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1. Introduction

Phase transitions in various spin models have served as wonderful examples for the study of
quark-hadron transition in quantum chromodynamics (QCD) and the relatedSU(Nc) gauge theo-
ries, whereNc is the number of colours. While average magnetization serves as the order parameter
in the former case, the Polyakov loop,L, defined as the product of the timelike gauge links at a given
site, is the order parameter for the deconfinement transition [1]. On an EuclideanN3

σ ×Nτ lattice
L(~x) is defined at a site~x as

L(~x) =
1

Nc
Tr ΠNτ

x0=1 U4(~x,x0) , (1.1)

whereU µ(x) are the gauge variables associated with the directed links in theµ th direction,µ =

1,4. As in the spin models again, it is convenient to define itsaverage over the spatial volume,
L̄ = ∑~x L(~x)/N3

σ . 〈|L̄|〉 was used to establish a second order deconfinement transition in numerical
simulations of theSU(2) pure gauge theory. Since then it has been used for similar studies of
the deconfinement phase transitions for a variety ofNc [2], for establishing the universality [3]
of the continuum limit, as well as for theories with dynamical quarks [4]. Further, the predicted
universality[5] of critical indices has also been numerically verified [6]. Indeed, one hopes to be
able to construct effective actions [7] forL in a Wilsonian RG approach. These will be similar to
the spin models in the same universality class but with possibly additional interaction terms. A
large number of models of quark-hadron transitions use the Polyakov loop as the order parameter
for the deconfinement transition as well.

An order parameter should be physical, i.e., independent ofthe the lattice size. This is indeed
so for spin models for sufficiently large lattices. ForSU(Nc) gauge theories, this requirement
means in addition independence from the lattice spacinga in the continuum limit. Furthermore, it
must be so inboth the phases it seeks to distinguish. As is the case for any bareWilson loop, the
Polyakov loop, needs to be renormalized for this to be true. Since the bare Polyakov loop is further
known to decrease progressively withNτ , suggesting it to be zero in the continuum limit in the high
temperature phase, renormalizedL is even more desirable to have.

2. Results

The physical interpretation of the order parameter as a measure of the free energy of a single
quark,〈L̄(T )〉= exp(−FQ(T )/T ) provides a straightforward clue for renormalization. Since many
years various attempts to remove the divergent contribution in the single quark free in the contin-
uum limit have been made. These include computations employing lattice perturbation theory [8],
use of the heavy quark-antiquark free energy [9], fits to〈L̄〉 on Nτ-grids [10] and an iterative direct
renormalization procedure [11] for〈L̄〉 among others.

Here I advocate [12] another, perhaps better, method to define renormalized〈L̄〉. Let me
elaborate why this maybe so. The definition of Ref. [9] needs heavy quark potential at short
distances. Lattice artifacts are at their worse when one is at such short distances, with maximal
violation of the rotational invariance. Finite volume of the lattice also enters in defining the large
distance between the heavy quarks, or Polyakov loops. Similarly the iterative procedure used in
Ref. [11] to obtain the renormalization constants needs large lattices in both spatial and temporal
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Figure 1: The average Polyakov loop as a function ofT/Tc for four different scales. The lattice sizes are as
indicated in the key.

directions. Physically perhaps an undesirable aspect of the definition of Ref. [11] is that it works
only on the plasma side, i.e., forT ≥ Tc, whereTc is the position of the peak in the Polyakov
loop susceptibility. The definition [9] has so far been employed only in theT ≥ Tc for pure gauge
theories for whichL is an order parameter. It would clearly be nice if the renormalization procedure
is applicable to the usually employed〈|L̄|〉, which is used as an order parameter on finite volumes.

I obtain a renormalized Polyakov loop which is valid for boththe phases below and aboveTc

[12]. It can be defined in any spatial volume, and it becomes the true order parameter in the infinite
spatial volume limit. Of course, it is also physical, i.e.,Nτ-independent on finite volumes as well.
Indeed, it seems to work rather well for a range of temporal lattice sizes, includingNτ ≥ 4. I use the
fixed scale approach [13] to do so. It was introduced to minimize the computational costs for the
zero temperature simulations needed to subtract the vacuumcontribution in thermodynamic quanti-
ties such as the pressure and to isolate pure thermal effectsin computation ofTc [14]. Furthermore,
its advantage is that all the simulations stay on the line of constant physics in a straightforward
way. What I argue is that it is indeed this advantage which also permits an easy renormalization
of the Polyakov loop. Although these considerations are general, and apply to anySU(N) gauge
theory as well as any quark representation, I shall considerbelow the simplest case of theSU(2)
lattice gauge theory to illustrate how and why it works.

Recall that the temperatureT is varied in this approach by varyingNτ , holding the lattice
spacinga, or equivalently the gauge couplingβ = 2Nc/g2 fixed. The single quark free energy
Fb(Nτ ,a) is then obtained from thēL by the canonical relation,

ln〈|L̄|〉=−aNτ Fb(Nτ ,a) . (2.1)

The subscriptb reminds us that one obtains the bare free energy this way. If the chosen coupling is
βc, corresponding to the position of the peak of the|L|-susceptibility in the usual fixedNτ approach,
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Figure 2: The heavy quark free energyF a function ofT/Tc for two different scales. The lattice sizes are as
indicated in the key.

and it lies in the scaling region, then the physical deconfinement temperatureTc = 1/Nτ ,cac, and
T/Tc = Nτ ,c/Nτ in the fixed scale approach, with the free energy given byFb(T/Tc,ac). Writing it as
a sum of a divergent and a regular contribution, one hasacFb(T/Tc,ac) = acF(T/Tc,ac)−acA(ac),
whereA is the divergent free energy in physical units. Clearly, thedivergent contribution will be
same at all temperatures in the fixed scale approach since it depends only onac.

Sinceβc, orac, is known precisely for the Wilson action of theSU(2) theory for many different
Nτ , I chose four different scales labelledTc4, Tc6, Tc8, Tc12 corresponding to the known transition
couplings onNτ = 4, 6 [15] and 8, 12 [16] respectively:βc1 = 2.2991,βc2 = 2.4265,βc3 = 2.5104,
andβc4 = 2.6355. Note thatT/Tc is given simply byn/Nτ with n = 4, 6, 8 and 12 respectively.
Employing thenNτ = 3 to 12, I varied the temperature in the range 2≥ T/Tc ≥ 0.6. Note that fixed
scaleac leads to a constant spatial volume in physical units in each case in contrast to the usual
fixed Nτ approach where the spatial volume varies withT . I used a variety of spatial lattice sizes.

Figure 1 shows the results for the thermal expectation valueof L̄ as a function of the temper-
ature in the units ofTc. In most cases, I used both a random and an ordered start. The errors are
corrected for autocorrelations. The agreement in the data for the two starts suggest the statistics of
200K iterations to be sufficient. As expected, the four different scales,Tc4 , Tc6 , Tc8 , andTc12 lead
to four different curves for the order parameter. One also sees the known feature of〈L̄〉 → 0 as
ac → 0 even in the deconfined region. Figure 2 displays the behaviour of the bare free energy for
just two scales, obtained by using the eq.(2.1). The stars are for the scaleTc8 while the squares are
for Tc6 corresponding to the higher lattice spacing of the two. The figure reinforces the expectation
of the effect of the divergent free energy, since the free energy increases with the decrease in the
lattice cut-offac.

Any two different scales,ac1 andac2 have their respective divergent contributions,ac1A(ac1)

andac2A(ac2). Multiplying eq.(2.1) byN j, for j = 1 and 2 corresponding to the criticalNτ for the
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Figure 3: Heavy quark free energyF as a function ofT/Tc with a constant shift, as explained in the text.
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Figure 4: Renormalized Polyakov loop versusT/Tc using the shifted free energy of the upper figure, as
explained in the text.

scale choices above, i.e, 6 and 8, one obtains

T
Tc

ln〈|L̄|〉=−
Fb(T/Tc,ac j)

Tc
, (2.2)

whereFb(T/Tc,ac j)/Tc = F(T/Tc,ac j)/Tc−A(ac j)/Tc. Thus the free energies at the same temper-
atures but two different scales are related by a mere constant, [A(ac1)−A(ac2)]/Tc. For the four
scales considered here, this implies 3 such constants. Figure 3 shows the results for the free energy
with three constant shifts in the free energy determined by demanding coincidence at the highest
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Figure 5: Renormalized Polyakov loop versusT/Tc after subtracting the would-be divergent contribution.

T = 2Tc. A universal curve for the free energy seems to result as a result for a wide range of
T > Tc. The results for the low temperature phase are seen to be volume dependent, as expected. In
the infinite volume limit, the free energy should increase toinfinity in the confined phase whereas
it should essentially remain constant in the deconfined phase. Such an expectation is indeed borne
out by the results in the Figure 3. For the same physical volume, the free energy appears to be
a-independent in theT < Tc phase as well, as seen by comparing the crosses and the stars.

Finally, it should now be clear how one can obtain a universalcurve for the order parameter
from the universal free energy curve. The〈|L̄|〉 corresponding to scaleβc2 should simply be multi-
plied by the factor exp(Nτ [A(ac1)/Tc −A(ac2)/Tc]) and then the date will lie on a universal curve.
This is exhibited in Figure 4 forall the four scales. It is worth noting that the same universal order
parameter results inboth below and aboveTc by fixing only three constants for the four scales ex-
hibited. The entire low and high temperature region of the order parameter is uniquely fixed, and
appears to be universal.

From the Figure 4, it appears as though the approach of〈|L̄|〉 to unity is slow and from below.
It is, however, known since long [17] that perturbation theory predictsL → 1 from above at very
large T : L = 1+C3g3 +O(g4), wherec3(Nc) > 0 is a constant. The solution to this apparent
paradox can be traced to the usual fact that a renormalized quantity depends on the scale chosen
to define the scheme for renormalization. In my case, the inclusion of a constant free energy
A(ac)/Tc for the chosen scaleac defines the choice. The details of the shape of the physical order
parameter are therefore scale-dependent in the plasma phase but it is universal none the less once
a choice is made. Moreover, any further change of scale leadsto a computable change in the
shape. Indeed, in order to mimic the perturbative renormalization scheme I estimated the point-
divergent contribution. At the highest temperature 2Tc, I fitted the results for the four scales to
− ln〈|L̄ j|〉 = F(2Tc)/2Tc +B ·Nτ j/2. Having thus determined the coefficientB of the would-be
divergent contribution at the scaleTc4, I eliminated theB-dependent contribution at that scale. The
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renormalizedL̄ at the other three scales were related to it by the same shiftsas before. Figure 5
displays the resultant〈|L̄|〉. It crosses unity at about 1.5Tc. Since all the multiplying factors tend
to unity at largeT , the approach of this̄L to unity is from above at largeT . Note also that large
spatial volumes, aspect ratio of∼ 10, are needed for thisL ≃ 0 in the lowT phase.

3. Summary

In conclusion, I showed that the fixed scale approach leads toa natural definition of a physical,
Nτ -independent, order parameter which is defined in both the confined and the deconfined phases.
The definition itself does not depend on any lattice artifacts or the lattice size in the deconfined
phase , and works very well for even coarse lattices (a ≤ 1/4Tc). Moreover, it displays the ex-
pected behaviour in the confined phase as the physical volumeis increased, suggesting that the so
determined physical free energy of a single quark in the confined phase,F , goes to infinity in the
infinite volume limit. Eliminating the point-divergent contribution leads to a high temperature be-
haviour consistent with perturbation theory. It is straightforward to generalize this idea toSU(Nc)

gauge theories and QCD as well as to sources in higher representations.
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