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Eigenstate Estimation for the Bardeen-Cooper-Schrieffer (BCS) Hamiltonian
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We show how multi-level BCS Hamiltonians of finite systems in the strong pairing interaction
regime can be accurately approximated using multi-dimensional shifted harmonic oscillator Hamil-
tonians. In the Shifted Harmonic Approximation (SHA), discrete quantum state variables are ap-
proximated as continuous ones and algebraic Hamiltonians are replaced by differential operators.
Using the SHA, the results of the BCS theory, such as the gap equations, can be easily derived with-
out the BCS approximation. In addition, the SHA preserves the symmetries associated with the
BCS Hamiltonians. Lastly, for all interaction strengths, the SHA can be used to identify the most
important basis states – allowing accurate computation of low-lying eigenstates by diagonalizing
BCS Hamiltonians in small subspaces of what may otherwise be vastly larger Hilbert spaces.

PACS numbers: 03.65.Fd, 20.60.Cs, 71.10.Li, 74.20.Fg

The traditional method of finding eigenvalues of a
Hamiltonian Ĥ({X̂ν}) (expressed as a polynomial in the
elements {X̂ν} of a Lie algebra g) is by diagonalization.
However, in realistic many-body systems the Hamilto-
nian matrices can be huge. The problem is then to find
an approximation such that the salient features of the
Hamiltonian are retained. In this letter, the so-called
Shifted Harmonic Approximation (SHA), introduced by
Chen et al. [1], is developed and extended to many de-
grees of freedom. The key principle behind the SHA is
to replace discrete quantum state variables by contin-
uous ones. Algebraic Hamiltonians are then replaced
by differential operators. This approach offers new in-
sights even for well studied systems such as those with
a Bardeen-Cooper-Schrieffer (BCS) Hamiltonian [2, 3],
which in general cannot be solved exactly. The tradi-
tional BCS approximation provides accurate results in
the thermodynamic limit but violates particle-number
conservation. For finite systems, this is a major source
of inaccuracies but its effects can be reduced by number
conserving extensions of the BCS theory such as [4, 5].

Recent studies of superconductivity in metallic nano-
grains [6] and atomic nuclei [7] have led to a revival of in-
terest in the Richardson-Gaudin approach [8, 9]. Classes
of BCS Hamiltonians with level-independent interactions
are shown to be integrable and solvable by means of an
algebraic Bethe ansatz. However, the numerical solutions
are challenging to compute [10] and the eigenstates are
not easy to use. Moreover, among the set of BCS Hamil-
tonians, there is only a small number of special cases [11]
that are solvable by the Richardson-Gaudin method.

Here, using the SHA which is number conserving, we
show that a general k-level BCS Hamiltonian can be ap-
proximated as a (k − 1)-dimensional shifted oscillator

Hamiltonian. Accurate approximations of the low-lying
eigenstates are then easily obtained in the strong interac-
tion regime. In the weak interaction regime, the SHA can
also be used to identify the most important basis states
for computing the low-lying eigenstates accurately.
Consider an irreducible representation (irrep) of the

su(2) algebra on the Hilbert space spanned by basis states
{|m〉,m = −j,−j+1 . . . , j}. Any state |φ〉 in this Hilbert
space, e.g., an eigenstate of a Hamiltonian in the su(2)
algebra, can be expressed as a linear combination of the
basis states |φ〉 = ∑

m |m〉〈m|φ〉 = ∑

m |m〉φ(m), where
the coefficient φ(m) = 〈m|φ〉 is a discrete distribution of
m. The action of the su(2) operators on such a distribu-
tion, defined by Ĵkφ(m) = 〈m|Ĵk|φ〉, is then

Ĵzφ(m) = mφ(m), (1)

Ĵ±φ(m) =
√

(j ∓m+ 1)(j ±m)φ(m∓ 1). (2)

For large values of j and for a state for which φ(m) varies
slowly with the discrete variable m, we can now make
the continuous variable approximation of extending m to
continuous values and replacing φ(m) by a smooth func-
tion ψ(x), defined such that ψ(x) = φ(m) when x = m/j.
We can then use the identity ψ(x∓ 1

j
) = exp (∓ 1

j
d
dx
)ψ(x)

and, assuming the expansion of exp (∓ 1
j

d
dx
)ψ(x) to be

rapidly convergent, make the approximation

Ĵ±ψ(x) = j
√

(1 ∓ x+ 1
j
)(1± x) exp

(

∓ 1

j

d

dx

)

ψ(x)

≈ j
√

1− x2
[

1∓ 1

j

d

dx
+

1

2j2
d2

dx2

]

ψ(x). (3)

Note that we have omitted the 1/j term to obtain√
1− x2 in eq. (3). This term is negligible for large values
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of j, but could be included in a more complete calcula-
tion. If the function ψ(x) is (i) slow varying, (ii) local-
ized about a value xo and (iii) vanishes when |x| → 1, we
can make the Shifted Harmonic Approximation (SHA).
In this approximation, the action of an su(2) operator,
such as Ĵ± in eq. (3), on ψ(x) is obtained by expanding it
about xo up to bilinear terms. Similarly, a Hamiltonian
that is quadratic in the elements of an su(2) algebra and
has low-lying eigenfunctions that satisfy the SHA crite-
ria can be mapped to a harmonic oscillator Hamiltonian
ĤSHA that is bilinear in (x− xo) and d/dx.
Now consider a multi-level BCS Hamiltonian consist-

ing of fermions in k single-particle energy levels. The op-
erators a†µp

(aµp
) create (annihilate) a fermion in a state

µp at level p, and the operators for the corresponding

time-reversed states are a†µ̄p
(aµ̄p

). As shown by Kerman
et. al. [3], these operators can be combined to form su(2)
quasi-spin operators

Ĵp
z = 1

2

∑

µp>0

(a†µp
aµp

− aµ̄p
a†µ̄p

), Ĵp
+ = 1

2

∑

µp

a†µp
a†µ̄p

. (4)

Here, the operator Ĵp
+ creates a pair of particles in time-

reversed states at level p. Together with the pair annihi-
lation operators, Jp

− = (Jp
+)

†, these quasi-spin operators
belong to an su(2) ⊕ su(2) ⊕ . . . algebra with commuta-
tion relations [Ĵp

+, Ĵ
q
−] = 2Ĵp

z δpq and [Ĵp
z , Ĵ

q
±] = ±Ĵp

±δpq.
In this formalism, the BCS Hamiltonian is written as

Ĥ =

k
∑

p=1

ǫpn̂
p −

k
∑

p,q

GpqĴ
p
+Ĵ

q
−, (5)

where n̂p = 2(Ĵp
z + jp) is the particle number operator

for the level with single particle energy ǫp. The operator

Ĵp
+Ĵ

q
− scatters a pair of particles from level q to level p

and Gpq is the corresponding interaction strength.
The Hamiltonian (5) conserves both particle number

and the number of paired particles. Without loss of gen-
erality, we consider a system with no unpaired particles.
For level p, let {|jpmp〉} denote the basis states for the
irreducible su(2)p representation for which |jp,mp=−jp〉
is the zero-pair state and mp increases by one with every
added pair to reach the value mp = jp, when the level
is completely filled. Basis states for the k-level pairing
model with no unpaired particles, are then defined by
|m〉 = |j1m1〉 ⊗ |j2m2〉 ⊗ · · · ⊗ |jkmk〉.
Eigenstates |Φi〉 of the pairing Hamiltonian (5), with a

fixed pair number N , are given by linear combinations of
the basis states, |m〉, for which

∑k
p=1mp = N − 1

2Nmax

where Nmax is the maximum number of pairs possible in
the system. If we plot the set of allowed basis states |m〉
for the N -pair system as points on an {m1,m2, . . . ,mk}
grid, these points lie on a (k−1)-dimensional hyperplane.
The direction orthogonal to this hyperplane is described
as spurious because there is no dynamics associated with
it whenN is fixed. See FIG. 1 for a sample 2-level system.

Φ1(m1,m2)

  ξsp= ξ2

ξ1

FIG. 1: (Color online) A sample two-level system. The com-
ponents of the exact ground state eigenvectors (Φ1(m1,m2))
are indicated with dots on an (m1,m2) plane for (a) large
and (b) small interactions. The solid and dash lines are the
corresponding SHA eigenfunctions. The ground state for a
different N is shown by (c). The directions of the transformed
coordinates, ξ1 and ξsp = ξ2, with their origins at the point
O ∼ (j1xo1, j2xo2) are indicated for (a).

To apply the SHA to the pairing Hamiltonian (5), we
define ĤΦi(m) = 〈m|Ĥ|Φi〉. Then, assuming that the
low-lying eigenfunctions Φi(m) vary slowly with m, we
define k continuous variables xp = mp/jp, and the contin-
uous eigenfunction Ψi(x) as before. Assuming also that
the wave functions, Ψi(x), are localized around a point
xo, and that the criteria for the validity of the SHA, listed
above, are satisfied, we expand the Hamiltonian Ĥ up to
bilinear terms in x′p = (xp − xop) and

∂
∂x′

p
to obtain

Ĥ ≈ ĤSHA =

k
∑

p,q

[

− 1

jp

∂

∂x′p
Apq

1

jq

∂

∂x′q
+ jpx

′
pBpqjqx

′
q

]

+
k
∑

p

Dpjpx
′
p + E, (6)

which is essentially the Hamiltonian for a coupled k-
dimensional harmonic oscillator with the origin shifted
to xop. It contains: an inverse mass tensor Apq, a spring
constant tensor Bpq, a set of shifts Dp and a constant E.
Their components, defined in terms of κr = (1−x2or) and
Tpq = Gpqjpjq

√
κpκq, are given by

Apq =
∑

r

Tprδpq − Tpq, (7)

Bpq =
∑

r

Tpr
δpq
j2pκ

2
p

− Tpq
xopxoq
jpjqκpκq

, (8)

Dp = 2ǫp −Gpp +
2xop
jpκp

∑

r

Tpr, (9)

E =
∑

p

jp(2ǫp −Gpp)(1 + xop)−
∑

p,q

Tpq. (10)

The conservation of particle number in the SHA formal-
ism is verified by showing that the SHA representation of
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the number operator n̂ = 2
∑

p(Ĵ
p
z + jp) commutes with

ĤSHA. Thus, it is appropriate to make a change of vari-
ables, jpx

′
p → ξi, such that ξk (denoted ξsp in FIG. 1)

is an N -dependent constant and the Hamiltonian (6) be-
comes that of a system of (k−1) harmonic oscillators,

ĤSHA =

k−1
∑

i=1

(

−αi

∂2

∂ξ2i
+ βiξ

2
i

)

+ E. (11)

Observe that while the dynamics of the oscillator
is (k − 1)-dimensional, the tensors A and B are k-
dimensional. However, the inverse mass tensor A is de-
termined to have an eigenvector parallel to the spurious
direction with zero eigenvalue; this implies that the cor-
responding vibrational mass is infinite, consistent with
N being a good quantum number in the SHA. To eval-
uate the quantities in eqs. (7 - 10), we need the numer-
ical values of xop. The point xo is naturally defined as
the minimum of the harmonic oscillator potential on the
(k − 1)-dimensional hyperplane (see FIG. 1). Once the
pair number N is selected, the numerical values of xop
are determined by the Dp shift functions of Eq. (9).
Having determined xop, we can use the transformation

that diagonalizes A to obtain the dynamics on the hyper-
plane. The properties of the (k−1)-dimensional oscillator
on the hyperplane are solved using normal-mode theory.
The eigenvalues of the SHA Hamiltonian (11) are

Eν =

k−1
∑

i=1

(νi +
1
2 )ωi + E, (12)

where ωi = 2
√
αiβi and ν = {νi} is a set of integers

indicating the number of oscillator quanta in mode i.
The corresponding set of SHA eigenfunctions are

Ψν(ξ) = η

k−1
∏

i=1

(

2νiσiνi!
√
π
)− 1

2Hνi(
ξi
σi
)e

− 1

2
(
ξi
σi

)2
(13)

where Hνi are Hermite polynomials, σi = 4

√

αi

βi
are the

SHA widths, and η is a normalization factor. From here,
we can approximate the coefficients Φi(m) = 〈m|Φi〉,
and hence the eigenfunction, in the original discrete ba-
sis by evaluating Ψν at the points ξ corresponding to
m. We refer to these approximate eigenfunctions of the
Hamiltonian Ĥ , as the SHA basis.
It is worth noting that the quantity 1

2 (xop + 1) in the
SHA can be interpreted as the mean fractional occupancy
of a single-particle level p in parallel with v2p in BCS the-
ory [2]. Similarly, the SHA shift equations for xop cor-
respond to the BCS gap equations for v2p. In addition,
the SHA energy E is almost identical to the BCS ground
state energy. It has been shown, in several model calcula-
tions, that including higher order corrections in 1

j
lowers

the SHA ground-state energy in the strong interaction
regime below that of the BCS approximation. Thus, we

obtain an insightful interpretation of the SHA treatment
of the pairing model as an extension of the BCS method
to a number conserving approximation which takes ac-
count of the fluctuations of the particle number in each
single-particle level about its mean BCS value.

The transformed ξ-coordinates for a 2-level model are
illustrated in FIG. 1. The SHA eigenfunction (line) corre-
sponding to a large interaction (compared to single parti-
cle energies spacing), indicated as (a), are in good agree-
ment with the exact components of the eigenvectors given
by diagonalization. Similar accuracy is obtained for the
next few higher-energy states (not shown). If greater pre-
cision is required, an even more accurate description of
the low-lying eigenstates can be obtained by diagonal-
izing the BCS Hamiltonian in a subspace spanned by a
small number of SHA basis states. For weaker interac-
tions, as in (b), the SHA does not predict the components
of the eigenvectors accurately as in (a). This is the regime
in which the conditions for the validity of the SHA are
not well satisfied. Nevertheless, some SHA predictions,
such as xop and σi, remain accurate - a subtlety not yet
fully understood. Thus, we can use these predictions
to identify a small subset of basis states that contribute
significantly to the low-lying eigenstates in the weak in-
teraction regime and also obtain very accurate results for
them by diagonalizing small Hamiltonian matrices.

To illustrate the effectiveness of the SHA, we consider
a system with four degenerate single-particle energy lev-
els. This relatively small system is selected so that exact
eigenstates can be obtained by diagonalization. Based on
other applications of the SHA [12], we expect the SHA
to be even more accurate and effective in application to
systems of single-particle levels of higher multiplicities.

Exact and SHA-estimated excitation energies of a sam-
ple 4-level model with N = 28 pairs, j = [7, 8, 9, 10] and
ǫ = [0.5, 2.3, 6.1, 7.3] are shown in FIG. 2. A simple ar-
bitrary rule for G is used: Gpq = (2.0 − 0.1|ǫp − ǫq|)g,
where g controls the interaction strength. Exact results
are obtained by diagonalizing the 3231 × 3231 Hamil-
tonian matrix. For this 4-level model, the SHA oscil-
lator in the strong interaction regime is 3-dimensional.
The number of oscillator quanta in each mode is given
by {n1, n2, n3}. The excitation energy ∆E{n1,n2,n3} =
E{n1,n2,n3} − E{0,0,0} for the low-lying states are shown.
From the figure, we see that the SHA-predicted excita-
tion energies (‘+’, ‘×’) are in good agreement with the
exact results from diagonalization (‘⋄’) for a wide range
of interactions. Note that while the SHA excitation en-
ergies for g ∼ 0.05 are less accurate than for other values
of g, the trends in how the excitation energies vary with
interaction strength are still closely captured by the SHA.

Lastly, we show in TABLE I the low-lying excitation
energies obtained from the SHA and by diagonalizing the
BCS Hamiltonian in the space spanned by the most im-
portant basis states identified by the SHA. For points (1)
and (2) in FIG. 2, the lowest 50 and 300 su(2) basis states
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FIG. 2: (Color online) The SHA predicted excitation energies
for {n1, n2, n3}={1, 0, 0}, {0, 1, 0} and {0, 0, 1} are indicated
with ‘+’ and those for {2, 0, 0} are indicated with ‘×’. The
exact lowest four excitation energies are given by ‘⋄’. We
mark three points of interest (1) g = 0.010, (2) g = 0.045 and
(3) g = 0.150. Note that the SHA excitation energies corre-
sponding to {2, 0, 0} cross-over those of {0, 0, 1} at g ∼ 0.05,
indicating the system transiting from one regime to another.

TABLE I: The lowest few excitation energies for (1) g = 0.010
(2) g = 0.045 and (2) g = 0.150 as predicted by the SHA and
diagonalizing in the most relevant subspaces (indicated by
Diag) are shown. The ‘Diag’ results are given up to the digit
that agrees with the corresponding exact result. All SHA
predictions are given to two decimal places in ( ) with the
number of oscillator quanta given in { } in the subscript.

(1) g = 0.010 (2) g = 0.045 (3) g = 0.150

Diagsu(2) (SHA) Diagsu(2) (SHA) DiagSHA(SHA)

3.650313 (3.61){1,0,0} 3.60 (3.07){1,0,0} 15.03 (15.06){1,0,0}
6.9484 (6.90){0,1,0} 5.258 (5.19){0,1,0} 16.18 (16.22){0,1,0}
7.38050 (7.21){2,0,0} 7.65 (6.14){2,0,0} 18.1 (18.08){0,0,1}
9.4210 (9.38){0,0,1} 7.8 (7.20){0,0,1} 29.5 (30.12){2,0,0}

10.5531 (10.51){1,1,0} 8.37 (8.26){1,1,0} 30.7 (31.28){1,1,0}

are used respectively. For point (3), we used the lowest
286 SHA wave functions as a basis.
The results obtained, cf. last column of TABLE I, show

the SHA to be very successful for deriving low-energy
spectra of BCS Hamiltonians in the strong interaction
regime in which it is most valid. They also show the
SHA to be a good first-order approximation in general.
As TABLE I indicates, accurate results can be obtained
for any interaction by using the SHA to select relatively
small subsets of basis states for diagonalizations.
The SHA predicts essentially the same mean level oc-

cupancies in the ground state as the BCS approximation.
In addition, it gives the fluctuations in these occupan-
cies in a manner that conserves particle number. It also
conserves the su(2) ⊗ su(2) . . . symmetry of the pairing
Hamiltonian (defined by the values of the jp quantum
numbers). The SHA gives the low-energy states of all
irreps of this symmetry group. This is in contrast to
the BCS approximation which is only designed to give
an approximation for the ground state and quasi-particle
approximations for the low-energy states of neighbouring
odd-particle systems. States of maximal su(2)⊗ su(2) . . .
symmetry are unbroken-pair states, whereas the broken-

pair states of other irreps have unpaired particles in one
or more single-particle levels. This reduces the number
of states available to the paired particles so that these ir-
reps are obtained by reducing the quasi-spin of each level
p by the replacement jp → jp − 1

2 for each unpaired par-
ticle in the level. The states of such irreps are handled in
the same way in the SHA, except for the different values
of the quasi-spins. To conclude, we note the significant
possibility that the continuous variable approximation,
underlying the SHA, has the potential to be applied to
derive other solvable differential equations. This poten-
tial remains to be explored.
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