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ABSTRACT

In chameleon field theories a scalar field can couple to matter with gravitational strength and still
evade local gravity constraints due to a combination of self-interactions and the couplings to matter.
Originally, these theories were proposed with a constant coupling to matter, however, the chameleon
mechanism also extends to the case where the coupling becomes field-dependent. We study the
cosmology of chameleon models with power-law couplings and power-law potentials. It is found that
these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but
can in some special cases enhance the growth of the linear perturbations at low redshifts. For the
models we consider it is found that this region of the parameter space is ruled out by local gravity
constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is
possible to have observable signatures on the linear matter perturbations.
Subject headings: (cosmology:) cosmic microwave background; cosmology: miscellaneous; cosmology:

observations; cosmology: theory; cosmology: large-scale structure of universe

1. INTRODUCTION

The origin of dark energy (DE) responsible for the cos-
mic acceleration remains a mystery. A host of indepen-
dent observations have supported the existence of dark
energy over the past decade, however, no strong evidence
was found yet implying that dynamical DE models are
better than a cosmological constant (see e.g. Davis et al.
(2007) for results on observation of dark energy and
(Copeland et al. 2006; Durrer & Maartens 2008) for the-
oretical overviews). The first step towards understanding
the origin of DE would be to detect some clear deviation
from the ΛCDM model observationally and experimen-
tally.

Scalar fields (quintessence) are natural DE candi-
dates, with an equation of state different from −1.
In quintessence models (Wang et al. 2000; Zlatev et al.
1999) the scalar field is slowly rolling down its potential,
its energy density is dominated by the potential energy
and almost remaining constant provided that the poten-
tial is flat enough. However, this means that the mass
of the scalar field is in general very light and as a result
the scalar field almost does not cluster so that its effects
in cosmology are mainly on the (modified) background
expansion rate.

However, a certain class of theories have been pro-
posed, in which the scalar field(s) properties depend
on the environment: these are the class of chameleon
field theories, proposed in Khoury & Weltman (2004),
that employed a combination of self-interactions of the
scalar-field and couplings to matter to avoid the most
restrictive of the current bounds. In the models that
they proposed, a scalar field couples to matter with
gravitational strength, in harmony with general expec-
tations from string theory, whilst, at the same time, re-
maining relatively light on cosmological scales. Origi-
nally, the chameleon was proposed with a constant cou-
pling to matter, however, it was shown in Brax et al.
(2010b) that the chameleon mechanism extends to the
case where the coupling becomes field-dependent. Be-

cause chameleons are allowed to couple strongly to mat-
ter and at the same time exhibit a long ranged fifth-
force in space, they could leave a strong signature on
the growth of the matter perturbations. Chameleon
models also have signatures in local gravity experi-
ments which can be within reach of near-future ex-
periments (Khoury & Weltman 2004; Brax et al. 2010a;
Steffen & Gammev Collaboration 2008).

The modified evolution of the matter density pertur-
bations can provide an important tool to distinguish
generally modified gravity DE models, from DE models
inside GR like the ΛCDM model (Carroll et al. 2006;
Faulkner et al. 2007; Song et al. 2007a; Bean et al.
2007; Song et al. 2007b; Pogosian & Silvestri 2008;
Tatekawa & Tsujikawa 2008; Mota & Barrow 2004;
Oyaizu et al. 2008; Koyama et al. 2009; Mota et al.
2007; Koivisto & Mota 2008; Bourliot et al. 2007; Mota
2008). In fact the effective gravitational constant
Geff which appears in the source term driving the
evolution of matter perturbations can change signif-
icantly relative to the gravitational constant G. A
useful way to describe the perturbations is to write
the growth function f = d log δm

log a as f = Ωm(z)γ where

Ωm is the density parameter of non-relativistic matter
(baryonic and dark matter) (Peebles 1984; Lahav et al.
1991). One has γ ≈ 0.55 at low redshifts in the
ΛCDM-model (Wang & Steinhardt 1998; Linder 2005;
Huterer & Linder 2007). While γ is quasi-constant in
standard (non-interacting) DE models inside GR, this
needs not be the case in modified gravity models. An
additional important point is whether γ can exhibit
scale dependence (dispersion). When this happens the
resulting matter power spectrum acquires an additional
scale dependence which is not found in ΛCDM.

In Gannouji et al. (2010) a chameleon model, with a
constant coupling, was constructed where the present
value of the growth index γ can be as small as γ = 0.2
together with a significant redshift dependence. This al-
lows to clearly discriminate this model from ΛCDM.
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In this paper, we investigate the cosmological proper-
ties of chameleon models where the matter-coupling is
a power-law function of the scalar-field. This article is
divided in 5 main sections. In section 2 we give a short
review of chameleon models and define the models we will
be looking more closely at. In section 3 we discuss the
background evolution. In section 4 we discuss local and
cosmological constraints on our models, and in section 5
we consider the evolution of the matter perturbations in
our models.

2. CHAMELEON THEORIES

In this section we review the basic properties of
chameleon models. We start by considering the scalar-
tensor theory described by the action

S =

∫

dx4
√
−g
[

RM2
pl

2
− 1

2
(∂φ)2 − V (φ)

]

+ Sm(g̃(i)µν , ψi)

(1)

where Mpl = 1√
8πG

is the reduced Planck scale, g is

the determinant of the metric gµν , R is the Ricci-scalar
with respect to gµν and ψi are the different matter-fields
(including radiation). The matter field i couples to the

Jordan-frame metric g̃
(i)
µν which is related to the Einstein-

frame metric gµν via a conformal rescaling on the form

g̃(i)µν = e2βi(φ)gµν (2)

In the following we focus, for simplicity, on the case where
all the matter-fields couple to φ with the same βi(φ) ≡
β(φ). Thus, a general model of this kind is then uniquely
specified by stating the two functions V (φ) and β(φ).

A variation of the action Eq. (1) with respect to φ
yields the field-equation

�φ = V,φ − β,φ (φ)e
4β(φ)g̃(i)µν T̃

µν
(i) (3)

where T̃ µν = 2√
−g

∂Lm

∂gµν
is the energy-momentum ten-

sor of the matter fields. The energy-momentum ten-
sor for radiation vanishes meaning that chameleons do
not couple directly to photons. However, a coupling to
photons, which have some interesting observable signa-
tures (Davis et al. 2009; Schelpe 2010; Davis et al. 2010;
Brax & Zioutas 2010), can be introduced by modifying
the electromagnetic field strength F 2

µν → eβγ(φ)F 2
µν .

In the perfect fluid approximation, we have g̃µν T̃
µν =

−ρ̃m where ρ̃m is the Jordan-frame energy density of
non-relativistic matter. The density ρ̃m is conserved
with respect to the Jordan-frame metric g̃µν . In the

Einstein-frame the density ρm ≡ ρ̃me
3β(φ) is both con-

served and φ-independent. The field equation, in the
Einstein-frame, can be written

�φ = Veff,φ

Veff(φ) = V (φ) + ρme
β(φ) (4)

where Veff is the effective potential. In the following, the
quantity β,φ will be referred to as the coupling and β(φ)
as the coupling-function. We will also use the notation

A,φ ≡ dA
dφ and A,φa

≡ dA
dφ

∣

∣

∣

φ=φa

.

2.1. Chameleon thin-shell mechanism

We will in this section give a short review of the
chameleon thin-shell mechanism in which these theories
can have a strong matter coupling and still be viable.

The coupling Eq. (2) of φ to matter leads to the in-
troduction of a fifth-force in nature. In linear theo-
ries of massive scalar fields the superposition principle
holds, meaning that the larger a massive body is the
stronger the fifth-force becomes. Chameleon theories be-
have quite opposite: In situations where massive bodies
are involved, the chameleon field is trapped inside the
bodies and its influence on other bodies is only due to a
thin shell close to the surface of the bodies. This leads
to a shielded fifth-force which becomes hard to detect.

In order to have a chameleon mechanism in a theory
the following conditions must be satisfied

• For a given density ρ0 the effective potential Veff =
V (φ) + ρ0e

β(φ) must exhibit a minimum φmin.

• The mass, mmin ≡
√

Veff,φφ(φmin), of small oscilla-
tions about this minimum must be a real increasing
function of ρ0.

and puts the following constraints on the potential V (φ)
and coupling-function β(φ):

i) V,φ β,φ< 0, ii) V,φφφ V,φ> 0, iii) β,φφφ β,φ> 0
(5)

Note that the second condition above is required if we
want the chameleon to exhibit a long-ranged force in the
vacuum of space. The final requirement, which is the
most important, is that there exists a chameleon thin-
shell mechanism in which the fifth-force, for sufficiently
large bodies, becomes suppressed relative to the gravita-
tional force.

To see how this mechanism works in practice, we con-
sider a spherical object with constant density ρc, radii Rc

and massMc embedded in a background of homogeneous
density ρb ≪ ρc. In such a static spherical symmetric
space time, the field equation reads

d2φ

dr2
+

2

r

dφ

dr
= Veff,φ =

{

V,φ +ρcβ,φ e
β(φ) r < Rc

V,φ +ρbβ,φ e
β(φ) r > Rc

(6)

The effective potential have two minimums at φ = φc
and φ = φb satisfying

V,φ (φc) + β,φ (φc)ρce
β(φc) = 0 (7)

V,φ (φb) + β,φ (φb)ρbe
β(φb) = 0 (8)

The φ-mediated fifth-force per unit mass is given by

~Fφ = −β,φ ~∇φ for r > Rc (9)

In the following we will consider the simplest case β(φ) =
Qφ
Mpl

, in which the coupling β,φ = Q/Mpl is constant,

together with an arbitrary runaway potential like e.g.

V (φ) = Mn+4

φn .

For this case, the field profile outside the body have
been derived in Khoury & Weltman (2004) and reads

φ = φb −
Qeff

4πMpl

Mc

r
e−mbr (10)
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where mb =
√

Veff,φφ(φb) is the mass of the field in the
background and Qeff is the effective coupling. The value
for Qeff depends on the value of the thin-shell factor

ǫth ≡ φb − φc
6QMplΦc

(11)

where Φc is the Newtonian gravitational potential. When
the body is small in the sense that ǫth > 1 the field acts
like a linear scalar field and Qeff = Q.

For large bodies, ǫth ≪ 1, the field will be stuck at the
minimum φc inside the body, and the only changes in φ
takes place in a thin-shell close to the surface. We say
that the body has developed a thin-shell.

In this case we find Qeff = 3Qǫth. Thus, the cou-
pling strength is suppressed relative to Q. More accu-
rate formulas for Qeff when ǫth . 1 can be found in
Tamaki & Tsujikawa (2008).

The amplitude of the fifth-force on a test-particle of
unit mass outside the body is

Fφ = 2QQeff
GMc

r2
for r < m−1

b (12)

For a sufficiently large body we have 2QQeff ≪ 1, and
the resulting fifth-force is suppressed relative to the grav-
itational force. When test-masses used in local gravity
experiments have thin-shells, the experimental bounds
are easily evaded.

For more general coupling-functions β(φ) the analysis
above can be much more complicated due to the cou-
pling β,φ in Eq. (9) being field-dependent, see Brax et al.
(2010b)). We present a derivation of the thin-shell solu-

tion for the power-law coupling β(φ) =
(

λφ
Mpl

)m

with

m > 1 in section 4.

2.2. Our models

We will look more closely on the following models

Model A :







V (φ) =M4
[

1 +
(

M
φ

)n]

β(φ) =
(

λφ
Mpl

)m (13)

with n > 0 and m ≥ 1. This model is a generalization
of the original chameleon model (m = 1) introduced in
Khoury & Weltman (2004).

Model B :







V (φ) =M4
[

1 +
(

φ
M

)n]

β(φ) =
(

λH0

φ

)m (14)

with n > 2, m > 0 and H0 being the current Hubble
parameter. This model was introduced, and a wide range
of local gravity constraints was calculated, in Brax et al.
(2010b).

In order for the chameleon to act as dark energy we
need to choose M4 ∼ Λ (M ∼ 10−3eV). This value is
required in order to satisfy local gravity constraints, and
at the same time produce the correct dark energy density
in the universe today. Thus, the fine-tuning problem of
the cosmological constant is also present in these models.

3. BACKGROUND EVOLUTION

In this section we discuss the background cosmological
evolution of chameleon models.

We consider a flat Friedmann-Lemaitare-Robertson-
Walker (FLRW) background metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) (15)

The corresponding background equations are given by

3H2M2
pl = ρme

β(φ) + ρr +
1

2
φ̇2 + V (φ) (16)

ρ̇m + 3Hρm = 0 (17)

ρ̇r + 4Hρr = 0 (18)

The field equation for φ becomes

φ̈+ 3Hφ̇+ Veff,φ = 0
Veff = V (φ) + ρme

β(φ) (19)

We also introduce the density parameters

Ωr = ρr

3H2M2
pl

Ωm = ρmeβ(φ

3H2M2
pl

Ωφ =
V + 1

2 φ̇
2

3H2M2
pl

(20)

The background evolution of the original chameleon
model introduced in Khoury & Weltman (2004), which
corresponds to Model A Eq. (13) with m = 1, was thor-
oughly discussed in Brax et al. (2004b). We will in the
next section show that the chameleon behaves very sim-
ilar in the general setting. There are however some im-
portant differences.

3.1. Attractor solution

We show the existence of an attractor solution where
the chameleon follow the minimum of its effective poten-
tial φ = φmin(t) as long as the condition mφ ≫ H is
satisfied.

Suppose the field is at the minimum at some time ti.
Then a time later due to the red shifting of the mat-
ter density the minimum φmin has moved to a slightly
larger value (or smaller, depending on the form of the
coupling). The characteristic timescale for this evolution
is the Hubble time 1/H . Meanwhile the characteristic
timescale of the evolution of φ is given by 1/mφ. When
mφ ≪ H the response-time of the chameleon is much
larger than 1/H , the chameleon cannot follow the min-
imum and starts to lag behind. But if mφ ≫ H then
the response-time of the chameleon is much smaller than
1/H , the chameleon will adjust itself and adiabatically
start to oscillate about the minimum. This can also be
seen from the analogy of Eq. (19) with a driven harmonic
oscillator

ẍ+ 2ζωẋ+ ω2x = 0 (21)

This equation will have a solution which oscillates with
a decreasing amplitude as long as ζ < 1. When the field
is close to the minimum we can approximate

φ̈+ 3Hφ̇+m2
φ(φ− φmin) = 0 (22)

The condition ζ < 1 reduces to
2mφ

3H > 1, and we will

require that m2
φ ≫ H2 is satisfied from the early universe

and until the present era.
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3.2. Reaching the attractor

We discuss how the chameleon acts in the early uni-
verse, and how the field converges to the attractor. For
simplicity we will only focus on the case where φ̇min < 0
(Model B Eq. (14)), the case φ̇min > 0 (Model A Eq. 13))
is analogous.

If we release the field at some time ti, at some initial
value φi, we can have two cases:

3.2.1. Undershooting: φi ≫ φmin(ti)

In this case the field equation can be approximated by

φ̈+ 3Hφ̇ ≈ −V,φ (23)

which is the same equation as in quintessence. The
driving term will dominate over the friction term when
V,φφ ≫ H2 and will start driving the field down towards
the minimum. If this condition is not satisfied, the field
will be fixed at φi until the Hubble factor has had time to
be sufficiently redshifted allowing the field to start rolling
down the potential.

When the field starts to roll it drops to, and go past,
φ = φmin. Here the approximation Eq. (23) cannot be
used anymore, but the field will usually have to much
kinetic energy to settle at the minimum and will be
driven past it. The further below the minimum the field
is driven, the larger the factor β,φ ρm becomes. Even
though ρm is very small in the radiation era it will even-
tually kick in and drive the field up again. More impor-
tantly, we will also have a contribution from the decou-
pling of relativistic matter which will be discussed in the
next section. This will make the field oscillate around
the minimum, and as long as m2

φ/H
2 ≫ 1 the ampli-

tude of the oscillations will be damped, making sure that
the field quickly converges to the attractor. This can
be showed explicitly as done in Brax et al. (2004b), the
derivation found there is general and applies to our case
as well.

3.2.2. Overshooting: φi ≪ φmin(ti)

In this case the potential term V,φ can be ignored and
the φ-equation becomes

φ̈+ 3Hφ̇ ≈ β,φ T
µ
µ (24)

where we have restored the trace of the energy-
momentum (EM) tensor. In the radiation-dominated
era this trace is very small since radiation does not con-
tribute to the trace, and the field will be frozen at its
initial value. As the universe expands and cools the dif-
ferent matter-species decouple from the radiation heat
bath when the temperature is of the same order as the
mass of the matter-particles. This gives rise to a trace-
anomaly where the trace of the EM-tensor gets non-zero
for about one e-fold of expansion leading to a ’kick’ in the
chameleon pushing it to larger field-values. This trace
can be written for a single matter-species, see Brax et al.
(2004b), as

T µ(i)
µ = − 45

π4
H2M2

pl

gi
g ∗ (T )τ(mi/T ) (25)

where g∗ is the effective number of relativistic degrees
of freedom, gi, Ti and mi is the degrees of freedom the

temperature and the mass of species i respectively. The
τ -function is given by

τ(x) = x2
∫ ∞

x

√

y2 − x2dy

ey ± 1
(26)

and ± refers to bosons and fermions respectively.
See Fig. (1) for a plot of T µ

µ /(3H
2M2

pl) in the radiation
era. The plot shows that each kick contributes to the field

Fig. 1.— The trace of the EM-tensor, Ωm eff = −Tµ
µ /(3H2M2

pl
),

in the radiation dominated era for all the different matter species
decoupling from the radiation heat bath.

equation approximately as an effective matter-density
Ωm eff ∼ O(0.01). By using a delta-function source as
the kick we can show that the result is to push the field
up a distance

|∆φ| = O
(

|β,φi
|M2

pl

gi
g ∗ (mi)

)

(27)

where φi is the field-value before the kick sets in. When
β,φ = constant, the field will be kicked almost the same
amount each time a new species freezes out. But when
β,φ 6= constant the smaller the initial value φi the more
effective the kick is in bringing it back up. When above
the minimum the resulting kicks will be balanced by the
term V,φ which drives the field down again making the
field oscillate above the minimum before eventually set-
tling down.

Due to this mechanism, the chameleon can have initial
values far below the minimum and still be able to get
close to the attractor relative quickly. The initial value
will of course depend on the how the chameleon behaves
under inflation. If the chameleon couples to the infla-
ton and sits at the minimum at the onset of inflation,
then after the inflaton decays to reheat the universe the
density of matter-species coupled to the chameleon will
decrease rapidly since most of the energy will go to ra-
diation. This will lead to a release of the field at a value
well above the minimum, where the undershoot solution
applies. As long asmφ ≫ H , the field will typically settle
at the minimum before the onset of the Big Bang Nucle-
osynthesis (BBN). See Fig. (2) for a typical evolution of
φ in the early universe with and without the inclusion of
the kicks.

3.3. Dynamics of φ along the attractor
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Fig. 2.— The evolution of φ in the early universe as a function of
the redshift z for two types of initial conditions: φi ≫ φmin (above)
and φi ≪ φmin (below). In this example V (φ) = M4+φ4, β(φ) =
H0
φ

. The dashed (full) line corresponds to the solution where we

neglect (include) the kicks. The kicks-solution does not reach the
minimum until z ≈ 108, but due to the large mass of the field it
starts to follow it right away.

When the field follows the attractor φ ≈ φmin, we have
Veff,φ ≈ 0. Taking the time-derivative yields

φ̇ ≈ −3H
V,φ
m2

φ

(28)

for β(φ) ≪ 1. We further find

φ̇2

2V
=

9H2

2m2
φ

1

Γ
(29)

where

Γ =
V m2

φ

V 2
,φ

(30)

As long as Γ > 1, the field will be slow-rolling whenever
the condition m2

φ ≫ H2 is satisfied.
The equation of state for a minimal coupled scalar

field (quintessence) is given by ωφ = φ̇2−2V

φ̇2+2V
. Since

the chameleon is not minimal coupled, the time evo-
lution of ρφ must be computed directly from ρ̇φ/ρφ =
−3H(1 + ωeff). Using Eq. (28), we find

ωeff = −1 +
1

Γ
(31)

From this equation we see that the chameleon acts as a

dark energy fluid as long as 3
2 < Γ, and its only for models

where Γ ∼ O(1) where we can have a significant deviation
from ω = −1. See Fig. (3) for a typical evolution of ωeff .

Fig. 3.— The effective equation of state for the chameleon when

V (φ) = M4 + φ4, β(φ) = H0
φ

. We have ω = −m+n
n

= −0.2

during the period before BBN. After the transition to φ < M ,
the chameleon behaves like a cosmological constant with ω = −1.
The oscillations in ωeff comes from the field oscillating around the
minimum before eventually settling down.

Model A Eq. (13) yields

Γ = 1 +
m

n
+

(n+m)

n

(

φmin

M

)n

(32)

The transition from φmin < M to φmin > M takes place
for a redshift

(1 + z) =

[

nΩφ0

mΩm0

(

Mpl

Mλ

)m]1/3

≈ 1010mλ−m/3 (33)

which for typical values of (m,λ) is before the time of
BBN (z ≈ 109). This means that in the background
today we have φ ≫ M and therefore V (φ) ≈ M4 and
Γ ≫ 1.

For Model B Eq. (14) we find

Γ = 1 +
m

n
+

(n+m)

n

(

M

φmin

)n

(34)

The transition from φmin > M to φmin < M takes place
for a redshift

(1 + z) =

[

mΩφ0

nΩm0

(

M

H0λ

)]
m
3

≈ 1010mλ−
m
3 (35)

where we have used M
H0

∼ Mpl

M ∼ 1030. For typical values

of (m,λ) we find a redshift which also is before the time
of BBN. Today this translates into φ≪M giving V (φ) ≈
M4 and Γ ≫ 1.

Thus the models we consider here, will have a back-
ground evolution very close to that of ΛCDM.

3.4. Statefinder parameters

The statefinder diagnostics, introduced in Sahni et al.
(2003), can be a useful tool for distinguishing different
DE models. The statefinder parameters are defined by

r =
ä

aH3
, s =

r − 1

3(q − 1/2)
(36)
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where q = − ä
aH2 is the deceleration parameter. Upon

defining h ≡ H2, it follows

q = −1 +
h′

2h
, r = 1 +

h′′

2h
− 3h′

2h
(37)

where a prime denoted a derivative relative to x =
− log(a). ΛCDM, neglecting the contribution from ra-
diation, corresponds to the fixed point (r, s) = (1, 0).
For a general chameleon (in units of Mpl ≡ 1) we find

r = 1 +
3

2
(φ′)2 − 3

2
Ωmβ,φ φ

′ +
V,φ
h
φ′ (38)

s =

(

2

3

V,φ
V
φ′ +

1

3

ρmβ,φ
V

− (φ′)2h

V

)

1

1− (φ′)2h
2V

(39)

When the chameleon is slow rolling along the minimum

of the effective potential, that is φ′ ≈ 3V,φ
m2

φ

andm2
φ ≫ H2,

we can simplify the above equations to

r − 1 ≃ 27

2

1

Γ
Ωφ (40)

s ≃ − 3

Γ
(41)

When Γ ≫ 1 we find r ≈ 1 and s ≈ 0. It is only
for Γ ∼ O(1) that we can have an (observable) devi-
ation from ΛCDM. For the models considered here,
Γ ≫ 1 and the statefinders will be the same as in ΛCDM.
See Gannouji et al. (2010) for a viable chameleon model
where the statefinder parameters deviates significantly
from ΛCDM.

4. CONSTRAINTS

4.1. Local gravity constraints

Experimental tests of general relativity in the solar
system, see e.g. Will (1993), and searches for a fifth-
force in nature (Kapner et al. 2007; Hoyle et al. 2001)
gives strong constraints on any new interactions. For
chameleon models, these constraints are usually avoided
due to the chameleon mechanism as long as typical test-
masses used in the experiments have thin-shells.

Local gravity constraints for Model B Eq. (14) was
found in Brax et al. (2010b), see Fig. (4) for the con-
straints when m = 1 and n = 6, 10.

In order for the chameleon to affect large scale struc-
ture formation we need the coupling, evaluated in the
cosmological background Qφ0 ≡ |β,φtoday

Mpl|, to be of
gravitational strength: O(1) . Qφ0.

For Model B, this corresponds to the r.h.s of the dashed
line in Fig. (4). From this figure we see that this requires
M . 10−3 eV as claimed below Eq. (14).

Local gravity constraints for the original chameleon
model (Model A with m = 1) have been calcu-
lated in several papers, see e.g. Khoury & Weltman
(2004); Mota & Shaw (2007); Brax et al. (2009);
Steffen & Gammev Collaboration (2008); Brax et al.
(2007); Brax et al. (2007); Gies et al. (2008);
Mota & Shaw (2006).

Below, we derive thin-shell solutions for Model A
Eq. (13), and use these solutions to find the the local
constraints coming from tests of the equivalence princi-
ple in the solar-system.

4.1.1. Thin-shell solutions for the power-law coupling

We show the existence of thin-shell solutions for the

power-law coupling-function β(φ) =
(

λφ
Mpl

)m

together

with an arbitrary run-away potential like e.g. V (φ) =
Mn+4

φn (Model A). This model was given a treatment in

Brax et al. (2004a) and it was found that there do not
exist thin-shell solutions for m > 1 when λ = O(1). For
values λ ≫ 1, which is equivalent to a coupling scale

M∗ =
Mpl

λ ≪ Mpl, there can indeed exist thin-shells.
Another conclusion the authors of Brax et al. (2004a)
reached was the existence of a possible singularity in the
field-profile. We have calculated the field-profile numer-
ically and no such singularity was found. The solution
corresponding to the claimed singularity seems to come
from a mathematical correct, but non-physical, solution
to the field equation.

The field equation in a static spherical symmetric met-
ric with weak gravity reads

d2φ

dr2
+

2

r

dφ

dr
= V,φ +ρβ,φ (42)

where we have assumed β(φ) ≪ 1. We consider a body
with constant density ρc, radii Rc and mass Mc embed-
ded in a background of homogeneous density ρb and im-
pose the boundary conditions

dφ
dr

∣

∣

∣

r=0
= 0

dφ
dr

∣

∣

∣

r=∞
= 0

φ(r → ∞) = φb

(43)

Lets start by considering a test body. The field inside
and outside the body is then just a small perturbation in
the background φb. Solving the linearized field equations
we find

φ = φb −
Qb

4πMpl

Mc

r
e−mbr r > Rc (44)

Qb = β,φb
Mpl (45)

The amplitude of the fifth-force between two test bodies,
located in the vacuum of space, is

F (r) = 2Q2
bFgravity(r) for mbr < 1 (46)

Now lets see what happens for macroscopic bodies. The
thin-shell solution for m = 1 (see Khoury & Weltman
(2004)) is characterized by the field being stuck at the
minimum, φc, inside the body. We therefore look for so-
lutions where φ(0) ≡ φi ≈ φc. The linear approximation
Veff,φ = m2

c(φ − φc) is now valid close to r = 0 with the
solution

φ = φc + φc
sinh(mcr)

mcr
δ (47)

δ ≡ φi − φc
φc

(48)

We assume that this solution is valid all the way to r =
Rc. For this to be true, the linear term in the Taylor
expansion of Veff,φ must dominate over the higher order
terms inside the body. Since φ is increasing in 0 < r < Rc
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the largest value of |φ− φc| occurs at r = Rc, and leads
to the condition

|φ(Rc)− φc|
φc

≪ 2

|n−m− 3| (49)

Outside the body the linear approximation Veff,φ =
m2

b(φ− φb) is valid with the solution

φ = φb −
ARc

r
e−mbr (50)

where we have assumed mbRc < 1 as would be the case
in most interesting cases. Matching the two solutions at
r = Rc gives us

A = (φb − φc)

(

1 +
tanh(mcRc)

mcRc

)

(51)

δ =
φb − φc

φc cosh(mcRc)
(52)

The condition Eq. (49) becomes

φb − φc
φc

(

tanh(mcRc)

mcRc

)

≪ 2

|n−m− 3| (53)

For x ≫ 1 we have tanh(x) ≃ 1, and by using φb ≫ φc
we find that the condition above is satisfied for all

mcRc ≫
φb
φc

(54)

The far-away field can now be written

φ = φb −
Qeff

4πMpl

M1

r
e−mbr (55)

where

Qeff = 3β,φb
Mplǫth (56)

ǫth =
φb − φc

6β,φb
M2

plΦc
(57)

and Φc is the gravitational potential for the body. The
thin-shell factor ǫth is on the same form as found in
Khoury & Weltman (2004), but it does not have the ge-
ometrical interpretation as an explicit thin-shell. It is
however this factor which determines the suppression of
the fifth-force.

Comparing the effective coupling Eq. (56) (for ’large’
bodies: ǫth ≪ 1) with the corresponding expression
Eq. (45) (for ’small’ bodies: ǫth ≫ 1) we see that

Qeff

Qb
= 3ǫth ≪ 1 (58)

This shows that the chameleon force, relative to gravity,
between two bodies is suppressed as long as one (or both)
of the bodies have a thin-shell, and demonstrates that the
chameleon mechanism is present in this model.

4.1.2. Lunar Laser Ranging

We will restrict our attention to tests of the equiva-
lence principle using Lunar Laser Ranging (LLR), see
e.g. Will (1993). LLR measures the free-fall acceleration
of the moon and the earth relative to the sun. The ac-
celeration induced by a fifth force with the field profile

φ(r) and effective coupling Qeff is afifth = |Qeff∇φ|/Mpl.

In most interesting cases, m−1
b > 1Au, the chameleon is

a free field in the solar-system. This leads to the follow-
ing constraint (see Khoury & Weltman (2004) for a more
detailed derivation)

2|amoon − a⊕|
|amoon + a⊕|

≈ 2Q⊙
eff |Qm

eff −Q⊕
eff | . 10−13 (59)

where Q⊙
eff , Qm

eff and Q⊕
eff is the effective coupling for

the sun, moon and earth respectively. The background
density in the solar-system is ρb ≈ 10−24 g/cm3 corre-
sponding to the average matter (dark and cold) density
in our galaxy.

The resulting bounds for m = 2 and m = 3 are shown
in Fig. (5).

The strongest constraints on chameleon models (with
natural parameters) typically comes from the Eot-Wash
experiment (Kapner et al. 2007). We will not consider
this experiment, as the bounds found here is already good
enough to constraint the part of the parameter space
where interesting cosmological signatures take place.

4.2. Cosmological constraints

Due to the conformal coupling, Eq. (2), of φ to matter,
a constant mass scale m0 in the Jordan-frame is related
to a φ-dependent mass scale m(φ) in Einstein-frame by
m(φ) = m0e

β(φ). A variation in φ leads to a variation in
the various masses

∣

∣

∣

∣

∆m

m

∣

∣

∣

∣

≈ ∆β(φ) (60)

BBN constrains the variation in m(φ) from the time of
nucleosynthesis until today to be less than around 10%.

If the field has settled at the minimum before BBN, the
resulting bound turns into β(φtoday) . 0.1 since β(φ) is
an increasing function of time. When the field is not at
the minimum at BBN we must also require β(φBBN) .
0.1.

For our models this constraints only the parameters
where the coupling satisfies Qφ0 = |β,φtoday

Mpl| ≫ 1, in
which both the background and the matter perturbations
are completely similar to ΛCDM. The bounds for Model
B Eq. (14) are shown in Fig. (4).

Another important restriction on chameleon theories
comes out from considering the isotropy of the Cosmo-
logical Microwave Background (CMB) (Hinshaw et al.
2003). A difference in the value of φ today and the value
it had during the epoch of recombination would mean
that the electron mass at that epoch differed from its
present value by ∆me

me
≈ ∆β(φ). Such a change in me

would, in turn, alter the redshift at which recombination
occurred, zrec:

∣

∣

∣

∣

∆zrec
zrec

∣

∣

∣

∣

≈ ∆β(φ) (61)

WMAP bounds zrec to be within 5% (at 2σ, 23% at 4σ)
of the value that has been calculated using the present
day value of me (Nagata et al. 2004). Denoting φ0, φrec
and φBBN with the field value today, at recombination
and BBN respectively. Then β(φ0) > β(φrec) > β(φBBN)
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Fig. 4.— Local gravity constraints for the Model B Eq. (14)
when n = 6 (top) and n = 10 (bottom). The horizontal line
shows M = MDE = 10−3eV. The vertical line shows λ = 1.
The dashed line shows Qφ0 = |β,φtoday

|Mpl = 1. The labels

’Irvine’ and ’Eot-Wash’ refers to test of the Newtonian gravita-
tional law, ’Casimir’ refers to Casimir experiments, ’PPN’ refers to
test of post-Newtonian gravity in the solar-system and ’BBN’ to
constraints from Big Bang Nucleosynthesis.

and the CMB bound is weaker then the bound coming
from BBN.

5. PERTURBATIONS

In this section we will study the growth of perturba-
tions in chameleon models. We start by consider the
general scalar-tensor model given by the action Eq. (1)
with a universal matter coupling-function β(φ) and po-
tential V (φ). In deriving the perturbation we will work
in units of Mpl = 1√

8πG
≡ 1. For simplicity, we will

consider the Jordan-frame matter-density satisfying

ρ̇m +
(

3H − β,φ φ̇
)

ρm = 0 (62)

since this choice will simplify the field equation. In terms
of the Einstein-frame density ρEF

m this choice corresponds
to ρm = eβ(φ)ρEF

m . This is just a matter of convenience
since eβ(φ) ≈ 1 in the late universe whenever the the-
ory satisfies the BBN bounds. With this choice the field
equation reads

φ̈+ 3Hφ̇+ V,φ +β,φ ρm = 0 (63)

The most general metric in a FLRW space time with
scalar perturbations is given by

ds2 = −(1 + 2α)dt2 − 2aB,idtdx
i (64)

+a2 ((1 + 2ψ)δij + 2γ,i;j) dx
idxj

where the covariant derivative is given in terms of the
three-space metric which in the case of a flat background
reduces to δij . We decompose the field φ into the back-

ground and perturbations parts: φ(x, t) = φ(t)+δφ(x, t).
The EM-tensors of non-relativistic matter can be decom-
posed as

T 0
0 = −ρm(1 + δm), T 0

i = −ρmv,i (65)

where v is the peculiar velocity of non-relativistic matter
and δm is the matter-density perturbations defined by

δm ≡ δρm
ρm

− ρ̇m
ρm

v ≡ δρm
ρm

in the co-moving gauge (66)

The equation determining the evolution of the per-
turbations follows from the Einstein-equations. In
the gauge-ready formulation (Hwang 1991), the scalar
perturbations equations are
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δ̈φ+ 3H ˙δφ+ (V,φφ − ∆

a2
)δφ+ β,φφ ρmδφ+ 2αV,φ + β,φ (2αρm + δρm)− φ̇(α̇− 3Hα+ κ) = 0 (67)

˙δρm + 3Hδρm − ρm

(

κ− 3Hα+
∆

a2
v

)

− β,φ (ρm ˙δφ+ δρmφ̇)− β,φφ ρmφ̇δφ = 0 (68)

κ̇+ 2Hκ+ 3αḢ +
∆

a2
α− 1

2

(

δρm − 4αφ̇2 + 4φ̇ ˙δφ− 2V,φδφ
)

= 0 (69)

Hκ+
∆

a2
ψ − 1

2

(

−δρm + αφ̇2 − φ̇ ˙δφ− V,φδφ
)

= 0 (70)

κ+
∆

a2
χ− 3

2
(ρmv + φ̇δφ) = 0 (71)

v̇ − α+ β,φ (φ̇v − δφ) = 0 (72)

χ̇+Hχ− α− ψ = 0 (73)

with

χ = a(B + aγ̇) (74)

κ = 3(−ψ̇ +Hα)− ∆

a2
χ (75)

and ∆ being the co-moving covariant three-space Lapla-
cian. In the list of equations above Eq. (67) is the scalar
field equation of motion, Eq. (68) the continuity equa-
tion, Eq. (69) the Raychauhuri equation, Eq. (70) the
ADM energy constraint, Eq. (71) the momentum con-
servation constraint and Eq. (73) the ADM propagation

equation. In these equations we have not yet fixed the
gauge-degrees of freedom. The choice of a gauge will
simplify the system and we will work in the so-called co-
moving gauge (v = 0). This gauge leaves no residual
gauge freedom and we can solve the system for the two
variables (δφ, δm) directly.

From Eq. (72) we have α = −β,φ δφ. Solving Eq. (69)
for κ and inserting this into Eq. (67,69) we find, af-
ter transforming to Fourier space, the following equations

δ̈m+2Hδ̇m − 1

2
ρmδm + δφ

(

V,φ − β,φ [6H
2 + 6Ḣ − k2

a2
+ 2φ̇2]

)

− δφ
(

β,φφ [2Hφ̇− Veff,φ] + β,φφφ φ̇
2
)

− β,φ δ̈φ− ˙δφ
(

5β,φH + 2φ̇+ 2β,φφ φ̇
)

= 0 (76)

δ̈φ+ (3H + 2β,φ φ̇) ˙δφ + β,φ ρmδm − φ̇δ̇m +

(

m2
φ +

k2

a2
− 2β,φ Veff,φ + 2β,φφ φ̇

2

)

δφ = 0 (77)

where k is a co-moving wavenumber.
When the field is slow rolling along the minimum we

can neglect all terms proportional to φ̇ and the oscil-
lating term Veff,φ. The perturbations in φ will evolve
more slowly than the perturbations in δm for scales deep
inside the Hubble radius, thus, the term ρmβ,φ δm and

(m2
φ + k2

a2 )δφ will dominate over the δφ time derivatives

in Eq. (77). Using these approximations, we can simplify
Eq. (76) and Eq. (77) to

δ̈m + 2H ˙δm = 3
2ΩmH

2

(

1 +
2β,2φ

1+
a2m2

φ

k2

)

δm

δφ = −3β,φΩm

(

H2

m2
φ

)

1

1+ k2

a2m2
φ

(78)

Note that the perturbations in φ satisfies δφ ≪ δm (in
Mpl = 1 units) as long as m2

φ ≫ H2 and β,φ . O(1)

justifying dropping the δφ-derivatives in Eq. (77).

Restoring M−2
pl ≡ 8πG and defining Qφ = |β,φMpl|

we can write this first equation on the same form as in
ΛCDM

δ̈m + 2H ˙δm = 4πGeffρmδm (79)

where

Geff = G



1 +
2Q2

φ

1 +
a2m2

φ

k2



 (80)

The quantity Geff is seen to encode the modification of
gravity due to the chameleon in the weak-field regime.

The chameleon will also exhibit an oscillating term,
but this term is time-decreasing and hence negligible for
small redshifts. In some f(R)-models however, this oscil-
lating term can grow to infinity because the mass of the
scalaron is not bounded above. The divergence of this
mass can be removed by adding a UV-term as shown in
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Thongkool et al. (2009).
In studying perturbations, it is convenient to introduce

the growth-factor f = d log(δm)
d log(a) . In ΛCDM f → 1 at high

redshifts and f → 1 in an Einstein-de Sitter universe. It
is important to find a characteristics in the perturbations
that can discriminate between different DE models and
the ΛCDM. Writing the growth factor as

f = Ωγ
m (81)

can be a parametrization that is useful for this purpose,
see e.g. Gannouji et al. (2009a,b). In ΛCDM we have to
a good accuracy γ ≈ 0.55 for low redshifts. Of course in
some models γ will vary to much for it to be considered
a constant, and there can also be a scale dependence, so
we should write γ = γ(z, k).

We will be most interested in scales k relevant to the
galaxy power spectrum (Tsujikawa et al. 2009)

0.01hMpc−1 . k . 0.2hMpc−1 (82)

where h = 0.72 ± 0.08 corresponds to the uncertainty
in the Hubble factor today. These scales are also in the
linear regime of perturbations.

It is also convenient to introduce the length scale of
the perturbations λp = 2πa

k and the length scale of the

chameleon λφ = 2π
mφ

. In Eq. (80) we have two asymptotic

regimes:

Geff =

{

G λp ≫ λφ
G(1 + 2Q2

φ) λp ≪ λφ
(83)

In the GR regime, λp ≫ λφ, the perturbations show no
deviation from ΛCDM.

In the scalar regime, λp ≪ λφ, however, the matter-
perturbations will feel a stronger gravitational constant
than in GR. The coupling Qφ is in general a dynam-
ical quantity, which will increase with time when the
chameleon follows the minimum. Thus, when we reach a
time where Qφ > 1 the perturbations will start to grow
with increasing amplitude and will quickly enter the non-
linear regime.

See Baldi (2010); Li et al. (2010a,b); Li & Barrow
(2010); Li & Zhao (2009); Baldi et al. (2010) for a
numerical N-body simulation analysis with this type
of models, and Nunes & Mota (2006); Mota et al.
(2008a,b); Brax et al. (2010) for a study of the spherical
collapse in cosmological models with a time dependent
coupling between dark energy, dark matter and other
matter fields.

5.1. The critical length scale λφ

In order to study the perturbations more closely, we
look at the value of the critical length scale today λφ,0
for our models.

The critical length scale for Model A Eq. (13) satisfies

λφ,0 ∼ 10−5+ 15
n+1 |Qφ0|−

(n+2)
2(n+1)pc (84)

where Qφ0 = |β,φtoday
Mpl|. In order for this length scale

to affect the matter perturbations: λφ,0 = O(1Mpc) and
Qφ0 ∼ 1, we need to impose n < 0.5. See Fig. 5 for a
plot of the growth factor γ(z = 0). The plot shows the
two regimes:

• (i): Phase space where γ < 0.50 for all relevant
scales. The perturbations are in the scalar regime.

• (ii): Phase space where γ ≈ 0.55 for all relevant
scales. This is the GR regime.

For our Model B Eq. (14), the critical length scale is
given by

λφ,0 =

√

m

n(n+m)

(

Mpl

M

)

(n−2)
2(n−1)

Q
− (n−2)

2(n−1)

φ0

2π

M
(85)

which gives

λφ,0 ∼ 10−5− 15
n−1Q

− (n−2)
2(n−1)

φ0 pc (86)

In order to have λφ,0 = O(1Mpc) together with a cou-
plingQφ0 of the order of unity we need n . 0.5. However,
for n < 2 the model is no longer a chameleon according
to our definition in section 1: the range of the field is
shorter in the low density cosmological background than
in a high density environment. This also means that local
gravity bounds will most certainly be violated.

The only way to increase λφ,0 up to a mega-parsec
value is by decreasing the coupling strength. For n > 2
we need

Qφ0 . 10−10 (87)

which is to small to significantly affect the growth of the
perturbations. Thus the perturbations in Model B are
always in the GR regime.

It is only in Model A Eq. (13) that we can have in-
teresting signatures on the matter perturbations. But
after imposing local gravity constraints we find that the
perturbations are confined to be in the GR regime with
no signature on the matter perturbations or on the back-
ground evolution relative to ΛCDM. This agrees with the
result found in Gannouji et al. (2010) (for m = 1). The
only way to have observable signatures in these models is
to restrict the coupling to dark matter only, and thereby
avoiding the local constraints.

The different regimes shown in Fig. (5) have been de-
rived by considering an universal coupling. Since dark
matter is dominating over baryonic matter at large scales
the regimes in this figure is expected to be similar if we
restrict the coupling to dark matter only.

In Gannouji et al. (2010), the chameleon model

β(φ) =
λφ

Mpl
(88)

V (φ) =M4(1− µ(1− e
− φ

Mpl )n) (89)

where 0 < µ < 1 and 0 < n < 1, was found to
have observable signatures on the growth of the mat-
ter perturbations even when local gravity constraints
was taken into account. We note that this potential
do not directly generalize to a more general coupling-

function β(φ) =
(

λφ
Mpl

)m

. This is because the require-

ment 0 < n < 1, which is required in order to have a
positive definite mass of the field, leads to violation of
local gravity constraints for parameters where signatures
are present.
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Fig. 5.— The two regimes for the growth factor γ0 in Model A
Eq. (13): (i) γ < 0.50, and (ii) γ ≈ 0.55 for all relevant scales. In re-
gion (i) we have a significant dispersion between scales. Above, the
quadratic coupling m = 2, and below the cubic coupling m = 3.
The label ’Local constraints’ shows the allowed region from ex-
perimental tests of the equivalence principle (Lunar Laser Rang-
ing). Due to numerical difficulties the perturbations have been
integrated using the approximation Eq. (78) rather than using the
full equations Eq. (76)-(77)

6. SUMMARY AND CONCLUSIONS

We have discussed the cosmological evolution of
chameleon models with power-law couplings and power-
law potentials. The chameleon follows the attractor so-
lution φ = φmin as long as mφ ≫ H , and the attractor
can be reached for a large span of initial conditions. In
fact, non-constant couplings can allow for a larger off-
set from the attractor in the early universe and still be
in agreement with BBN bounds. Along the attractor
the chameleon is slow rolling and can account for the
late time acceleration of the universe. The background
evolution is however found to be very close to that of
ΛCDM, as found in many other similar models (see e.g.
Faulkner et al. (2007); Brax et al. (2008)). The mass-
scaleM in the potential is fine-tuned in the same manner
as a cosmological constant, thus not providing a solution
to the fine-tuning problem. This is however motivated
and required by local gravity experiments.

Even though the background expansion is very close
ΛCDM, the growth of the linear perturbations can be
quite different. The reason is the fifth-force acting on
both dark matter and baryons, which leads to a different
growth rate of matter perturbations on cosmic scales.

For our Model B Eq. (14), the linear perturbations
are not affected by the chameleon since the field-range
is in general too small compared to cosmic scales, or, if
the field-range is large enough then the coupling is too
small to produce observable effects. Otherwise the model
would be ruled out by local gravity constraints.

In Model A Eq. (13), the range of the chameleon can be
large enough as to affect the matter perturbations, which
leads to a growth-rate different from ΛCDM. Since the
coupling, in general, varies with time, we will also have a
dispersion for scales within the linear regime. However,
for this to be the case, it must be emphasized that lo-
cal gravity constraints force us to have a gravitational
coupling of the chameleon field to dark matter only. By
neglecting the coupling to baryonic matter, the purpose
of the chameleon mechanism are lost. But with this con-
sideration, the growth of matter perturbations can in
principle allow us to discriminate between Model A and
ΛCDM.

If future galaxy surveys manages to pin down the mat-
ter power spectrum to a greater accuracy, and detect a
clear deviation from ΛCDM (especially if a scale depen-
dence in the growth index γ is detected), then it would
be interesting to see how good these chameleon models
can fit the data.

Even though these models, for most parameters
choices, do not leave an imprint on the linear matter
perturbations, it may have an impact on the small scale
structure formation. It would be interesting to investi-
gate the effect of these models on the non-linear regime of
structure formation by means of high resolution N-body
simulations. We leave this for future work.
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