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ABSTRACT

Since the discovery of the first extra-solar planets, we are confronted with the

puzzling diversity of planetary systems. Processes like planet radial migration in gas-

disks and planetary orbital instabilities, often invoked to explain the exotic orbits of

the extra-solar planets, at first sight do not seem to have played a role in our system.

In reality, though, there are several aspects in the structure of our Solar System that

cannot be explained in the classic scenario of in-situ formation and smooth evolution

of the giant planets. This paper describes a new view of the evolution of the outer Solar

System that emerges from the so-called ’Nice model’ and its recent extensions. The

story provided by this model describes a very “dynamical” Solar System, with giant

planets affected by both radial migrations and a temporary orbital instability. Thus,

the diversity between our system and those found so far around other stars does not

seem to be due to different processes that operated here and elsewhere, but rather stems

from the strong sensitivity of chaotic evolutions to small differences in the initial and

environmental conditions.

In press in “C.R. Physique de l’Académie des Sciences”.

1. Introduction

When looking at the structure of the outer Solar System, i.e.the four giant planets and the

populations of small bodies from the orbit of Jupiter outwards, one sees several puzzling aspects

that do not fit the simple scenario of in-situ formation of planets from a circum-solar disk of gas
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and solids, developed over the last centuries from the ideasof Laplace (Laplace, 1796). Moreover,

our Solar System looks quite different from the planetary systems discovered so far around other

stars.

For instance: (i) many extra-solar giant planets have smallorbital radii, comparable (or

smaller) than those of the terrestrial planets of our Solar System (Mercury to Mars); instead,

our giant planets (Jupiter to Neptune) orbit the Sun at a distance of 5-30 times that of the Earth.

(ii) Giant planets are expected to form on circular and co-planar orbits; however, the orbital

eccentricities and inclinations of our giant planets, although small, are definitely much larger

than expected from formation models; the orbits of the majority of the extra-solar giant planets

are even more at odds with the theoretical expectations, because they are much more eccentric

than the orbits of the planets of our system. (iii) Many extra-solar systems have planets in mutual

mean motion resonances, where the ratio of the orbital periods is equal to a ratio of small integer

numbers (often 1/2); but the orbits of the planets of our system do not have thisproperty. (iv)

One would expect to find, beyond the orbit of the last planet, adisk of small icy objects, called

planetesimals, that preserves its original, virgin structure: quasi-circular and coplanar orbits and a

cumulatively large total mass; instead the Kuiper belt (thepopulation of icy bodies tha have been

found beyond the orbit of Neptune) is in total less massive than our Moon, it has an abrupt outer

edge at the location of the 1/2 resonance with Neptune and the eccentricities and inclinations

of its objects can be as large as allowed by stability constraints. (v) One would expect that the

Solar System evolved gradually, from a primordial chaos characterized by mutual collisions

and ejections of bodies, to the current state of essentiallyregular orbital motion; however, the

terrestrial planets, the asteroids and, possibly, the satellites of the giant planets, carry the scars of a

“Late Heavy Bombardment” (LHB), suddenly triggered 600 million years after planet formation,
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or approximately 3.9 Gy (Giga-year) ago. This argues for a sudden change in the structure of the

Solar System, so that a stable reservoir of small bodies became unstable and its objects started to

intersect those of the planets and collide with the latter.

The ’Nice model’ -so named because it was developed at the Observatoire de la Côte d’Azur

in Nice- has the ambition to explain all these and other intriguing features in the framework of

a unitary scenario. Several other models have been developed over the years to explain one or

another of the puzzling properties of our Solar System, but none has the comprehensive character

of the Nice model.

In this paper, I will review the basic ideas behind this model. In section 2, I will present the

original version of the model, as proposed in 2005. The modelhas vastly evolved since then, in

order to overcome its limitations and extend the time-span of the events that it can describe. I will

discuss these evolutions in Section 3. Section 4 will summarize the current view of Solar System

evolution that emerges from this model.

2. The original model

The original Nice model was developed to explain the origin of the small, but non-negligible

eccentricities and inclinations of the giant planets and the origin of the Late Heavy Bombardment

of the inner Solar System.

Like most models, the Nice model was based on pre-existing ideas. First, it was known

since Fernandez and Ip (1984) that, after the disappearanceof the gas, while scattering away

the primordial planetesimals from their neighboring regions, the giant planets had to migrate in
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semi-major axis as a consequence of angular momentum conservation. Given the configuration

of the giant planets in our Solar System, this migration should have had a general trend. Uranus

and Neptune have difficulty ejecting planetesimals onto hyperbolic orbits. Apart from the few

percent of planetesimals that they can permanently store inthe Oort cloud (the shell-like reservoir

of long-period comets, situated at about 104 Astronomical Units (AU) from the Sun; Dones et

al., 2004), or emplace onto long-lived orbits in the trans-Neptunian region (Duncan and Levison,

1997), the large majority of the planetesimals that are under the influence of Uranus and Neptune

are eventually scattered inwards, towards Saturn and Jupiter. Thus, Uranus and Neptune, by

reaction, have to move outwards. Jupiter, on the other hand,eventually ejects from the Solar

System almost all of the planetesimals that it encounters: thus it has to move inwards. The fate of

Saturn is more difficult to predict, a priori. However, modern numerical simulations show that this

planet also moves outwards, although only by a few tenths of an AU for reasonable disk’s masses

(e.g.∼ 50 Earth masses; see Hahn and Malhotra, 1999; Gomes et al., 04).

Second, it was known that planets embedded in a planetesimaldisk suffer “dynamical

friction” which damps their orbital eccentricities and inclinations (Wetherill and Stewart, 1993).

Thus, the planetesimal scattering process that leads to planet migration by itself cannot enhance

the eccentricities and inclinations of the planets relative to their (almost null) initial values

(Morbidelli et al., 2009). However, it was also known that, if the planets cross mutual mean

motion resonances during their divergent migration, theireccentricities are enhanced almost

impulsively (Chiang, 2003). The eccentricity increase depends on the planetary masses and on the

resonance involved. If the eccentricities become too large, then planets can become unstable.

Third, it was shown by Thommes et al. (1999) that the instability of the giant planets

system would not necessarily lead to the disruption of the outer Solar System. In several cases,
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Uranus and Neptune are scattered outwards by Jupiter and Saturn; then the interaction with the

disk of planetesimals can damp by dynamical friction the eccentricities of Uranus and Neptune,

preventing them to have further close encounters with Jupiter or Saturn and between themselves;

consequently, the 4-planet system can achieve a new stable configuration.

Last, Levison et al. (2001) showed that the dispersal of a planetesimal disk of∼ 50 Earth

masses by the migrating giant planets would induce a bombardment of the terrestrial planets

of magnitude comparable to that of the LHB; thus the problem of the origin of the LHB is

re-conduced to the problem of finding a plausible mechanism for triggering giant planet migration

at a correspondingly late time.1

Building on all these results, the Nice model postulated that, at the time of the dissipation

of the gas-disk, the four fully-grown giant planets were in acompact configuration, with

quasi-circular, coplanar orbits (as predicted by planet formation models) and with orbital radii

ranging from 5.5 to 17 AU; Saturn and Jupiter were close enough to each other to have a ratio of

orbital periods smaller than 2 (Tsiganis et al., 2005; the current ratio of their orbital periods is

almost 2.5). During their planetesimal-driven divergent migration, Saturn and Jupiter increased

their orbital period ratio. Thus, with the adopted initial conditions, Saturn and Jupiter eventually

crossed their mutual 1/2 mean-motion resonance (which occurs when the period ratiois exactly

2). This resonance enhances the eccentricities of Jupiter and Saturn, enough to make the whole

1It was proposed in Levison et al. (2001) that this mechanism was the late formation of Uranus

and Neptune, but a formation as late as 600 My is inconsistentwith the physical structure of these

planets (which contain hydrogen and helium in roughly solarproportion) and with their dynamics

during accretion (Levison et al., 2007).
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4-planet system unstable. The dynamics then evolves through mutual scattering among the

planets and dynamical friction exerted by the disk, as described above. Eventually a new stable

configuration is achieved once all disk particles are dispersed and removed. The simulations

in Tsiganis et al. (2005) show that, if the planetesimal diskcontained about 35 Earth masses

and was truncated at∼ 35 AU, this dynamical evolution leads to a final orbital configuration

of the planetary system that reproduces the current configuration remarkably well, in terms of

semi-major axes, eccentricities and inclinations (see Fig. 1).

With this result in hands, Gomes et al. (2005) could put all the elements together in a

coherent scenario for the LHB origin. They reasoned that, atthe end of the gas-disk phase, the

planetesimal disk should have contained only those bodies that had dynamical lifetimes longer

than the lifetime of the solar nebula (a few million years), because the planetesimals initially on

orbits with shorter dynamical lifetimes should have been eliminated earlier, during the nebula era.

Assuming the initial planetary system of Tsiganis et al. (2005), this constraints the planetesimal

disk to start about 1 AU beyond the position of the last planet. With this kind of disk, the 1/2

resonance crossing event that destabilizes the planetary system occurs in the simulations of Gomes

et al. (2005) at a time ranging from 192 My to 875 My. Modifyingthe initial planetary orbits also

leads to changes in the resonance crossing time, pushing it up to 1.1 Gy after the beginning of the

simulation. This range of instability times brackets well the date of the LHB, as estimated from

lunar data.

The top panel of Fig. 2 shows the giant planets’ evolution in arepresentative simulation of

Gomes et al. (2005). Initially, the giant planets migrated slowly due to the leakage of particles

from the disk. This phase lasted 875 My, at which point Jupiter and Saturn crossed their 1/2

resonance. At the resonance crossing event, as in Tsiganis et al. (2005), the orbits of the ice
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Fig. 1.— Comparison of the synthetic final planetary systemsobtained in Tsiganis et al. (2005)

with the real outer Solar System. Top: Proper eccentricity vs. semi-major axis. Bottom: Proper

inclination vs. semi-major axis. Here, proper eccentricities and inclinations are defined as the

maximum values acquired over a 2 My time-span and were computed from numerical integrations.

The inclinations are measured relative to Jupiters orbitalplane. The values for the real planets are

presented as filled blue dots. The red dots mark the mean of theproper values for 15 simulations.

The error bars represent one standard deviation of the measurements.
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Fig. 2.— Planetary migration and the corresponding mass fluxtowards the inner Solar System,

from a representative simulation of Gomes et al. (2005). Top: the evolution of the 4 giant planets.

Each planet is represented by a pair of curves - the aphelion and perihelion distances. In this

simulation Jupiter and Saturn cross their 1/2 mean-motion resonance at 880 My. Bottom: the

cumulative mass of comets (solid curve) and asteroids (dashed curve) accreted by the Moon. The

comet curve is offset so that the value is zero at the time of 1/2 resonance crossing.
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giants became unstable and they were scattered into the diskby Saturn. They disrupted the disk

and scattered objects all over the Solar System, including the inner regions. Eventually they

stabilized on orbits very similar to the current ones, at∼20 and∼30 AU respectively. The solid

curve in the bottom panel shows the amount of material from the primordial trans-Neptunian disk

that struck the Moon, as a function of time. The amount of material hitting the Moon after the

resonance crossing event is consistent with the mass (6× 1021g) estimated from the number and

size distribution of lunar basins that formed around the LHBepoch (Levison et al., 2001).

However, the planetesimals from the distant disk -which canbe identified as ‘comets’-

were not the only ones to hit the terrestrial planets. The radial migration of Jupiter and Saturn

forced secular resonances (resonances between the precession periods of the asteroids and of the

giant planets) to sweep across the asteroid belt, exciting the eccentricities and the inclinations of

asteroids. The fraction of the main belt population that acquired planet-crossing eccentricities

depends quite crucially on the orbital distribution that the belt had before the LHB, which is not

well known. According to the simulations in O’brien et al. (2007), at the end of the terrestrial

planet formation process, which pre-dates the LHB, the asteroid belt should have had a dynamical

excitation comparable, or slightly larger than the currentone. In these conditions of orbital

excitation, the secular resonance sweeping at the time of the LHB would have left∼5-10% of the

objects in the asteroid belt (Gomes et al., 2005). Thus, at the LHB time, the asteroid belt would

have been 10-20 times more massive than now. In this case, thetotal mass of the asteroids hitting

the Moon would have been comparable to that of the comets (seeFig. 2).
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2.1. Other successes of the Nice model

To validate or reject a model, it is important to look at the largest possible number of

constraints. Three populations immediately come to mind when considering the Nice model: the

Trojans and the satellites of the giant planets and the Kuiper belt. Are their existence and structure

consistent with the Nice scenario?

TROJANS

Jupiter and Neptune have a conspicuous populations of Trojan objects. These bodies, usually

referred to as ‘asteroids’, follow essentially the same orbit as the planet, but lead or trail that planet

by an angular distance of∼ 60 degrees, librating around the Lagrange triangular equilibrium

points. The latter are the two positions where a small object, affected only by the gravity of the

Sun and of one planet, can be stationary and stable relative to two larger objects; together with

the positions of the Sun and the planet, they form two equilateral triangles, rotating in space

(Lagrange, 1787).

To date, the number of known Jupiter Trojans is 4526. Probably all those larger than about

20km in diameter are now known; they are about 1,000 objects.Instead, only seven Trojan of

Neptune are now known, but detection statistics imply that the Neptune Trojan population could

be comparable in number to that of Jupiter, and possibly eventen times larger (Chiang and

Lithwick, 2005).

The simulations in Tsiganis et al. (2005) and Gomes et al. (2005) led to the capture of several

particles on long-lived Neptunian Trojan orbits (2 per run,on average, with a lifetime larger than

80 My). Their eccentricities, during their evolution as Trojans, reached values smaller than 0.1.
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These particles were eventually removed from the Trojan region, but this is probably an artifact of

the graininess of Neptune’s migration in the simulation, due to the quite large individual mass of

the planetesimals.

Jovian Trojans are a more subtle issue that was addressed in detail in Morbidelli et al.

(2005). There is a serious argument in the literature against the idea that Jupiter and Saturn

crossed their 1/2 mean-motion resonance: if the crossing had happened, any pre-existing Jovian

Trojans would have become violently unstable, and Jupiter’s co-orbital region would have emptied

(Gomes, 1998; Michtchenko et al., 2001). However, the dynamical evolution of a gravitating

system of objects is time reversible. Thus, if the original objects can escape the Trojan region

when it becomes unstable, other bodies can enter the same region and be temporarily trapped.

Consequently, a transient Trojan population can be createdif there is an external source of objects.

In the framework of the Nice model, the source consists of thevery bodies that are forcing the

planets to migrate, which must be a large population given how far the planets must migrate.

When Jupiter and Saturn move far enough from the 1/2 resonance that the co-orbital region

becomes stable, the population that happens to be there at that time remains trapped. It then

becomes the population of permanent Jovian Trojans still observable today.

This possibility has been tested with numerical simulations in Morbidelli et al. (2005). It

was shown that the population of captured Trojans is consistent, in terms of total mass and orbital

distribution, with the real population. In particular, theNice model is the only model proposed so

far which explains the inclination distribution of the Jovian Trojans. The origin of this distribution

was considered to be the hardest problem in the framework of the classical scenario, according to

which the Trojans formed locally and were captured at the time of Jupiter’s growth (Marzari et al.,

2002).
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IRREGULAR SATELLITES

The known irregular satellites of the giant planets are dormant comet-like objects that reside

on stable prograde and retrograde orbits at large distancesfrom the central object, where planetary

perturbations are only slightly larger than solar ones.

One particularity of the irregular satellite systems is that, once the orbital radii are scaled

relative to the radius of the sphere of gravitational influence of the respective planets, they are

all very similar to each other (Jewitt and Sheppard, 2002). This invalidates the most popular

models proposed for their origin, i.e. (i) capture due to thesudden growth of the giant planets

(Heppenheimer and Porco, 1977) and (ii) capture due to gas drag in the primordial extended

atmosphere of the giant planets (Cuk and Burns, 2004; Kortenkamp, 2005). In fact, Jupiter and

Saturn are very different from Uranus and Neptune: presumably the former grew much faster and

had much more gas in their extended atmospheres than the latter, which are essentially gas-poor,

ice-giant planets. Thus, one would expect that both processes (i) and (ii) would have led to

substantially different irregular satellite systems for these two pairs of planets.

The capture of irregular satellites in the framework of the Nice model has been investigated

in details in Nesvorny et al. (2007). A characteristic feature of the Nice model is that, at the

instability time, the giant planets suffered mutual close encounters. It was proposed in Nesvorny

et al. (2007) that planetesimals wandering in the vicinity of the sites of such encounters could

become trapped onto permanent orbits around the planets viagravitational three-body reactions.

Numerical simulations showed that this process is effective, and leads to orbital distributions of

satellites very similar to those observed around each planet. Moreover, assuming that the mass of

the planetesimal disk was as in the Nice model and that the planetesimals had a size distribution
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similar to today’s Kuiper belt, the capture efficiencies predict quite correctly the sizes of the

largest irregular satellites around each planet. The current size distribution of irregular satellites,

which is much shallower than that of the Kuiper belt, is then explained by their post-capture

intense collisional evolution (Bottke et al., 2010).

From the results in Nesvorny et al. (2007), the capture of theirregular satellites of

Saturn, Uranus and Neptune is a generic process because these planets experience planet-planet

encounters in all the successful simulations of the Nice model. Instead, the capture of the satellites

of Jupiter is not generic, because in most realization of theNice model Jupiter does not encounter

another planet. Only some of the successful simulations of the Nice model have Jupiter-Uranus or

Jupiter-Neptune encounters. The fact that Jupiter has an irregular satellite system like that of the

other planets argues that such encounters did happen in reality.

This conclusion is supported by the investigation of the orbital evolution of the terrestrial

planets (Brasser et al., 2009) and of the asteroid belt (Morbidelli et al., 2010). These studies

show that, in absence of encounters between Jupiter and another planet, the orbital separation

between Jupiter and Saturn would have increased slowly and,consequently, the orbits of the

terrestrial planets would have acquired too large eccentricities and the final orbital distribution

in the asteroid belt would have become inconsistent with that observed. Instead, if Jupiter had

had an encounter with an ice giant, the orbital separation between Jupiter and Saturn would

have increased impulsively; this would have allowed the terrestrial planets to stay on moderate

eccentricity orbits and the asteroid belt to avoid the formation of spurious empty regions within its

boundaries.

THE KUIPER BELT
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In the Nice model, the proto-planetary disk is assumed do have an outer edge at about 35 AU,

otherwise Neptune ends its migration too far from its current orbital position. Proto-planetary

disks often have sharp outer edges, as inferred from the radial distribution of dust in debris disks

(the disk of AU Mic, for instance, is inferred to have an outeredge at 30 AU; Augereau andBeust,

2006). These edges might have been formed by several mechanisms, such as tidal truncation

during early close stellar flybys (Kenyon an Bromley, 2004),photo-evaporation of the outer part

of the proto-planetary disk (Adams et al., 2004), ineffective planetesimal accretion where the

solid/gas ratio is too low (Youdin and Goodman, 2005). Thus, it is reasonable to assume that the

planetesimal disk of the Solar System had an outer edge, but the assumption that this edge was

at 35 AU seems to be in conflict with the existence of a Kuiper belt between 35 and 50 AU. If

the Nice model is correct, then there must be a mechanism to fill with objects an initially empty

Kuiper belt.

Such mechanism was identified by Levison et al. (2008) with the temporary large eccentricity

phase of Neptune at the time of the planetary instability. The point is that, when Neptune’s

orbit is eccentric, the full (a, e) region up to the location of the 1/2 resonance with the planet is

chaotic. Thus, we can envision the following scenario. Assume, in agreement with several of

the simulations of the Nice model, that the large eccentricity phase of Neptune is achieved when

the planet has a semi-major axis of∼ 28 AU, after its last encounter with Uranus. In this case,

a large portion of the current Kuiper belt is already interior to the location of the 1/2 resonance

with Neptune. Thus, it is unstable, and can be invaded by objects coming from within the outer

boundary of the disk (i.e. within∼ 35 AU). When the eccentricity of Neptune damps out, the

mechanism for the onset of chaos in the Kuiper belt region disappears. The Kuiper belt becomes

stable, and the objects that happen to be there at that time remain trapped for the eternity.
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The simulations of Levison et al. (2008) successfully implanted a small fraction

(approximately 1/1000) of the disk’s planetesimals into the current Kuiper belt. This explains

the low mass of the observed Kuiper belt population. The major success of the simulations is

to reproduce the current sharp outer edge of the Kuiper belt,located at the position of the 1/2

resonance with Neptune. This is the first, and so far only model, capable of explaining this

characteristic of the belt. The observed orbital distribution in the Kuiper belt is also fairly well

reproduced in the simulations, although the match is not perfect. For instance, there is a deficit in

the synthetic population above 20 degrees of inclination.

3. The new Nice model

Despite of its successes, the original Nice model has some important weaknesses. The most

important one is that the initial orbits of the giant planetsare totally arbitrary. The assumption

of small eccentricities and inclinations is reasonable, asthis is expected from planet formation

models, but the original orbital semi major axes are totallymade up. In particular, Saturn and

Jupiter are set initially on orbits close to their mutual 1/2 resonance. The initial distance from this

resonance is more or less tuned so to have an instability around the LHB time. Had this distance

been larger, the planets would have not reached the resonance and would not have become

unstable; had this distance been smaller, the resonance crossing would have occurred too early.

Clearly, there is the need to justify better the initial orbits of the planets. The initial conditions

of the Nice model should correspond to the orbital structurethat the Solar System had when it

emerged from the gas-disk phase. Thus, the best way to set a valid initial orbital configuration of

the planets is to study the dynamical evolution that said planets should have had when they were
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still embedded in the gas.

3.1. The dynamics of the giant planets in a gas-disk

The gravitational interaction of planets with a disk of gas leads to the orbital migration of the

former, on a timescale and a radial range respectively much shorter and much wider than those

characterizing the migration induced by the interaction with the planetesimals in a gas-less disk.

The gas-driven migration is named “Type-I” for medium-massplanets like Uranus and Neptune

that do not open a gap in the gas-disk around their orbits; it is named “Type-II” for giant planets

like Jupiter and Saturn that do open at least partial gaps. Both migrations generically force the

planetary orbits to shrink. The discovery of a large number of extra-solar giant planets on orbits

with small radii (less than 1 AU; even less than 0.1 AU in the case of the so-called “Hot Jupiters”)

is an empirical demonstration that radial migration occursin real nature.

As stated in the introduction of this paper, whoever studiesplanet migration in gas-disks is

confronted with crucial questions: why is Jupiter at 5 AU? Why did Jupiter not migrate closer to

the Sun, unlike most of the known extra-solar planets?

The answer relies on the co-existence of Jupiter and Saturn,with their specific 3:1 mass

ratio. In fact, as first showed in Masset and Snellgrove (2001) with hydro-dynamical simulations,

Saturn migrates inwards faster than Jupiter and consequently it approaches the major planet until

it is trapped in its 2/3 mean motion resonance (where the orbital period of Jupiteris 2/3 that of

Saturn; see Fig 3). More recently, it has been shown (Pierensand Nelson, 2008) that the capture

of a Saturn-like planet into the 2/3 resonance with a Jupiter-like planet is a very robust outcome of

simulations, independent of initial conditions and of the mass-growth history of the outer planet.
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Fig. 3.— An illustration of the dynamical evolution of Jupiter and Saturn in the gas-disk, as in Masset

and Snellgrove (2001). The black and grey curves show the evolutions of the semi major axes of Jupiter

and Saturn, respectively. Capture in the 2/3 mean motion resonance occurs when the migration of Saturn is

reversed.

Once in 2/3 resonance configuration, the planets cease migrating inwards. It was shown in

Morbidelli and Crida (2007) that the subsequent orbital evolution depends on the properties of the

disk, particularly the scale height. In general, both planets migrate outwards together, on a short

timescale. However, if the disk is very thick, the migrationrate is very slow, as in Fig 3. For some

appropriate disk thickness there is essentially no migration. 2

The presence of asteroids inside of Jupiter’s orbit suggests at first sight that Jupiter never

2Notice that, for two giant planets to avoid inward migrationby this mechanism, it is essential

that the mass of the outer planet is a fraction of the mass of the inner planet, as in the Jupiter-Saturn

case (Masset and Snellgrove, 2001; Morbidelli and Crida, 2007). Planets of comparable masses or

with a reversed mass ratio do migrate towards the central star also after resonance trapping.
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came closer to the Sun than its present position. Thus the parameters of the circum-solar disk

should have been close to those resulting in a non-migratingevolution of the Jupiter-Saturn

pair after their trapping in resonance. However, it has beenproposed (Walsh et al., 2010) that

Jupiter migrated down to 1.5 AU before Saturn formed and was captured in resonance; when

this occurred, the two planets reversed migration and Jupiter reached 5.4 AU when the gas-disk

disappeared. It has been argued that this kind of evolution would explain the properties of the

terrestrial planets -in particular the large Earth/Mars mass ratio- and of the asteroid belt -in

particular the dichotomy of physical properties of inner belt vs. outer belt asteroids- better than

any other existing model. In either case, the 2/3 resonance configuration of Saturn and Jupiter

explains why Jupiter did not come to, or did not stay at, a small distance from the Sun.

The presence of the two major planets in a configuration characterized by no inward

migration must have strongly influenced the dynamics of Uranus and Neptune and may even

have played a role in their accretion. In fact, any sizeable proto-planet formed in the outer disk

should have migrated inwards by Type I migration, until being trapped in some resonance with

Saturn, or at the outer edge of its gap (Pierens and Nelson, 2008). The accumulation of embryos

at specific sites outside the orbit of Saturn may have boostedthe accretion of the cores of Uranus

and Neptune. This phase, however, has never been modeled in details.

A search for possible orbital configurations of Uranus and Neptune relative to Jupiter and

Saturn was done in Morbidelli et al. (2007), with a step-wiseapproach. First Jupiter and Saturn

were set in a 2/3 resonant, non-migrating orbital configuration. Then several hydro-dynamical

simulations were done, placing Uranus at various orbital separations from Saturn and assuming

a disk density close to the so-called “Minimum Mass Solar Nebula” (Weidenschilling, 1977).

It was observed that Uranus migrated too fast to be trapped inthe 1/2 resonance with Saturn.
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Conversely it could be trapped, depending on the initial conditions, in the 2/3 or 3/4 resonances.

Configurations with Uranus closer to Saturn than the 3/4 resonance turned out to be unstable,

with Uranus chased outwards by a distant encounter with Saturn, and eventually trapped in one of

the two resonances listed above. Finally, for each of the twofinal stable configurations achieved

by Uranus, a second set of hydro-dynamical simulations was done placing Neptune at various

initial orbital separations from Uranus. It was observed that Neptune migrated too fast to be

trapped in either the 1/2 or 2/3 resonances with Uranus. Instead, it could be trapped, depending on

initial conditions, into the 3/4, 4/5 or 5/6 resonances. Thus, in total 6 orbital configurations could

be found, in which all planets are in resonance with each other. Other possible multi-resonant

configurations of the giant planets have been found by Batygin and Brown (2010) using N-body

integrations with forces that mimic Type-I migration of Uranus and Neptune.

3.2. The dynamics of the giant planets after the gas-disk removal

Many of the multi-resonant configurations described above are stable on Gy timescale once

the gas-disk is removed. However, if there is a remnant planetesimal disk, the planet-planetesimals

interactions perturb the orbits of the planets, and eventually may extract the planets from their

mutual resonances. Resonances have a strong stabilizing effect for close orbits (a clear example

is that of Pluto which, despite it crosses the orbit of Neptune, is stable because it is in its 2/3

resonance). Once the planets are extracted from their mutual resonances, this stabilizing effect

ends. The planets rapidly become unstable, because they aretoo close to each other. A phase

of mutual scattering starts, similar to that described in the original Nice-model paper (Tsiganis

et al., 2005; Gomes et al., 2005). The simulations in Morbidelli et al. (2007) and Batygin and
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Brown (2010) show that the final orbits that the planets achieve once the planetesimal disk is

dispersed are often similar to the real ones. This shows thatthe multi-resonant configuration,

which the giant planets should have been driven into during the gas-disk phase, can be consistent

with the current orbital architecture of the planets, provided that the latter passed through a global

instability phase.

Could this instability occur late, as in the original Nice model (Gomes et al., 2005), so to

explain the origin of the LHB? A delayed instability can not be simply obtained by assuming

that the planetesimal disk starts approximately 1 AU beyondthe orbit of the furthermost planet,

as in Gomes et al. (2005). In fact, the planets are now in resonances with each other, and the

combination of resonance locking among the planets with theplanet-planetesimal scattering

process makes the instability time much more sensitive to the exact location of the disk’s inner

edge than in Gomes et al. (2005). Such an extreme sensitivityto the disk’s parameters is, of

course, problematic.

This problem, however, appears only in simulations which, like all those of the papers quoted

above, assume that the planetesimals do not interact dynamically with each other. Instead, if

self-interactions are taken into account, for instance assuming that there are a few 100s Pluto-mass

objects in the disk perturbing each other and the other particles, then there is a net exchange

of angular momentum between the planets and the disk, even ifthere are no close encounters

between planets and planetesimals. In particular, the planets loose energy and momentum, i.e.

they try to migrate towards the Sun (Levison et al., 2011). The orbits of the planets tend to

approacheach other. This is different from the case where planets scatter planetesimals, inwhich

the planetary orbits tend toseparatefrom each other. Remember, though, that the planets are in

resonances; so the ratios between their semi major axes cannot change. In response, the planetary
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eccentricities slowlyincrease. This eventually drives some planets to pass through secondary

or secular resonances, which destabilize the original multi-resonant configuration. Due to this

process, the instability time is late in general: in the simulations of Levison et al. (2011) it occurs

at a time ranging from 350 My to over 1 Gy for disks with inner edge ranging from 15.5 to 20 AU

(Neptune is at∼ 11.5 AU in these simulations), with no apparent correlation between instability

time and initial location of the inner edge of the disk.

Together, the papers by Morbidelli et al. (2007) and Levisonet al. (2011) build the new

version of the “Nice model”. This is much superior than its original version (Tsiganis et al., 2005;

Gomes et al., 2005) because (i) it removes the arbitrary character of the initial conditions of the

planets by adopting as initial configuration one of the end-states of hydro-dynamical simulations

and (ii) it removes the sensitive dependence of the instability time on the location of the inner

edge of the disk; instead, a late instability seems to be a generic outcome.

4. Conclusions

According to our new understanding the evolution of the Solar System was characterized by

three main “eras”: In thegas-disk era, the giant planets acquired a multi-resonant configuration,

in which each planet was in a mean-motion resonance with its neighbor. Given the Jupiter/Saturn

mass-ratio, this prevented further inward migration, and explains why Jupiter was not closer than

5 AU from the Sun at the disappearance of the gas. It is possible that the giant planets had an

inward-then-outward migration, bringing Jupiter temporarily at ∼ 1.5 AU (Walsh et al., 2010). At

the disappearance of the gas, the system entered in theplanetesimal-disk era. The orbits of the

giant planets were at the time much closer to each other than they are now, and had significantly
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smaller eccentricities and inclinations. A massive disk ofplanetesimals persisted outside the orbit

of the outermost giant planet. The gravitational interactions between the giant planets and this

disk, slowly modified the resonant orbit of the former. Eventually, ∼ 600 My later, the giant

planets became unstable, as a result of these slow orbital modifications. The chaotic phase that

followed reshuffled the structure of the outer Solar System: the giant planetsacquired their current

orbits; most of the distant planetesimal disk was dispersed, causing the Late Heavy Bombardment

of the terrestrial planets; a small fraction of the distant planetesimals got stranded in what we

call today the Kuiper belt. With this profound re-organization, the Solar System entered into the

current era, lasting since∼ 3.8 Gy ago, in which it did not suffer any further significant change.

This is a radically different view with respect to the one that was consensual even just 10

years ago. However, it has a level of internal coherence and aconsistency with the observed

structure of the Solar System that have never been achieved before. This model describes a Solar

System evolving under the same two main processes usually invoked to explain the structure of

extra-solar planetary systems: radial migration in the gas-disk and global orbital instability. In

fact, the simulations of the new Nice model, when they fail toreproduce our own system, often

lead to planetary systems similar to some of those observed around other stars, with very eccentric

planets or planets that remain in resonance forever. Thus, the great diversity among planetary

systems seems to stem not from a diversity of processes, but from the diversity of outcomes

under the same processes. This is due to the extreme sensitivity of the evolution to the initial and

environmental conditions.

Nevertheless, the Nice story is not complete yet. It needs tobe complemented with a model

of the accretion of the giant planets that is consistent withtheir inferred dynamical evolution,

which still does not exist.
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