
ar
X

iv
:1

01
0.

44
52

v1
  [

as
tr

o-
ph

.S
R

] 
 2

1 
O

ct
 2

01
0

ELLIPTICAL MOTIONS OF STARS IN CLOSE BINARY SYSTEMS

c© L.G. Lukyanov1, S.A. Gasanov 2

Sternberg State Astronomical Institute, Moscow

Abstract.

Motions of stars in close binary systems with a conservative mass exchange are ex-

amined. It is shown that Paczynski-Huang model widely used now for obtaining the

semi-major axis variation of a relative stars orbit is incorrect, because it brings about

large mistakes. A new model suitable for elliptical orbits of stars is proposed. Both of

reactive and attractive forces between stars and a substance of the flowing jet are taken

into account. A possibility of a mass exchange at presence of accretion disk is considered.

PACS numbers: 97.80.Fk, 97.10.Gz

INTRODUCTION

The research of stars motions in close binary systems began in the 60-s’ of the last

century in a cycle of works by Kruszevski [1], Hadjidemetriou [2], Piotrovski [3], Huang

[4], Paczynski [5] and others. As a result for a case of conservative mass exchange the

simplified dependence was received for semi-major axis a of a circular relative stars orbit

from constant mass increase of an accepting star Ṁ2 as

ȧ = 2aṀ2

(
1

M1

− 1

M2

)
. (1)

This dependence, which we shall call for by Paczynski-Huang name and up to this

day it is used in all researches dedicated to close binary systems with a conservative mass

exchange when M1 +M2 = M = const.

The derivation of formula (1) is based on the assumption that equations of motion for

stars with variable masses admit the angular momentum integral

J = M1R1 ×V1 +M2R2 ×V2 = const, (2)

where Mi,Ri,Vi, (i = 1, 2) — the mass, radius-vector and velocity of stars motion. By

the most an assumption is made that the close binary stars form a closed mechanical sys-

tem which admits integrals of momentum and angular momentum. Differential equations

of motion thus are usually not written out.
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However the assumption on existence of integral of momentum is erroneous. We shall

be convinced of it, proceeding from most general view of the Mestschersky equations for

a two-body problem with variable masses [6]:

M1

dV1

d t
= G

M1 M2

R3
R+Q1, M2

dV2

d t
= −G

M1 M2

R3
R+Q2, (3)

where R = R2 −R1, and Q1 and Q2 are jet forces acting on stars S1 and S2.

Let’s consider three opportunities of reception of integral of momentum (2) from equa-

tions (3).

1. At first we shall take into account of closed mechanical system, described by the

problem of Mestschersky-Levy-Civita [7], differential equations of which turn out from

(3), if jet forces put equal to:

Q1 = −Ṁ1V1, Q2 = −Ṁ2V2, (4)

where Ṁ1 = −Ṁ2 = const, Ṁ2 > 0.

This model is usually used in astronomy at study of motions of mutually attracted

pair stars, taking place in dust cloud with account of jet forces, arising owing to sticking

substances dust of cloud on stars.

The Mestschersky-Levy-Civita problem represents a closed mechanical system, there-

fore there are integrals of momentum and of angular momentum (2). However to use

model Mestschersky-Levy-Civita for study on motions of stars in close binary system

with a conservative exchange of mass is not admitted, so as the jet forces (4) in close

binary system do not exist. The true jet forces have other directions and others absolute

values: on a donor-star the jet force acts, directed in the opposite side to radius R and

is equal to product of velocity of sound on Ṁ1, and on accreted-star acts the jet force,

directed on tangent to a trajectory of relative motion of flowing particles at the moment

of their hit on a surface of a star. These jet forces sharply differ from values (4) in the

Mestschersky-Levy-Civita problem.

For this reason the model of Mestschersky-Levy-Civita is not suitable for study of

stars motion in close binary system.

2. Any other problems of two bodies with variable masses, admitting integral of

angular momentum, does not exist. But it is possible to consider an opportunity of

the approximate reception of integral (2) from equations (3). For this purpose we shall

consider, that the jet forces acting on stars, are small values in comparison with forces of

mutual attraction between stars, and consequently they can be neglected

Q1 = 0, Q2 = 0. (5)

Then we shall receive a well known Gylden-Mestschersky model differential equations

of which are

M1

dV1

d t
= G

M1M2

R3
R, M2

dV2

d t
= −G

M1 M2

R3
R, (6)
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in which integral of the angular momentum (2) in absolute motion does not exist, but a

quasi-integral does exist

J′ = M1R1 ×V1 +M2R2 ×V2 −
∫
(Ṁ1R1 ×V1 + Ṁ2R2 ×V2) dt = const. (7)

If in this quasi-integral one neglect small members, containing as multiplier the velocity

of mass change Ṁ1 and Ṁ2, we shall receive integral (2), but thus a problem of Gylden-

Mestschersky will be transformed to a two-body problem with constant masses, with the

help of which it is impossible to study a transfer of substance between stars.

Nevertheless the conservative (M = const) problem of Gylden-Mestschersky represents

the certain interest for study conservative exchange in close binary system, so as it is

possible with the help of it to characterize approximately motions of stars at presence of

accretion disk. The equations of relative motion in the Gylden-Mestschersky problem are

dV

dt
= −GM

R3
R (8)

and at M = const exactly coincide with the equations of relative motions of the classical

two-body problem with constant masses [8], therefore for relative motion of bodies in the

problem of Gylden-Mestschersky there is a strict angular momentum integral

√
GMa(1− e2) = const, (9)

and all Kepler’s elements of an orbit in this problem are constants, including a = const.

Thus, the exclusion from consideration all of jet forces, i.e. the transition to a conser-

vative problem of Gylden-Mestschersky, results to invariance of the semi-major axis of a

relative orbit of stars, but does not result in the formula of Paczynski-Huang.

3. We shall consider now the third opportunity of a ”formal conclusion” the rules (1),

which is usually used in the literature. Proceeding from the lack of external forces acting

on a system, and invariance of its complete mass, one asserts, that the system is closed

and, hence, admits the existence of integral (2).

Such statement is valid for stars with constant masses, but is not valid for stars with

variable masses. The point is that for systems of bodies with variable masses to be closed

except of absence of external forces and the invariance of complete mass is needed it

is necessary a presence some additional ”internal” jet forces, which make system to be

closed.

Really, according to the second law of Newtons mechanics the velocity speeds of change

of momentum of stars are determined by equalities:

d(M1V1)

dt
= G

M1M2

R3
R+ F1,

d(M2V2)

dt
= −G

M1 M2

R3
R+ F2, (10)

where F1 and F2 are external forces, acting on stars.
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Let’s rewrite these equations as

M1

dV1

dt
= G

M1M2

R3
R+Q1 + F1, M2

dV2

dt
= −G

M1M2

R3
R+Q2 + F2, (11)

where Q1 = −Ṁ1V1 and Q2 = −Ṁ2V2 are ”internal” jet forces, active on stars S1 and

S2.

From there it is visible, that integral of momentum M1V1 + M2V2 = const and

together with it those of angular moment (2), will exist at absence of external forces,

F1 = F2 = 0, but it is obviously necessary a preservation of ”internal” jet forces Q1 =

−Ṁ1V1 and Q2 = −Ṁ2V2.

Therefore for existence of integral (2) it is necessary not only the absence of external

forces and invariance of complete mass of the system, but also the presence of ”internal”

jet forces of a kind (4) too is necessary. These requirements are carried out only for the

problem of Mestschersky-Levy-Civita, considered in item 1. For a problem on motion of

stars in close binary system with a conservative exchange of mass these requirements are

not carried out, so as the jet forces have another vector values which are distinct from

”internal” jet forces, namely, Q1 = −Ṁ1W1 and Q2 = −Ṁ2W2, where W1 6= V1 and

W2 6= V2 are relative velocities of the outflow (inflow) of mass on stars. Therefore the

integral of angular momentum does not here exist.

Thus, the assumption on existence of integral of angular momentum (2) is infaithfull,

i.e. those about a problem on stars motion in close binary system with a conservative

exchange of mass being closed, is erroneous. In a consequence of that the model of

Paczynski-Huang is incorrect, and it cannot be used for study of motions in close binary

stars. As show results of numerical integration of equations of motion with taking into

account of true jet forces, acting on a star, the use of Paczynski-Huang model results

in significant mistakes in definition of the semi-major axis, down to an opposite sign of

derivative ȧ.

For this reason any conventional correct model, determining motions of close binary

stars, now does not exist. By the aim of purpose our work is the such model creation.

For circular motions of stars such a model was offered in the work [9], in which except

for forces of mutual attraction of stars both the true jet forces, and forces of attraction

on stars from jet stream of substance are taken into account also. The definition of stars

motions is carried out with the help of numerical integration. In the present work a similar

research, but under assumption, that the orbits of stars are elliptic will be carried out.

THE RESTRICTED ELLIPTICAL THREE-BODY PROBLEM

For definition of motion of flowing particles of masses we shall use the restricted ellip-

tical three-body problem, the equations of which in rotating and pulsating, barycentric
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system of coordinates of Schepner (Scheibner, Petr, Nechvil, Rein) x, y look like [10]

d2x

dv2
− 2

dy

dv
= ρ

∂U

∂x
,

d2y

dv2
+ 2

dx

dv
= ρ

∂U

∂y
,

(12)

where the x-axis is always directed on a accreted-star S2, v is true anomaly of stars,

ρ = 1/(1 + e cos v) is the dimensionless distance of a star S2 comparatively S1. Through

U the Jacobi function in the restricted elliptic three-body problem is designated

U =
x2 + y2

2
+ p3

(
1−m

r1
+

m

r2

)
+

p2

2
(3 +m2 −m), (13)

and r1 and r2 are distances from a flowing particle of a jet accordingly up to the centers

of masses of the first and second stars

r1 =
√
(x+ pm)2 + y2, r2 =

√
(x+ pm− p)2 + y2, (14)

where 1 − m = M1/M and m = M2/M are relative masses of stars, M = M1 + M2,

p = a(1−e2) is the focal parameter of an orbit, a and e are semi-major axis and eccentricity

accordingly.

The stream of substance from a donor-star occurs through a vicinity of internal Euler

libration point L1, xL with which is conclude in limits −pm < xL < p − pm and is

determined numerically as a root of the nonlinear equation ∂U/∂x = 0 at y = 0, i.e. of

equation

x− p3
(

1−m√
x+ pm

+
m√

x+ pm− p

)
= 0. (15)

Roche lobes in the planar elliptic restricted three-body problem are determined with

the help of equations of curves of minimal energy [11]

x2 + y2 + 2p3
(
1−m

r1
+

m

r2

)
− p2(3 +m2 −m) = C(1 + e cos v), (16)

where C is Jacobi’s constant.

Let’s consider, that the accepting star has the form of sphere

ρ2[(x+ pm− p)2 + y2] = P 2, (17)

the radius P of which in stream process of substance changes according to the dependence

P = P0
3

√
m

m0

. (18)

The stream of substance begins with a donor-star after achievement by flowing parti-

cles a level of energy more than that of in the lipration point L1. As it has been shown in
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[11], the stream of substance through the vicinity of a point L1 has a pulsating character

and occurs in the vicinity of apoastr of orbits. The velocity V0 of the stream of particles

masses from a star S1 is always directed along the x-axis to the star S2 and has the value

V0(v) = V00V1(v), V1(v) = m

√
GM

p

√
1 + 2e cos v + e2, (19)

where V00 ≃ 0.03 is the coefficient, established from observations. The apoastr vicinity, in

which occurs the stream of mass, is determined on a level of energy of particles (Jacobi’s

constant C, see [11]) by range of true anomaly π − va ≤ v ≤ π + va, where 0 < va < π.

Therefore the mean velocity Vc of stream of mass from the star S1 during one orbital

period of stars is possible to determine with the help of formula

Vc =
1

2va

π+va∫

π−va

V0 dv = V00m

√
GM

p

1

2va

π+va∫

π−va

√
1 + 2e cos v + e2 dv. (20)

All stream lines of a jet, having scatter both on coordinates and on time during one

”emission” of substance for an orbital period, we shall approximate by one trajectory,

outgoing from singular point L1. The numerical integration of equations (12) is carried

out with such initial conditions:

v0 = π, va =
π

2
, x(v0) = xL, x

′(v0) =
Vc

v̇
, y(v0) = 0, y′(v0) = 0,

m = m0, ṁ = const, P = P0,
(21)

where ”prime” signifies differentiation on true anomaly, (. . .)′ = d(. . .)/dv.

The numerical integration is carried out on an interval v0 ≤ v ≤ v0 + τ , where the

value of true anomaly v0 + τ is determined by the moment of hit of a particle on the

second star surface in the point x2 = x(v0 + τ), y2 = y(v0 + τ). If such a moment does

not exist, the process of stream of substance occurs with forming of an accretion disk.

As a result of numerical integration there are components of outflow velocity of W1

from the star S1 and the inflow mass velocity W2 on the star S2:

W1x = Vc, W1y = 0, W2x = x′(v0 + τ)v̇, W2y = y′(v0 + τ)v̇. (22)

Jet forces acting on stars S1 and S2 are considered to be applicable to their centers of

masses and are determined with these formulas

Q1 = ṁM{−Vc, 0}, Q2 = ṁM{x′(v0 + τ)v̇, y′(v0 + τ)v̇}. (23)

With the help of numerical integration also the mass of established stream S3 and

coordinates x3, y3 of its center of masses are determined as:

M3 =
τ

v̇c
ṁM, X3 =

1

τ

v0+τ∫

v0

x(v)dv, Y3 =
1

τ

v0+τ∫

v0

y(v)dv, (24)
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where

v̇c =
1

2π

2π∫

0

v̇ dv =
1

2π

2π∫

0

√
GM

p3
(1 + e cos v )2 dv =

√
GM

p3

(
1 +

e2

2

)

is the mean angular velocity of orbital motion.

With the help of formulas (23) and (24) the jet forces, the mass of jet and coordinates

of its center of masses are determined. These values enter in the right-hand sides of the

differential equations of relative motion of stars.

DIFFERENTIAL EQUATIONS OF MOTION OF STARS

As initial differential equations of motion of stars in an inertial coordinate system we

shall consider system of equations:

M1

dV1

d t
= G

M1 M2

R3
R+Q1 +G

M1M3

r313
r13,

M2

dV2

d t
= −G

M1M2

R3
R+Q2 +G

M2M3

r323
r23,

(25)

where r13 =
√
(x3 + pm)2 + y23, r23 =

√
(x3 + pm− p)2 + y23 distances between centers

of masses of stars and that of the jet. The equation of a star S2 relative S1 motion from

there turns out to be as

dV

d t
= −GM

R3
R+

Q2

M2

− Q1

M1

+GM3

(
r23

r323
− r13

r313

)
, (26)

where V = V2 −V1 is the velocity of a star S2 relative to S1 motion.

Differential equations in osculating elements for semi-major axis of a relative orbit a

and its eccentricity e are represented as [10]:

da

dt
=

2a2√
GMa(1 − e2)

[e sin vS + (1 + e cos v)T ],

de

dt
=

√
a(1− e2)

GM

[
sin vS +

(
cos v +

cos v + e

1 + e cos v

)
T
]
.

(27)

Perturbing accelerations S and T are happened to be known after integration of equa-

tions (12):

S = ṁ
(
W2x

m
+

Vc

1−m

)
+GMτ

ṁ

v̇c

(
x3 + pm− p

r323
− x3 + pm

r313

)
,

T = ṁ
W2y

m
+GMτ

ṁ

v̇c
Y3r3, r3 =

1

r323
− 1

r331
.

(28)

Choosing as the independent variable the true anomaly v of stars, the equations (27)

can be rewritten as follows

da

dv
=

2a2

v̇
√
GMa(1 − e2)

[e sin vS + (1 + e cos v)T ],

de

dv
=

1

v̇

√
a(1− e2)

GM

[
sin vS +

(
cos v +

cos v + e

1 + e cos v

)
T
]
,

(29)
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where

v̇ =

√
GM

p3
(1 + e cos v)2 +

√
p

GM

[
cos v

e
S − sinV

e
T
(
1 +

1

1 + e cos v

)]
.

After averaging on the true anomaly v, equations of stars motion result in the form

dã

dṽ
=

1

2π

2π∫

0

2a2

v̇
√
GMa(1− e2)

[e sin v S + (1 + e cos v)T ]dv,

dẽ

dṽ
=

1

2π

2π∫

0

1

v̇

√
a(1− e2)

GM

[
sin v S +

(
cos v +

cos v + e

1 + e cos v

)
T
]
dv.

(30)

Besides if instead of v we choose the new independent variable m with the help of

the formula
d

dṽ
=

ṁ

v̇c

d

dm
, then equations of motion for averaged elements ã and ẽ will

happened to be as

dã

dm
=

v̇c
2πṁ

2π∫

0

2a2

v̇
√
GMa(1 − e2)

[e sin vS + (1 + e cos v)T ]dv,

dẽ

dm
=

v̇c
2πṁ

2π∫

0

1

v̇

√
a(1− e2)

GM

[
sin vS +

(
cos v +

cos v + e

1 + e cos v

)
T
]
dv.

(31)

After calculation of definite integrals in right-hand sites of equations (31) we shall

receive the final form of differential equations for determination of secular perturbations

of semi-major axis and eccentricity of the stars relative orbit:

dã

dm
=

2 + ẽ2

(1− ẽ2)2
W̃2y

m
+ 2ã3

√
1− ẽ2 τy3r3,

dẽ

dm
=

2 + ẽ2

2ã(1− ẽ2)

ẽ

1 +
√
1− ẽ2

W̃2y

m
− 3

2
ẽ ã2

√
1− ẽ2 τy3r3,

(32)

where the designation W̃2y = y′(v0 + τ) is accepted.

If to put W̃2y = 0, i.e. not to take into account jet forces, the equations (32) are

simplified and accept the form

dã

dm
= 2ã3

√
1− ẽ2 τy3r3,

dẽ

dm
=

3

2
ẽ ã2

√
1− ẽ2 τy3r3,

(33)

which admin the existence of such first integral

ã3 ẽ4 = const = ã30 ẽ
4

0 (34)

with initial conditions ã0 = ã(m0) and ẽ0 = ẽ(m0).

Further for simplicity the overlined index ”tilde” above values a and e will be omitted.
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NUMERICAL RESULTS

The relative orbit of stars was determined by means of numerical integration of dif-

ferential equations (32) and (33). The integration was carried out on an interval by

independent variable m from 0.1 up to 0.8.

In fig. 1 are given dependencies of the semi-major axis a and eccentricity e of relative

orbit of a accreted-star from value q = m/(1−m) for various values of initial radius stars

P0 at initial value of eccentricity e0 = 0.1. From this figure it is visible, that the change of

an orbit strongly depends on P0. At small values P0 the flowing jet of substance gets on

the surface of a star S2 with the large velocity and also creates enough the large jet force

accelerating motion of a star, while for large P0, on the contrary, the jet force is directed

in the opposite side and consequently drags the motion of the star.

The influence of initial value of eccentricity e0 on elements of star S2 is represented

in fig. 2 for fixed value P/a = 0.075. As it is seen stars motions strongly depend on the

initial value of eccentricity e0. Under small e0 and P0 secular changes of the semi-major

axes can reach significant values.

In fig. 3 on the plane (q, P/a) the curves are represented describing a close binary

system. The curve 1 determines border Pmax/a = 0.49 3
√
m, after which the binary forms

contact system, when the sizes of accreted-star reach the singular Euler point. The solid

curves 2-5 for various e0 determine border for Pmin/a below of which at close binary

system an accreted disk is formed. Between curves Pmax/a and Pmin/a the half-divided

phase of close binary system settles down. On dot and dash curves 6-9 for various e0 the

first derivative of the semi-major axis turns into zero. Above these curves a close binary

system extends, and downwords it is compressed. The model of Paczynski-Huang on this

figure is represented by a vertical straight line q = 1. According to the formula ( 1) at

q < 1 a binary is compressed, and at q > 1 it extends, that sharply differs from results

which has been received by means of numerical integration.

In fig. 4 on the same plane (q, P/a) curves of change are represented for value P/a

depending on q for various values P0. The curve 1 crosses the border of contact binary

system formation. The further account for this curve is not carried out. The curves 6

and 7 cross a border of accreted disk formation. If one considers, that the accreted disk

is formed instantly, it is possible to continue these curves further, using the differential

equations (33), i.e. believing, that any jet stream does not create jet force on a star S2,

giving back energy on rotary motion for particles of accreted disk. Continuations of curves

6-7 on the figure is shown by dashed lines.

In fig. 5 the comparison of change of the semi-major axis and eccentricity of an orbit

of stars is carried out at presence of accreted disk and at its absence for various initial

values of eccentricity. As it is visible from figure changes a and e at presence of accreted

disk are not rather great, that is explained by absence of a jet force and small forces of
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attraction on stars by the stream. Therefore for, approximate estimations of evolution of

close stars orbit with presence of accreted disk, taking into account small sizes of a jet

and, hence, small right hand sides of equations (33), it is possible to consider, that

a = const, e = const, (35)

i.e. instead of Paczynski-Huang model one can use that of Gylden-Mestschersky.

Dependencies between the semi-major axis a end eccentricity e along trajectories of

stars motion are represented in fig. 6. For the accreted disk these dependencies turn out

from the first integral (34).

It is difficult to carry out comparison of the present work results with those of other

authors, so as jet forces, created by a stream, actually nobody takes into account (see, for

example, [11]), but in the present work the jet forces play the basic role.

It is doubtless, that all received results require a further revision and their conformity

to observations.

CONCLUSION

During the last half-century for definition a relative orbit of close binary stars the

incorrect Paczynski-Huang model was used, that was marked in the paper [8]. However

up to this day in works, dedicated to close binary systems this model continues to be used.

Therefore in the present work once again, but by means of other methods, the inaccuracy

of this model has been shown.

For determination of relative motion of stars in close binary system in the present work

the numerical integration of equations of motion is used with taking into account of jet

forces and forces of attraction of stars by the flowing jet. The above calculations of elliptic

orbits of close binary stars show that the eccentricity of orbits can change strongly enough.

The influence of jet force on orbital evolution of stars can be various. If the accepting star

has smaller mass and little sizes, and the accreted disk is absent, then the eccentricity is

increased strongly, reaching values 0.5-0.8. Probably just the such influence of jet force

explains rather large number of close double stars with great orbital eccentricity. If the

accepting star has the large mass and the great size, the jet force creates the braking

effect, and the eccentricity decreases down to zero.

It is shown that for approximate determination of orbital evolution of close binary

system with a generated accreted disk instead of the Paczynski-Huang model it is neces-

sary to use the model of Gylden-Mestschersky, according to which all Keplerien elements

remain constant, in particular, a = const and e = const.

It is doubtless, that obtained results can be specified, taking into account other per-

turbation factors and making new assumptions based on observations.

The present work is maintained by the Russian fund of fundamental researches (grant

08-02-00398).
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(a) (b)

Figure 1: The diagrams of functions: (a) — a(q) and (b) — e(q) at a0 = 1 and e0 = 0.1

for various P0. Notations: 1 — P0 = 0.06, 2 — P0 = 0.073, 3 — P0 = 0.075, 4 —

P0 = 0.0758, 5 — P0 = 0.0765, 6 — P0 = 0.1.

(a) (b)

Figure 2: The diagrams of functions: (a) — a(q) and (b) — e(q) at a0 = 1 and P0 = 0.075

for various e0. Notations: 0 — e0 = 0, 1 — e0 = 0.1, 2 — e0 = 0.3, 3 — E0 = 0.5.
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Figure 3: Characteristic curves on a plane
(
q,

P

a

)
. Notations: 1 — the border of forma-

tion of the contact system, solid curves 2, 3, 4, 5 — the border of accreted disk formations

for values e0 = 0, e0 = 0.1, e0 = 0.3, e0 = 0.5 accordingly, doted and dashed curves 6, 7, 8,

9 — the border of change of a sign of derivative a′ for the same values e0 accordingly, verti-

cal direct line 10 — the border of change sign by derivative a′ under the Paczynski-Huang

formula.
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Figure 4: Dependence of the ratio
P

a
from q for different trajectories of motion of stars

at a0 = 1 and e0 = 0.1. Notations: 1 — P0 = 0.1, 2 — P0 = 0.0878, 3 — P0 = 0.08, 4

— P0 = 0.0778, 5 — P0 = 0.0765, 6 — P0 = 0.0758, 7 — P0 = 0.075, 8 — the border

of contact system, 9 — the border of accreted disk. Dashed curves — continuation the

appropriate curves after formation of accreted disk, doted end dashed curve — the border

of change of sign of derivative a′.
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(a) (b)

Figure 5: The diagrams of functions: (a) — a(q) and (b) — e(q) for a0 = 1 and P0 =

0.0758. Notations: 0 — e0 = 0, 1 — e0 = 0.1, 2 — e0 = 0.3, 3 — e0 = 0.5. Solid curves

correspond to absence of accreted disk, and dot end dash curve — to its presence.

(a) Without of accreted disk at a0 = 1 and e0 =

0.5. Notations: 1 — P0 = 0.0758, 2 — P0 =

0.075, 3 — P0 = 0.073.

(b) With accreted disk. Notations: 1 — e0 = 0.1,

2 — e0 = 0.3, 3 — e0 = 0.5.

Figure 6: Dependencies between a and e along trajectories.
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