Full Length Research Paper

Response of maize (*Zea mays* L.) to different rates of wood-ash application in acid ultisol in Southeast Nigeria

C. N. Mbah¹, J. N. Nwite¹, C. Njoku¹ and I. A. Nweke²

¹Department of Soil Science and Environmental Management, Ebonyi State University, P. M. B. 053, Abakaliki, Ebonyi State, Nigeria.

²Department of Crop and Horticulture, Anambra State University, Uli, Anambra State, Nigeria.

Accepted 31 August, 2009

Maize (*Zea mays* L.) is an important cereal crop in southeast Nigeria. Yet few data exists on the effect of soil acidity on its production. A field study was conducted in 2007 and 2008 cropping seasons to determine the effect of different rates of wood ash on soil properties and maize grain yield. Results of the study showed significant difference (p < 0.05) in soil pH, ECEC (Cmolkg⁻¹), OM%, total N%, aggregate stability%, among treatments in both seasons while dispersion ratio (DR) was not significant in the second season. Organic maize grain yield varied significantly among treatments except at 4 and 6 t ha⁻¹ in both seasons. Wood ash application generally improved soil properties which in turn enhanced maize grain yield.

Key words: Soil acidity, wood ash, degradation, agricultural soils, lime materials.

INTRODUCTION

Maize (Zea mays L) belongs to the grain under the family graminae and class of cereals that thrive under a wide range of environmental conditions. Maize does well with pH of 5.5 - 5.7 while strongly acidic soil (pH \leq 5.0) is unsuitable for good yield. In southeast Nigeria soil acidity is a problem hindering proper agricultural production since most of the crops grown are susceptible to dangerous effects of acidic soils. Ohiri and Ano (1989) attributed the acidic nature of the soils in south east Nigeria to their parent material, leaching and degradation in soil physical properties. To reduce or make the soil less acidic it is common practice to apply lime to agricultural soils. However, the unavailability and high cost of lime materials led to the invention and research into low cost, affordable and adoptable organic and inorganic material like wood-ash (lgbokwe et al., 1981).

Ojeniyi et al. (2001) found that yield of vegetable crops and nutrient content were improved by woodash in Southeast Nigeria. Similarly, Odedina et al. (2003) and Adetunji (1997) reported reduced acidity and increased cation availability in soils amended with wood-ash. Omoti et al. (1991) indicated that there was great potential of reducing fertilizer and lime bills in maize production of an acidic soil by replacing it with application of wood-ash, since it helps to increase soil pH, available cations and yield. In the study area, Agbani in Enugu Southeast Nigeria farmers apply wood-ash with out specific recommendation due to lack of research works. The objective of this study was to find out the effects of different rates of wood-ash on soil properties and maize yield with a view to make recommendations on appropriate level for maize production.

MATERIALS AND METHODS

The study was conducted for two consecutive cropping seasons in the Teaching and Research Farm of Faculty of Agriculture and Natural Resources Management, Enugu State University of Science and Technology, Enugu- Agbani Campus. The area lies between latitude 06°25¹N and 07°15¹E with mean elevation of 450 m above sea level. The rainfall pattern is bimodal between April and October, while the dry season is between November and March. The soil is lateritic and is of the sandy loam textural class. It is an ultisol and classified as Typic Haplustult (FDALR, 1985).

^{*}Corresponding author. E -mail: cnmbah10@yahoo.com.

Parameter	Unit	Value
Sand	g/kg	490
Silt	"	250
Clay	"	260
Texture		sandy loam
PH		4.9
OC	g/kg	11.1
TN	5 3	0.56
Ca	Cmol kg- ¹	0.17
К	"	0.09
Na	"	0.17
Mg	"	1.6
CEC	"	15.6
Avail P	mgkg- ¹	3.71

Table 1. Properties of the soil before study.

Experimental layout and management

The experiment was established in April 2007 and laid out as a randomized complete block design (RCBD) with plot sizes of 3×4 m replicated five times. The land was cleared of vegetation and manually tilled. Four levels of wood-ash (0, 2, 4 and 6 t ha-¹) were applied (spread evenly on the soil surface) and incorporated into the soil during tillage. Maize variety oba super 11 was planted at a spacing of 0.5×0.5 m inter and intra- row, respectively and two maize grains planted per hill. This was thinned down to one plant per hill ten days after germination to give a total plant population of 53,333 plants / hectare. At maturity in 2007 cropping season, maize grain was harvested, air dried and the dry weight taken and expressed on a 12.5% moisture basis. In 2008 cropping season, the area was cleared, tilled and maize planted without addition of woodash to test the residual effect.

Soil was sampled at the beginning of 2007 cropping season and at the end of the study. Soil samples were taken at six different spots per plot and then bulked to one sample and were analyzed for their nutrient content, dispersion ratio and aggregate stability. The soil sample (0 - 15 cm) and woodash were air dried and sieved through a 2 mm sieve. The samples were analyzed for organic carbon, total nitrogen, Mg, Ca, pH, effective cation exchange capacity, available P, soil aggregate stability and dispersion ratio. Total Nitrogen was determined by Kjeldahl method (Bremner and Mulvaney, 1982) while OC was determined by the Walkey and Black (1934) dichromate oxidation procedure. Soil pH in water (1:2.5 soil to water ratio) was determined using glass electrode pH meter while effective cation exchange capacity (ECEC) was determined by summation. Aggregate stability was determined at the macro-level (WSA > 0.5mm) and micro level (dispersion ratio, DR= ratio % silt × clay dispersed in calgon) using wet sewing techniques of Kemper and Rosenau (1986) and the Middleton (1932), respectively.

Data analysis

Data collected from the experiment was analyzed using analysis of variance test based on RCBD (using F-LSD at P = 0.05) according to Steel and Torrie (1980).

RESULTS

Table 1 show the chemical properties of the soil before

the study. The soil was sandy loam in texture with pH of 4.9. The soil OC and TN were 11.1 and 0.56 g/kg, respectively. The exchangeable bases Ca, Mg, K and Na were 0.7, 1.6, 0.09 and 0.17 Cmolkg⁻¹, respectively. Analysis of the wood-ash show that it contained all the nutrients needed by plants. Analysis showed Mg, Ca, K and Available P of 13, 8.6, 50 Cmolkg⁻¹ and 10 g/kg, respectively.

Effect of wood-ash on soil properties

Table 2 shows the effect of wood-ash on the soil properties. Dispersion ratio (DR) showed significant (P < 0.05) difference with the lowest value (0.735) from the control (no wood-ash treated soil) in the first cropping season. In the second cropping the effects of the amendments on DR were not significant. Significant differences were observed in soil aggregate stability (AS) due to wood-ash application. The highest AS value of 46% was observed in 6 t ha-1 in the first season. The value was 3, 7 and 18% higher than the O, 2 and 4 t ha- 1 rate of application. In the second season aggregate stability values ranged between 36 - 44% with 6 t ha⁻¹ recording the highest value. Similarly, OM showed significant difference (p = 0 < 0.5) in the both seasons with lowest value (0.44%) in the first season from treatment receiving 0 t ha-1 while the highest value (1.56%) was observed in the plots where 6 t ha⁻¹ woodash was applied. Total nitrogen (TN) content varied significantly with wood-ash levels, increasing directly with a corresponding increase in amount of wood-ash applied. The control had the lowest concentration in both seasons while 6 t ha-1 application ratio had the highest concentration. Table 2 also show that values of ECEC cmolkg⁻¹ were highest in plots with 6 t ha⁻¹ wood-ash in both seasons. Observed ECEC values ranged between 10.6 - 21.8 and 6.3 - 12.6 cmolkg⁻¹ in the first and second cropping seasons, respectively. The results in Table 2

Treatment	DR	AS%	TN%	OM%	ECEC	pH(H₂O)	Avail. P
Year 1							
No wood ash	0.735	38	0.48	0.44	10.6	4.7	3.6
2 t ha⁻¹ WA	0.753	43	0.58	1.46	18.8	5.4	5.6
4 t ha⁻¹ WA	0.803	45	0.70	1.53	20.8	5.7	8.4
6 tha ⁻¹ WA	0.877	46	0.86	1.56	21.8	6.2	10.3
Mean	0.772	43	0.65	1.25	18	5.50	6.98
LSD 0.05	0.06	1.20	0.02	0.02	0.70	0.75	0.30
Year 11							
No wood ash	0.712	36	0.40	0.42	6.3	4.6	3.4
2 t ha ⁻¹ WA	0.806	40	0.48	1.30	9.8	5.1	5.5
4 tha ⁻¹ WA	0.895	43	0.52	1.44	11.3	5.6	6.3
6tha ⁻¹ WA	0.883	44	0.60	1.48	12.6	5.8	7.8
Means	0.824	40.8	0.50	1.16	10.01	5.28	5.75
LSD 0.05	NS	2 .1	0.02	0.02	0.14	0.14	0.24

Table 2. Effect of wood ash on selected soil.

NS = Non-significant, DR = dispersion ratio, AS = aggregate stability, WA = wood ash.

Table 3. Effect of wood-ash on plant (cm) and grain yield (t ha⁻¹).

Dexemptor	Plant he	ight (cm)	Grain Yield		
Parameter	2007	2008	2007	2008	
No- wood ash	134	80	0.63	0.52	
2 t ha- ¹ WA	148	124	1.02	0.96	
4 t ha- ¹ WA	162	148	1.61	1.46	
6 t ha- ¹ WA	173	153	1.63	1.46	
Mean	154.3	126.3	1.22	1.10	
LSD 0.05	0.74	1.81	0.04	0.19	

WA = Wood ash.

also showed that pH increased significantly (p = 0.05) with the application of different levels of wood-ash. The pH of the un-amended plot were 4.7 in the first season and 4.6 in the second cropping season while those of the amended plots ranged between 5.7 - 6.2 and 5.1 - 5.8 in the first and second cropping seasons respectively. There was minimal difference of 1% and no-difference in yield between 6 and 4 t ha⁻¹ in the first and second cropping seasons, respectively.

Wood ash treatment significantly affected the maize plant height (Table 3). The least plant height of 134 cm in the first season was recorded in the un-amended plots. Relatively higher plant heights were observed in the first cropping season. The mean height was 22% higher than the mean height value of 126.3 cm observed in the second cropping season. Generally, addition of wood-ash relative to the control in both seasons. The treatment 6 t ha⁻¹ of wood-ash gave the highest grain yield of 1.63 t ha⁻¹ in the first season. This value (1.63 t ha⁻¹) was 1, 60 and 159% higher than values observed in wood-ash application rates of 0, 2 and 4 t ha⁻¹, respectively. The order of yield increase in the second cropping season was 6 = 4 > 2 > 0 t ha⁻¹. In both seasons non-significant (p = 0 < 0.05) difference in yield were observed between 6 and 4 t ha⁻¹ rate of application.

DISCUSSION

Results from this study show that wood-ash when used as soil amendment reduced soil acidity to levels required for maize production. The 4 t ha⁻¹ is a good estimate of amount required to significantly improve yield in soils low in pH. Hence wood-ash being a Ca containing mineral raised soil pH. Using Cocoa pod ash as an amendment Ayeni et al. (2008) reported increased soil Ph relative to non- ash treated soil. Haynes and Naidu (1998) reported that at low pH acid soils are normally flocculated. As pH is raised by addition of wood ash the net negative change on soil surface is increased and the ratio of negative to positive (+ve) charges also increases. At same time Al³⁺ activity declines as Al precipitates as hydroxyl- Al also showed that pH increased significantly (p = 0.05) with the application of different levels of wood-ash. The polymers. As a result repulsive forces between particles dominate and lead to dispersion. The increased available P could be attributed to traces of P released from Al³⁺ in line with the observation of lkpe et al. (1997). Adetunji (1997) showed that ash derived from wood reduced soil acidity and increased cations / nutrient available in the soil. Similarly, studies by Owolabi et al. (2003), Odedina et al. (2003) and Awodun et al. (2007) showed that plant derived ash increased soil nutrient content. Kayode and Agboola (1993) attributed the increased CEC in woodash amended soils to increased cations viz Ca, K and Na. The high ECEC observed in wood-ash amended soil was in line with the observation of Nottidge et al. (2006. Baath and Arnebrant (1994) observed the increased soil nutrient due to wood-ash application could be due to enhance microbial activities in the soils and production of organic matter. The increased maize gain vield could be attributed to higher organic matter in the woodash amended plots. Organic matter according to Tisdall (1993) and Brady and Weil (2006) play important roles in essential nutrient availability and soil improvement.

Conclusion

The result of this study showed that wood ash application improves soil properties and increased maize grain yield. In both seasons application of wood ash at 6 t ha⁻¹ gave highest grain yield. However, there was no significant difference (p < 0.05) in grain yield between 4 and 6 t ha⁻¹ rate of application. Though application of wood-ash at 6 t ha⁻¹ gave highest grain yield, applying at this rate or higher may increase soil nutrient content without necessarily increasing yield. The excess nutrient may be leached to rivers and lakes causing eutrophication or other environmental degradation. This placed 4 t ha⁻¹ in this experiment as the optimum rate of wood ash application for maize production.

REFERENCES

- Ohiri AC, Ano AO (1989). Characterization and evaluation of some soils of rainforest zone of Nigeria. Proceedings of 17th annual Conference of Soil Sci. Society Nig. held at Nsukka. pp. 56-60.
- Igbokwe MC, Njoku BO, Odurukwe SO (1981). Liming effects on the response of maize on an ultisol in Enugu Nigeria. Nig. J. Soil Sci. 11:120-130.

- Ojeniyi SO, Oso OP, Arotolu AA (2001). Response of Vegetables to Wood ash fertilizer. Proceedings of 35th Annual Conference of Agric. Society of Nig. pp. 39-43.
- Odedina SS, Odedina JN, Ayeni S, Arowojolu SA, Adedeye SO, Ojeniyi SO (2003). Effect of types of ash on Soil fertility, nutrient availability and yield of tomotto and pepper. Nig. J. Soil Sci. 13:66-67.
- Adetunji MT (1997). Organic residue management and nutrient cycling. Agro-ecosys. 47: 189-195.
- Omoti U, Obatolu CR, Fagbenro JA (1991). Complementary use of liming materials for tree and rainforest crops. First National Organic fertilizer seminar Kaduna Nig. March 26-28FMA/NFC.
- Federal Department of Agriculture and Land Resources FDALR (1985). Recconaisance soil survey of Anambra State of Nig. Soil Reports 1985. Federal Dept. of Agric. Land Resources, Lagos- Nigeria.
- Bremner JM, Mulvaney CS (1982). Total Nitrogen In Page AL, Miller, RH, KeenY, DR (eds), Methods of Soil Analysis. Part ASA No 9. Madison.
- Walkey JT, Black A (1934). An examination of Degte Jaref method of determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci. 37: 29-38.
- Kemper A, Rosenau K (1986). Size distribution of aggregates. In: Methods of soil Analysis. Klute, A. (Ed), part 1 ASA, Madison, WI pp. 425-442.
- Middleton HE (1930). Properties of soils which influence soil erosion. USDA Tech. Bull. p. 178.
- Steel GD, Torrie JH (1980). Process and procedures of statistics. A biometrical approach. 2nd edition. New York MCgraw Hill Book p. 633.
- Ayeni LS, Adetunji MT, Ojeniyi SO (2008). Comparative nutrient release from Coccoa pod ash, poultry manure and N.P.K 20:10:10 fertilizer and their nutrient combinations-Incubation study. Nig. J. Soil Sci. 18:114-123.
- Haynes RJ, Naidu R (1998). Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions; a Rev. Nutrient cycling in Agrosys. 51: 123-137.
- Ikpe FN, Isimirah NO, Ogbonna IJ (1997). Maize growth and nutrient uptake in acid soil of Niger Delta, Nig. Niger Delta Biologia; 2: 119-124.
- Owolabi O, Ojeniyi SO, Awodu AO, Hazzan K (2003). Response of Okra and Tomatto to saw dust ash manure. Moore J. Agric. Res. 4(2): 178-182.
- Awodun MA, Otani MS, Ojeniyi SO (2007). Effect of sawdust ash plus urea on maize performance and nutrient status. Asain J. Agric. Res. 12:27-30.
- Kayode GO, Agboola AA (1993). Investigation on the use of macro and micro-nutrients to improve maize yield in southeastern Nig. Liming Res. 4: 211-121.
- Nottidge DO, Ojeniyi SO, Asawalam DO (2006). Effect of different levels of wood ash on Soil chemical properties in an acid Ultisol in South east Nigeria. Nig. J. Soil Sci. 16:109-114.
- Baath E, Arnebrant K (1994). Growth rate and response of bacteria communities to pH in ash treatment forest soils. Soil Biol. Chem. 26: 995-1001.
- Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993). Soil fertility and fertilizers. 5th edn. Macmillan Publishing company, New York, U.S.A.
- Brady NC, Weil RR (2006). Nature and Properties of soil. 13th edn. Prentice- Hall, London, UK. Wisconsin pp. 595-624.