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ABSTRACT

Photometric data from the literature is combined with triaxial mass models to de-
rive variation in the intrinsic shapes of the light distribution of elliptical galaxies
NGC720, 2768 and 3605. The inferred shape variation in given by a Bayesian prob-
ability distribution, assuming a uniform prior. The likelihood of obtaining the data
is calculated by using ensemble of triaxial models. We apply the method to infer the
shape variation of a galaxy, using the ellipticities and the difference in the position
angles at two suitably chosen points from the profiles of the photometric data. Best
constrained shape parameters are found to be the short to long axial ratios at small
and large radii, and the absolute values of the triaxiallity difference between these
radii.

The elliptical galaxies of our present investigation are very flat, with ellipticity
typically around 0.3 or more. We find that the expectation values of the short to long
axial ratio of these galaxies are around 0.5.

Key words: galaxies : photometry - galaxies : structure

1 INTRODUCTION

Intrinsic shapes of the individual elliptical galaxies have
been investigated by Binney (1985), Tenjes et al. (1993),
Statler (1994a,b), Bak and Statler (2000), Statler (2001),
and Statler et al. (2004). These authors have used the kine-
matical data and the photometric data, and have used the
triaxial models with the density distribution ρ(m2), where
m2 = x2 + y2/p2 + z2/q2 with axial ratios p and q. Here,
(x, y, z) are the usual Cartesian co-ordinates, oriented such
that x-axis (z-axis) lies along the longest (the shortest) axis
of the model. It was shown analytically that the projected
density of such a distribution ρ(m2) with constant (p, q)
is stratified on similar and co-aligned ellipses (Stark 1977;
Binney 1985). Statler (1994a) uses (apart from the kinemat-
ical data) a constant value of ellipticity, which is an average
over a suitably chosen range of radial distance, for the shape
estimates. The shape estimates are robust, and are described
by a pair of the shape parameters, namely the short to long
axial ratio cL of the light distribution and the triaxiality TM

of the mass distribution.
A complementary problem was attempted by

(Chakraborty et al. 2008, hereafter C08), wherein variation
in the intrinsic shapes of the light distribution of ellip-
tical galaxies was investigated by using triaxial models,
which exhibit ellipticity variation and position angle twist.
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These models are fixed by assigning the values of axial
ratios (p0, q0) and (p∞, q∞) at small and at large radii,
respectively. These axial ratios are related to triaxialities
T0 and T∞, respectively, at small and large radii. We use
Bayesian statistics, and obtain the variation in the shape,
following the methodology described in Statler (1994a).
We find that the marginal posterior density (MPD) is
likelihood dominated, so that it relatively insensitive to the
unknown prior density. We use a flat prior. We use a large
ensemble of models, so that the shape estimates may be
model independent.

The basic ingredients of our method are the same as in
Statler (1994a), and we adopt all the necessary alterations
described in C08. We use (q0, T0, q∞, T∞) as the shape pa-
rameters and use the ellipticities ǫin, ǫout and the position
angle difference Θout − Θin at two suitably chosen points
Rin and Rout from the profiles of the photometric data of
the galaxies. We find that the best constrained shape pa-
rameters are q0, q∞ and the absolute value of the triaxiality
difference Td, defined as |Td| = |T∞ − T0|.

C08 have estimated the shapes of 10 elliptical galaxies
which are comparatively rounder, with ellipticities 6 0.3.
We now investigate shapes of three more galaxies, namely
NGC720, 2768 and 3605. These are very flat galaxies with
ellipticity around 0.3 or more. We find that the expectation
values of the short to long axial ratio of these galaxies are
around 0.5. We use triaxial models which are very flat. We
take models with the lower limit of (q0, q∞) ∼ 0.3 for our
shape investigation. We find that a class of very flat triaxial
models develops several undesirable features (sect. 2 and
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Appendix A), and are not employed in the present shape
estimates.

Determination of the intrinsic shape using photometry
is important because the number of galaxies with good pho-
tometric is many more than those with good kinematics.
Besides, the results obtained by alternative models and tech-
niques can be used for a comparison. Photometry constrains
the flattening (q0, q∞) but can not constrain (T0, T∞). Thus,
our work is complementary and not contradictory to that of
Statler and his coworkers.

Sect. 2 presents the models. The necessity for the choice
of small values of the lower limits of (q0, q∞), and the intrin-
sic shapes of the galaxies are presented in sect. 3. Sect. 4 is
devoted to results and a discussion.

2 MODEL

We use models, which are triaxial generalizations of the
spherical γ models of Dehnen (1993), with density ρ given
by

ρ(r) =
M0(3− γ)b

4π
r−γ(b+ r)−4+γ , (1)

whereM0 is the mass of the model, r is the radial coordinate,
0 6 γ < 3 and b is the scale length. The models have cusp at
the centre, and the density decreases as r−4 at large radii.
Dehnen’s models are the generalization of the well studied
models of Jaffe (1983) and Hernquist (1990), corresponding
to γ = 2 and γ = 1, respectively. The projected surface den-
sity of the model of Dehnen, corresponding to γ = 1.5, most
closely resembles to the de Vaucouleurs R1/4 law. Presently,
we concentrate to γ = 1.5 models only.

A triaxial generalization of (1) is presented in
Chakraborty (2004), which is modified in C08. The model
is the density distribution of the same form as (1) with r
replaced by M , where

M2 = x2 +
y2

P 2
+

z2

Q2
, (2)

with varying axial ratios

P−2(M) =
βb2p−2

0 +M2p−2
∞

βb2 +M2
, (3)

and

Q−2(M) =
βb2q−2

0 +M2q−2
∞

βb2 +M2
. (4)

The axial ratios (P,Q) reduce to (p0, q0) at small radii and
to (p∞, q∞) at large radii. β > 0 is a parameter, which
for a choice of (p0, q0, p∞, q∞) alters P and Q in the inter-
mediate region. The models are fixed, once the axial ratios
(p0, q0, p∞, q∞) are chosen. The triaxialities T0 and T∞ are
related to the axial ratios at small and at large radii by

T0 =
1− p20
1− q20

. T∞ =
1− p2

∞

1− q2∞
. (5)

To fix up the scale length b of the triaxial models, we con-
sider γ = 1.5 and use the value of the effective radius
Re = 1.28b of the spherical model. The effective radius of
the triaxial models depends on the axial ratios, as well as
on the viewing angles. However, such changes are small for
γ models (de Zeeuw and Carollo 1996), and are neglected.

The constant ρ surfaces are coaxial ellipsoids. Projec-
tion of these models on a plane perpendicular to a line of
sight, and therefore, the calculation of ellipticity and po-
sition angle are performed numerically. We refer to these
models as M2 models.

Another form of triaxial generalization of (1) is inves-
tigated by de Zeeuw and Carollo (1996), where two more
terms are added to equation (1), each one of these is a suit-
able radial function multiplied by spherical harmonics of low
order. The models provide simple analytical representation
of the observed surface brightness of triaxial elliptical galax-
ies. However, for large values of flattening models become
peanut shaped and are not used in the present investiga-
tion. Very flat de Zeeuw - Carollo models are discussed in
Appendix A.

3 INTRINSIC SHAPES

The galaxies chosen here are very flat. The morphological
classification of NGC720, 2768 and 3605 are E5/E3, E6/E5
and E4/E5 respectively, from RC2 (de Vaucouleurs et al.
1976) catalogue. The apparent flattening of a elliptical
galaxy depends on the intrinsic flattening and the orien-
tation. Further, the marginal posterior density (MPD) P
of the Bayesian estimate is obtained by integrating the pos-
terior density over all viewing angles. To gain some insight
into the possible values of the intrinsic shape, which will
be obtained by Bayesian method, we perform the following
numerical experiments. The objective of these experiments
is to find suitable limits of the axial ratios (q0, q∞) for the
plots of P . In the plots of P in C08, q0 and q∞ extend from
0.5 to 1.0. Statler (1994a) chooses 0.4 6 cL 6 1.0.

Fig. 1 shows the plot between the number N of viewing
angles (θ

′

, φ
′

) and the axial ratio q which gives ellipticity
0.50 6 ǫ 6 0.55 (plot 1A) and 0.07 6 ǫ 6 0.17 (plot 1B).
The number of viewing angles is counted between 0o.0 and
90o.0 at the interval of 1o.0, both for θ

′

and φ
′

. The total
number of viewing angles in this numerical experiment is
8100. The axial ratio p is taken as 0.9. Here, we use Stark
model. We find that a higher values of ellipticity is produced
by flatter models and a lower values of ellipticity is produced
by rounder models, over a larger number of viewing angles.
Therefore, the Bayesian estimate should pick up a flat model
to represent shape of the galaxies of our present investiga-
tion. It is interesting to note that the plots (1A&1B) show
a maxima, which lies at q ∼ 0.44 for the plot 1A and at
q ∼ 0.82 for the plot 1B

The fig. 1 and its inferences are based on applying Stark
model, which has constant values of the axial ratio (p, q).
However, in our shape estimates, we use models with varying
axial ratios. So, we re-examine the results of these plots by
considering M2 models.

Fig. 2 presents the marginal posterior density P as a
function of (q0, q∞), summed over various values of (T0, T∞)
for NGC720. We use the observational data, as shown in
Table 1. We choose the values of both q0 and q∞ from the
region 0.1 6 (q0, q∞) 6 0.9. We use the M2 models with
β = 1.0. The probability of the shape is plotted in dark grey
shade : darker is the shade, higher is the probability. The
white contour encloses the region of 68% highest posterior
density (HPD), which may be interpreted as 1σ error bar.
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Figure 1. Plot between the number of viewing angles and the
axial ratio q, which would reproduce ellipticity in a chosen inter-
val. Figure 1A is drawn for the ellipticity 0.50 6 ǫ 6 0.55 while
1B is drawn for the ellipticity 0.07 6 ǫ 6 0.17.

This figure indicates that higher probability region is con-
fined, approximately between 0.3 to 0.8 of (q0, q∞). Hence, it
is more appropriate to choose the lower and the upper limits
of both q0 and q∞ as 0.3 and 0.8 for the shape estimates of
very flat galaxies. This is discussed further, in sect. 3.1.

For the same choice of the values of (q0, q∞), fig. 3
shows shape P(q0, q∞) of a rounder galaxy NGC3379. We
use the observational data ǫin = 0.078, ǫout = 0.133 at
Rin = 15

′′

.7 and Rout = 49
′′

.3. The effective radius Re of
NGC3379 is 37

′′

.5. We find that theHPD region is confined
between(q0, q∞) > 0.4 and the highest values of (q0, q∞) al-
lowed in this plot.

Figure 2. Plot of marginal posterior density (P) as a function
of q0, q∞(= q), summed over various values of (T0, T∞), for NGC
720 using the limits 0.1 to 0.9, both for q0 and q∞.

Figure 3. Same as Fig 2, for NGC 3379.

3.1 NGC720

The observed data of NGC720, is taken from R-band sur-
face photometry of Peletier et al. (1990). The ellipticity ǫ
increases monotonically from 0.315 at Rin = 8.5 arcsec to
0.442 at Rout = 51.8 arcsec. In this range, the position angle
decreases by 3o.5. We consider the uncertainty in the ellip-
ticity as 0.02 and in the position angle is 1o.0, both at Rin

and at Rout. These are the typical errors in observations
(de Carvalho et al. 1991; Penereiro et al. 1994). The effec-
tive radius of the galaxy is 52.0 arcsec. We use the ensemble
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Figure 4. Plot of unweighted sum of MPD (P) as a function
of q0, q∞(= q), for NGC 720 using the limits 0.5 to 1.0 both
for q0 and q∞. The sum is taken over the M2 models with β =
5.0, 2.5, 1.0, 0.5 and 0.2. Plus marks the location of the maximum
probability.

Figure 5. Same as Fig 4, for NGC 720 using the limits 0.3 to
0.8, both for q0 and q∞.

of models, as described in sect. 2, with β = 5.0, 2.5, 1.0, 0.5
and 0.2. Taking the sum of the marginal posterior density
over all possible values of T0 and T∞, and taking the un-
weighted sum over all the models, we obtain shape estimate
P as a function of (q0, q∞).

Fig. 4 presents the shape estimate P (q0, q∞) of
NGC720, wherein we have allowed the limits 0.5 to 1.0 both
for q0 and q∞. We find that the 1σ region is very narrow

Figure 6. Three dimensional plot of the unweighted sum of MPD
(P) as a function of q0, q∞, |Td|, for NGC 720. The sum is taken
over the M2 models with β = 5.0, 2.5, 1.0, 0.5 and 0.2. Values of
|Td| are constant in each section. In each section, q0 goes from the
left to right hand side from 0.25 to 0.75, and q∞ runs between

the same values from the bottom to the top.

which should be the consequence of the choice of the limits
of q0 and q∞. Examining this limit in fig. 1, we find that this
choice falls in the region where high values of the ellipticity
will not be reproduced. Therefore, we need to go to smaller
values of (q0, q∞) to obtain higher ellipticities, which may
be close to observed ellipticities of NGC720.

Fig. 5 presents shape P (q0, q∞) wherein we have al-
lowed the limits 0.3 and 0.8 for q0 and q∞. 1σ region is
wider now (but narrow enough to satisfy the requirement
of the likelihood dominated shape estimate). Although, it
is the plot of MPD (P) as a function of shape parameters,
which constitute the Bayesian estimate of the shape, some
statistical summary of the shape is very convenient for its
description. The expectation values < q0 >,< q∞ > and lo-
cation of the peak values q0P , q∞P are such quantities. Table
2 provides such a summary. The expectation values of the
flattening at small and at large radii are < q0 >= 0.64 and
< q∞ >= 0.43, respectively.

Both in fig. 4 and 5, we choose the interval between
higher and lower limits of (q0, q∞) as 0.5. This is basically
to save the computer time, but maintaining the reliability
of the results. Shape calculation requires a very large num-
ber of projections, which need to be calculated numerically.
We divide the parameter space of (q0, q∞) in 48× 48 square
bins of equal size and calculate the likelihood at the centre
of each bin. The bin size is small enough, so that the calcu-
lated likelihood can be regarded as a continuum function of
(q0, q∞), and at the same time, the number of bins is small
enough, so that the computer time is not unmanageable.

Fig. 6 shows the 3-dimensional intrinsic shape of
NGC720 as a function of q0, q∞ and |Td|. We cut a total
of 16 sections, each perpendicular to |Td| axis, and arrange
these sections in a form of a two-dimensional array. The
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Table 1. Observational data of the galaxies.

Galaxy Re Rin Rout ǫin ǫout Θd

NGC 720 52.0 8.5 51.8 0.315 0.442 -3.5
NGC 2768 76.5 15.8 95.4 0.364 0.569 -1.4
NGC 3605 22.5 5.9 20.4 0.305 0.418 -2.0

Table 2. Statistical summary of the 2-dimensional shape esti-
mates P(q0, q∞) of the galaxies.

Galaxy q0p q∞p < q0 > < q∞ >

NGC720 0.68 0.48 0.64 0.43
NGC2768 0.65 0.29 0.63 0.32
NGC3605 0.72 0.49 0.62 0.42

value of |Td| is constant in each section, and is shown in
the plot. We find that the 1σ region occupies larger area
in the sections with smaller values of |Td|. Further, in each
section of constant |Td|, 1σ region occupies a small area of
(q0, q∞) plane. We find that higher P is concentrated in sec-
tions with |Td| between 0.28 to 0.47. The expectation value
of < |Td| >= 0.41.

3.2 Intrinsic shapes of NGC2768 and 3605

The observational data used in the models of these galaxies
are presented in Table 1. Here also, the data is obtained
from R - band surface photometry of Peletier et al. (1990).

Fig. 7 and 8 present the plot of P of NGC2768 and
3605 as functions of (q0, q∞). The lower and upper limits of
q0 and q∞ are taken as 0.25 to 0.75. The HPD region shows
that these galaxies are very flat. The expectation values are
< q0 >= 0.63 and < q∞ >= 0.32 for NGC2768 and are
< q0 >= 0.62 and < q∞ >= 0.42 for NGC3605. We find
that these galaxies are also intrinsically very flat. Fig. 9 and
10 present the 3-dimensional plot of P of NGC2768 and
3605 as a function of q0, q∞ and |Td|.

Statistical summary of the intrinsic shapes of all the
three flat galaxies NGC720, 3605 and 2768 is presented in
Table 3. Here, the values are taken from the 3-dimensional
shape estimates. The expected and the peak values of q0 and
q∞ as obtained from 2-dimensional estimates P (q0, q∞) are
reported in Table 2. These values are quite close but not ex-
actly the same as those reported in Table 3. The differences
may be attributed to ”resolution” : in 2-dimensional shape
estimates, we have divided the parameters space of (q0, q∞)
in 48 × 48 divisions, whereas in 3-dimensional shape esti-
mate, space (q0, q∞) is divided in 10× 10 divisions for each
|Td|.

Table 3. Statistical summary of the 3-dimensional shape esti-
mates P(q0, q∞, |Td|) of the galaxies.

Galaxy q0p q∞p |Tdp| < q0 > < q∞ > < |Td| >

NGC720 0.68 0.38 0.41 0.56 0.40 0.41
NGC2768 0.68 0.28 0.22 0.62 0.33 0.39
NGC3605 0.68 0.43 0.16 0.60 0.41 0.37

Figure 7. Same as Fig 4, for NGC 2768 using the limits 0.25 to
0.75, both for q0 and q∞.

Figure 8. Same as Fig 4, for NGC3605 using the limits 0.25 to
0.75, both for q0 and q∞.

4 RESULTS AND DISCUSSION

We have presented the intrinsic shapes of 3 very flat galax-
ies. A specific feature of these estimates is the choice of the
lower limit of q0 and q∞. The lower limit was chosen as 0.5
by C08 and as 0.4 by Statler (1994a,b) in their investiga-
tion of galaxies which are comparatively rounder, without
mentioning any specific reason for this choice. Through the
plots of fig. 1, and the detail discussion of the plots of P
for NGC720, we justified the choice of very small values of
(q0, q∞) as their lower limits for very flat elliptical galaxies.
We took the lower limit as either 0.25 or 0.3.
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Figure 9. Same as Fig 6, for NGC2768.

Figure 10. Same as Fig 6, for NGC3605.

A summary of the intrinsic shapes of these very flat
galaxies is presented in Table 2 and Table 3. We find that
these galaxies are little rounder inside (average value of <
q0 >∼ 0.6), but very flat outside (average value of < q∞ >∼
0.4). Following the nomenclature introduced in C08, these
galaxies may be termed as RF type.

Intrinsic shapes of elliptical galaxies have implications
for their formation and evolution. As the galaxies studied
here are very flat, we have given emphasis on the shape
P(q0, q∞), and on informations about the flattening at inner
and at outer radii.
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APPENDIX A: VERY FLAT DE ZEEUW -

CAROLLO MODELS

A simple family of triaxial models, with ellipticity
variation and position angle twist was presented by
de Zeeuw and Carollo (1996) with density distribution

ρ(r, θ, φ) = f(r)− g(r)Y 0
2 (θ) + h(r)Y 2

0 (θ, φ) , (A1)

where f(r) is same as (1), g(r) and h(r) are two radial func-
tions, and Y 0

2 and Y 2
2 are the usual spherical harmonics.

Here, (r, θ, φ) are the standard polar co-ordinates. The pro-
jected surface density of (A1) can be calculated easily, and
often analytically. g(r) and h(r) are fixed by assiging ax-
ial ratios (p0, q0) and (p∞, q∞) respectively, at small large
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Table A1. Regions of negative ρ.

p = p0 = p∞ = 0.9, γ = 1.5, θ = 0o.0, φ = π
2
.

q = q0 = q∞
rlow
b

rhigh

b

0.55 1.93 > 6.40
0.56 2.31 6.27
0.57 3.08 4.48

> 0.58 ρ is positive at all r

radii, where constant - ρ surfaces are approximately ellip-
soidal. Numerical distribution function was shown to exist
for prolate triaxials : (p, q) = (0.65, 0.60) and for oblate
triaxials : (p, q) = (0.95, 0.65), wherein it is assumed that
q0 = q∞ = q, p0 = p∞ = p and γ = 1.0 or 1.5 (Thakur et al.
2007). The rounder versions of these models are employed
successfully in many investigations, including the shape es-
timates (Thakur and Chakraborty 2001; C08).

However, very flat versions of de Zeeuw - Carollo mod-
els have several undesirable features. It was realized by
de Zeeuw and Carollo (1996) that the constant ρ surfaces
become peanut shaped or dimpled for large values of flat-
tening. Such models can not be a ”true” representation of
the shape of an elliptical galaxy.

In addition to above, we now find the appearance of
narrow regions, where ρ is negative. Clearly, it is unphysical
to call such negative ρ as mass density. Such negative ρ
appears in polar regions (θ ∼ 0o.0), at an intermediate r
extending from some rlow to rhigh. Tables (A1) and (A2)
show some of the regions of negative ρ on φ = π

2
plane.

Triaxials models of similar form as (A1) was proposed
by Schwarzschild (1979) as a numerical model, where f(r)
is taken as the modified Hubble density distribution. Later,
it was put into an analytical form by de Zeeuw and Merritt
(1983). Projected properties of such triaxial modified Hub-
ble model was studied by Chakraborty and Thakur (2000).
We now find that sufficiently flat versions of triaxial modi-
fied Hubble model also exhibit regions of negative ρ.

We find that the appearance of negative ρ regions is
correlated with the dimpleness of constant ρ surfaces. We
examine an extended version of models (A1), which includes
terms with high order spherical harmonics Y 0

4 , Y
2
4 and Y 4

4 .
Such models were studied by Chakraborty and Das (2003).
It was found that the dimpleness reduces i.e., the models
become more ellipsoidal - like. We now find that for the
same choice of the parameters as in Table (A1), the interval
(rhigh − rlow) of negative ρ decreases.

It will be interesting to extend the studies of particle or-
bit and the numerical distribution function of Thakur et al.
(2007), to the models which exhibit regions of negative ρ.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.

Table A2. Regions of negative ρ.

p = p0 = p∞ = 0.9, γ = 1.5, φ = π
2
, q = 0.57

θ
rlow
b

rhigh

b

0o.0 3.08 4.48
1o.0 3.08 4.48
2o.0 3.21 4.36
3o.0 3.46 3.85

> 4o.0 ρ is positive at all r
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