then ©,, is symmetric, and vice versa.

Consider now the fact that the matter action is in-
variant under the infinitesimal coordinate transformation
aH — x# 4 e (z) where |¢#| < 1. Under this transforma-
tion the vierbein changes by dhl (x) = hie!), — h’;’AeA [17]
and the invariance of S, yields

0= / dize* [au (h©%hY) +hO% B | (17)

A

where we have dropped a total derivative. Now € is an
arbitrary spacetime vector, so we must have
0=0, (hO%hY) + h@“ﬂhi/\
= hVY0O,, + hO K, . (18)
Given that K(,,), = 0 and using Eq. (16), we get
VYO, = 0. (19)

Clearly, if ©,, were not symmetric, i.e. if the matter
action were not invariant under local Lorentz transfor-
mations, then ©,, would not be divergence-free either.

We now move to the gravitational sector. As already
mentioned, T)‘W behaves like a tensor under spacetime
coordinate transformations (the antisymmetry of the last
two indices allows us to promote the partial derivatives
to covariant ones). The last line of Eq. (6) demonstrates
that K”,, is also a spacetime tensor. Consequently, S?#
is also a spacetime tensor and T is a generally covariant
scalar. Hence any action constructed with Lp or L is
generally covariant and invariant under the infinitesimal
coordinate transformation z# — z# + ¢ (z).

Some more algebra is needed to check whether such
actions are also local Lorentz scalars. From the rela-
tion between I'F and fgv given in Eq. (6), and the fact
that the curvature tensor associated with the Weitzen-
bock connection f‘g,y vanishes, we can write the Riemann
tensor for the connection I'g  as [2]

R\, = O\I",, —,I" \ + 17 7, —T"

. I, (20)

= v,,K”MA - Va\K’,, + K’ K°\ — K’ \K°,,

ov

The corresponding Ricci tensor is then
Ruu _ VVKPMP _ VPKP;,U/ 4 Kpaquup — KPUPKUV
= —V’Supp = G VT, — SP"#KUPV, (21)



and the Ricci scalar
R=-T-2V*# (T”W) . (22)

The relations
K@)y = paB7) = gab) =

St =2K", =-=-2T" . (23)

and Eq. (9) were used in deriving Egs. (21) and (22).

Eq. (22) is very useful, as it shows that 7" and R differ
only by a total divergence. This immediately implies that
L7 is completely equivalent to the Einstein—Hilbert la-
grangian density, as the total divergence can be neglected
inside an integral, and teleparallel gravity is equivalent
to GR. We will see this below at the level of the field
equations as well. For the moment, let us focus on a dif-
ferent feature. R is a generally covariant scalar and also
a local Lorentz scalar as it can be expressed in terms of
the metric and without any reference to the tetrad. Now
V# (T”W) is also a generally covariant scalar, as TAW is
a spacetime tensor. Thus, as argued above, T is a gener-
ally covariant scalar. However, V# (T”W) is not a local
Lorentz scalar: as one can easily check, it is not invariant
under a local Lorentz transformation. Consequently, T’
is not a local Lorentz scalar either.”

An action constructed with L7 can still lead to a lo-
cally Lorentz invariant theory. The reason is that the
Lorentz breaking term is a total divergence. This sub-
tlety appears to be of little importance in teleparallel
gravity, i.e. when the Lagrangian is just 7', but it is crit-
ical for the f(T') generalisation. As is obvious, if 7" is not
a local Lorentz scalar, f(T') is not a local Lorentz scalar
either. Moreover, f(T) cannot be split into two parts
with one a local Lorentz scalar and the other a total di-
vergence. This implies that actions of the form (11) are
not locally Lorentz invariant.

To get a better understanding of this, we can verify
what was said above also at the level of the field equa-
tions. Contracting with h% and using Egs. (21) and (22),
after some algebra we can bring Eq. (12) into the form
H;,W = fTGpV + %guu [f(T) - fTT] + fTTSl/;,vapT

= 87GO,,, (24)

where G, is the Einstein tensor. When f(T") = T, GR is
recovered, which verifies the claim that teleparallel grav-
ity and GR are equivalent. In this case the field equations
are clearly covariant and the theory is also local Lorentz
invariant. In the more general case with f(T) # T,
however, this is not the case. Even though all terms in
Eq. (24) are covariant, not all of them are local Lorentz

2 This has been pointed out already in a different context in
Ref. [18]. However, its implications were not spelt out there.

invariant. Hence the field equations are not invariant
under a local Lorentz transformation.

Local Lorentz invariance would mean that we can only
determine the tetrad up to a local Lorentz transforma-
tion; that is, only 10 of the 16 components of the tetrad
would be independent and fixing the rest would simply be
a gauge choice. Lack of Lorentz invariance implies that
the field equations must determine these 6 components
as well, leading to a system of 16 equations instead of
10. This is indeed the case: notice that H,, is not sym-
metric, but ©,, is, because matter is assumed to couple
only to the metric (see above). Therefore, we can split
Eq. (24) in the following way

H(#V) = 87TG@,“,, (25)
Hi, =0, (26)

which forms a system of 16 component equations. As in
GR, we can do away with 4 of these equations by us-
ing the usual spacetime gauge symmetry, but there still
remain 6 more equations. Note also that since the ac-
tion and the field equations are covariant, and matter is
assumed to couple only to the metric, H,, does satisfy
a generalised contracted Bianchi identity. This means
that the zero divergence of ©,, imposes no further con-
straints. This can be easily argued at the level of the
action in analogy with the treatment of ©,, above (mod-
ulo the symmetry), but it can also be demonstrated by a
direct calculation. Using the definition of H,, that

VHH,LLU = fTT [R,uv + gHUVGTpgp + VUSUG';L] VHTa

(27)
and Eq. (21), one gets
V#H;,U/ + fTTV'U‘T SPU#Ko'pV
= V'H,, + HK,,, = 0. (28)

For the first equality we have used the fact the K, ), =
0. This equation is in direct agreement with the analo-
gous equation for ©,,, Eq. (18). If we now use Eq. (26),
and K (,,), = 0 again, then we get

VHH,, =0. (29)

Therefore, on shell, H,,, satisfies a generalized contracted
Bianchi identity, as expected from our symmetry analyses
above. This is typically the case for covariant theories
with extra degrees of freedom non-minimally coupled to
gravity, e.g. scalar-tensor gravity theories. Indeed, the
theory appears to propagate more degrees of freedom,
as is consistent with the lack of symmetry. Eqgs. (25)
and (260) are second-order differential equations but they
are expected to harbour more degrees of freedom that
the two graviton polarizations of GR, contrary to what
has been implied in the literature. Also, the fact that the
field equations are second order does not mean that extra
excitations will necessarily be healthy. For instance, a
wrong sign could lead to ghosts or classically unstable



modes. The dynamics of the extra degrees of freedom of
f(T) gravity certainly deserves further investigation.

Lack of local Lorentz symmetry implies that there is
no freedom to fix any of the components of the tetrad.
They must all be determined by the field equations. Now,
suppose that we want to impose a metric ansatz based on
specific spacetime symmetry assumptions. Does this im-
ply a certain ansatz for the tetrad? The answer is, only
partially. Eq. (1) provides only 10 algebraic relations be-
tween the 10 independent metric components and the 16
independent tetrad components. Were the theory local
Lorentz invariant, one would be able to fix the remaining
6 tetrad components. In absence of the symmetry this
is not an option and they need to be determined by the
field equations.

For instance, assuming a spatially flat Friedmann—
Lemaitre-Robertson—Walker line element,

ds? = —dt* + a(t)?*(da? + dy? + dz?), (30)
does not uniquely lead to the tetrad choice
hy, = diag(1, a(t), a(t), a(t)), (31)

as is very commonly assumed in the literature. There
is simply not enough freedom to make this assumption
and one would need to resort to the field equations and
explicitly show, not only the consistency, but also the
uniqueness of this specific choice.

To summarise, we have studied the symmetries and
the dynamics of f(7T') theories of gravity. We have shown
that, even though they are covariant, such theories are
not local Lorentz invariant, with the exception of the
f(T') = T case which is equivalent to GR. This fact
has several consequences. First, it is expected to lead
to strong preferred-frame effects which should in turn be
crucial for the viability of the theory. This casts serious
doubt on whether such theories can provide interesting
alternatives to GR. Note that even though matter will
not ‘feel’ the preferred frame effects because it is only
coupled to the metric, these effects still leave an obser-
vational signature in gravitational experiments, as in the
case of Einstein-aether theory [19]. Another consequence
is that the lack of symmetry implies the presence of more
degrees of freedom. Indeed, there appear to be 6 more
dynamical equations than in GR. Even though all equa-
tions are second order in derivatives, this is not enough
to guarantee that the extra excitations will be well be-
haved. The lack of Lorentz symmetry also presents a
serious computational complication because there is no
freedom to gauge fix tetrad components.

We hope that this analysis will prompt a search for
a deeper understanding of the dynamics of f(T') gravity,
the presence of extra degrees of freedom in these theories,
and their cosmological behaviour. There also needs to be

a thorough study on the observational consequences of
local Lorentz symmetry violations. We hope to address
these issues in future work.

Before closing let us point out that it is rather triv-
ial to modify f(7T) theory in order to make it manifestly
Lorentz invariant. If the partial derivative is replace by
a Lorentz covariant derivative (see Ref. [17]) in the defi-
nition of T’\W7 Eq. (5), and then one defines a quantity
T in the same way as T is defined here, T or f(T) will
be manifestly locally Lorentz invariant, see also Ref. [20].
Note, however, that even though such a theory will re-
duce to f(T) gravity is some local Lorentz frames (those
for which the Lorentz covariant derivative becomes a par-
tial derivative), it will generically have different dynam-
ics. It is, therefore, a different theory, which might de-
serve further investigation.
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