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Collective excitations of N = 1 supersymmetric electromagnetic plasma are studied. Since the
Keldysh-Schwinger approach is used, not only equilibrium but also non-equilibrium plasma, which is
assumed to be ultrarelativistic, is under consideration. The dispersion equations of photon, photino,
electron and selectron modes are written down and the self-energies, which enter the equations, are
computed in the Hard Loop Approximation. The photon modes and electron ones appear to be
the same as in the usual ultrarelativistic plasma of electrons, positrons and photons. The photino
modes coincide with the electron ones and the selectron modes are as of free relativistic massive
particle.

I. INTRODUCTION

Supersymmetry is commonly believed to be a symmetry of Nature at a sufficiently high energy scale. Obviously
the symmetry must be broken, as the superpartners of particles, which constitute the Standard Model, are not seen.
Experiments at the Large Hadron Collider might soon provide an evidence of superparticles but even if it is not the
case, the supersymmetry proved to be a very useful concept of theoretical physics. The conjectured equivalence -
known as the AdS/CFT duality - of the five-dimensional gravity in the anti de Sitter geometry and the conformal
field theories, see the review [1] and the lecture notes [2] as an introduction, stimulated a great interest in the N = 4
supersymmetric Yang-Mills theory. The duality provided a unique tool to study strongly coupled field theories, as the
gravitational constant is inversely proportional to the coupling constant of dual conformal field theory and thus some
problems of strongly coupled field theories can be solved via weakly coupled gravity. Some intrigued results have been
obtained in this way, see the reviews [3, 4], but relevance of the results for non-supersymmetric theories, which are
of our actual interest, remains an open issue. One asks how properties of the supersymmetric quark-gluon plasma
governed by N = 4 SUSY QCD are related to those of usual quark-gluon plasma experimentally studied in relativistic
heavy-ion collisions. While such a comparison is, in general, a difficult task, some comparative analyses have been done
in the domain of weak coupling where perturbative methods are applicable [5–9]. In particular, the paper [9] discusses
the dispersion relation of quarks and squarks in equilibrium plasma using the imaginary-time formalism. This is also
the aim of this paper to compare collective excitations of supersymmetric plasma to those of non-supersymmetric
counterpart. However, we study non-equilibrium plasmas where spectrum of excitations is much reacher than the
equilibrium spectrum. In particular, there are unstable modes which dominate the plasma’s dynamics. To simplify
our analysis we consider the supersymmetric N = 1 electromagnetic plasma instead of many-body N = 4 SUSY
QCD.

There is also another reason for our interest in weakly coupled supersymmetric plasma. When the plasma is
homogeneous but its momentum distribution is anisotropic, there are instabilities in the gluon sector of quark-gluon
plasma or in the photon sector of electromagnetic one, see e.g. the review [10]. Although a general proof is missing,
there seem to be no unstable modes in the fermion sector of quarks and electrons, respectively, [11, 12]. One wonders
what happens in the supersymmetric plasma. Even so the supersymmetry is well known to be broken at a finite
temperature or density, one can still speculate that a rudimentary symmetry induces instability in the photino sector
when the photon modes are unstable. We test the hypothesis in this paper.

We start our considerations writing down the Lagrangian of supersymmetric N = 1 massless QED. In Sec. II the
general dispersion equations of photons, photinos, electrons and selectrons are written down and the self-energies,
which enter the equations, are obtained in the subsequent section. The computation is performed within the Keldysh-
Schwinger approach which allows one to study equilibrium and non-equilibrium systems. Various Green’s functions of
Keldysh-Schwinger formalism are collected in Appendix. Since we are interested in collective modes, the self-energies
are found in the long wavelength limit by means of Hard Loop Approximation. Finally, we discuss the collective
modes and compare them to those of ultrarelativistic QED plasma of electrons, positrons and photons. We use the
natural system of units with c = ~ = kB = 1; the signature of the metric tensor is (+ −−−).

http://arxiv.org/abs/1011.6028v1
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II. N = 1 SUSY QED

The lagrangian of N = 1 SUSY QED is known, see e.g. [13], to be

L = −1

4
FµνFµν +

i

2
Λ̄∂/Λ + iΨ̄D/Ψ + (DµφL)∗(DµφL) + (D∗

µφR)(Dµφ∗R) (1)

+
√

2e
(

Ψ̄PRλφL − Ψ̄PLλφ
∗

R + φ∗LΛ̄PLΨ − φRΛ̄PRΨ
)

− e2

2

(

φ∗LφL − φ∗RφR
)2
,

where the strength tensor Fµν is expressed through the electromagnetic four-potential Aµ as Fµν ≡ ∂µAν − ∂νAµ

and the covariant derivative is Dµ ≡ ∂µ + ieAµ; Λ is the Majorana bispinor photino field, Ψ is the Dirac bispinor
electron field, φL and φR are the scalar left selectron and right selectron fields; the projectors PL and PR are defined
in a standard way PL ≡ 1

2 (1 − γ5) and PR ≡ 1
2 (1 + γ5). Since we are interested in ultrarelativistic plasmas, the mass

terms are neglected in the Lagrangian. We note that the quark-gluon plasma, as studied in relativistic heavy-ion
collisions, is ultrarelativistic and quark masses are usually safely ignored.

III. DISPERSION EQUATIONS

Dispersion equations determine dispersion relations of quasi-particle excitations. Below we write down the dispersion
equation of quasi-photons, quasi-photinos, quasi-electrons and quasi-selectrons.

A. Photons

Since the equation of motion of the electromagnetic field Aµ(k) is of the form
[

k2gµν − kµkν − Πµν(k)
]

Aν(k) = 0, (2)

where Πµν(k) is the retarded polarization tensor and k ≡ (ω,k) is the four-momentum, the general photon dispersion
equation is

det
[

k2gµν − kµkν − Πµν(k)
]

= 0 . (3)

Equivalently, the dispersion relations are given by positions of poles of effective photon propagator. Due to the
transversality of Πµν (kµΠµν(k) = 0), which is required by gauge covariance, not all components of Πµν are in-
dependent from each other and consequently the dispersion equation (3) can be much simplified by expressing the
polarization tensor through the dielectric tensor εij(k).

B. Electrons

The electron field ψ(k) obeys the equation

[

k/ − Σ(k)
]

ψ(k) = 0, (4)

where Σ(k) is the retarded electron self-energy, and thus the dispersion equation is

det
[

k/ − Σ(k)
]

= 0. (5)

Further on we assume that the spinor structure of Σ(k) is

Σ(k) = γµΣµ(k). (6)

Then, substituting the expression (6) into Eq. (5) and computing the determinant as explained in Appendix 1 of [14],
we get

[

(

kµ − Σµ(k)
)(

kµ − Σµ(k)
)

]2

= 0. (7)
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C. Photinos

The photino equation of motion is

[

k/ − Π̃(k)
]

Λ(k) = 0, (8)

where Λ is the photino Majorana bispinor and Π̃ is the retarded self-energy. The dispersion equation is

det
[

k/ − Π̃(k)
]

= 0. (9)

Since the expected spinor structure of Π̃(k) is analogous to that given by Eq. (6), the dispersion equation coincides
with Eq. (7).

D. Selectrons

The selectron fields φL(k) and φR(k) obey the Klein-Gordon equation

[

k2 + Σ̃L,R(k)
]

φL,R(k) = 0, (10)

where Σ̃L,R(k) is the retarded self-energy of left or right selectrons. The dispersion equation is

k2 + Σ̃L,R(k) = 0. (11)

IV. SELF-ENERGIES

In this section we compute the self-energies which enter the dispersion equations (3, 5, 9, 11). The plasma is assumed
to be homogeneous but the momentum distribution is, in general, different from equilibrium one. Therefore, we use the
the Keldysh-Schwinger formalism and the free Green’s functions, which are labeled with the indices +,−, >,<, sym,
are collected in Appendix. The computation is performed within the Hard Loop Approach, see the reviews [15–17],
which was generalized to anisotropic systems in [18, 19]. The plasma is assumed to be ultrarelativistic and thus
masses of electrons and selectrons are neglected. We also assume that the system is neutral and that the distribution
function of electrons (fe(p)) equals the distribution function of positrons (f̄e(p)). Analogous equality is assumed for
selectrons: fs(p) = f̄s(p). The additional assumption is that both left and right selectrons are described by the same
function fs(p).

A. Polarization tensor

The polarization tensor Πµν can be defined by means of the Dyson-Schwinger equation

iDµν(k) = iDµν(k) + iDµρ(k) iΠρσ(k) iDσν(k), (12)

where Dµν and Dµν is the interacting and free photon propagator, respectively. The lowest order contributions to
Πµν are given by three diagrams shown in Fig. 1. The solid, wavy and dashed lines denote, respectively, electron,
photon and selectron fields.

1. Electron loop

Applying the Feynman rules of the Keldysh-Schwinger formalism, which are discussed in e.g. Sec. 8 of [14], the

contribution to Π
<
>

µν from the electron loop corresponding the graph from Fig. 1 is immediately written down in the
coordinate space as

i(a)Π
<
>

µν(x) = (−1)(−ie)2Tr[γµiS
<
>(x)γν iS

>
<(−x)], (13)



4

a) b) c)

� � �FIG. 1: Contributions to the photon self-energy.

where the factor (−1) occurs due to the fermion loop. It gives

(a)Π
<
>

µν(x) = −ie2Tr[γµS
<
>(x)γνS

>
<(−x)]. (14)

Since

Π±

µν(x) = ±Θ(±x0)
(

Π>
µν(x) − Π<

µν(x)
)

, S±(x) = ±Θ(±x0)
(

S>(x) − S<(x)
)

(15)

the retarded polarization tensor (a)Π
+
µν(x) is found as

(a)Π
+
µν(x) = i

e2

2
Tr

[

γµS
+(x)γνS

sym(−x) + γµS
sym(x)γνS

−(−x)
]

. (16)

In the momentum space it reads

(a)Π
µν(k) = i

e2

2

∫

d4p

(2π)4
Tr

[

γµS+(p+ k)γνSsym(p) + γµSsym(p)γνS−(p− k)
]

, (17)

The index + of the polarization tensor from Eq. (17) is dropped. Further on, we will consider only the retarded
self-energies and thus the index + will not be used.

Substituting the functions S± (A.9) and Ssym (A.12) into Eq. (17), one finds

(a)Π
µν(k) = −e

2

4

∫

d3p

(2π)3
2fe(p) − 1

Ep

(18)

×Tr

[(

γµ(p/ + k/ )γνp/ + γµp/ γν(p/ + k/ )

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
+
γµp/ γν(p/ − k/ ) + γµ(p/ − k/ )γνp/

(p− k)2 − i sgn
(

(p− k)0
)

0+

)]

,

where after performing the integration over p0, the momentum p was changed into −p in the positron contribution.
It was also assumed that fe(p) = f̄e(p).

Computing the traces of gamma matrices and taking into account that p2 = 0, one finds

(a)Π
µν(k) = −2e2

∫

d3p

(2π)3
2fe(p) − 1

Ep

(19)

×
(

2pµpν + kµpν + pµkν − gµν(k · p)
(p+ k)2 + i sgn

(

(p+ k)0
)

0+
+

2pµpν − kµpν − pµkν + gµν(k · p)
(p− k)2 − i sgn

(

(p− k)0
)

0+

)

.

We are interested in collective modes which occur when wavelength of a quasi-particle is much bigger than a
characteristic interparticle distance in the plasma. Thus, we look for the polarization tensor at kµ ≪ pµ which is the
condition of the Hard Loop Approximation for anisotropic systems [18, 19]. The approximation is implemented by
observing that

1

(p+ k)2 + i0+
+

1

(p− k)2 − i0+
=

2k2

(k2)2 − 4(k · p)2 − isgn(k · p)0+ ≈ −1

2

k2

(k · p+ i0+)2
,

1

(p+ k)2 + i0+
− 1

(p− k)2 − i0+
=

4(k · p)
(k2)2 − 4(k · p)2 − isgn(k · p)0+ ≈ k · p

(k · p+ i0+)2
.

We note that (p+ k)0 > 0, (p− k)0 > 0 for pµ ≫ kµ. With the above formulas Eq. (19) gives

(a)Π
µν(k) = 2e2

∫

d3p

(2π)3
2fe(p) − 1

Ep

k2pµpν −
(

kµpν + pµkν − gµν(k · p)
)

(k · p)
(k · p+ i0+)2

, (20)
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which is the well-known form of polarization tensor of photons and of gluons in ultrarelativistic plasmas, see e.g.

the reviews [10, 16]. As seen, (a)Π
µν(k) is symmetric ((a)Π

µν(k) = (a)Π
νµ(k)) and transverse (kµ(a)Π

µν(k) = 0) as
required by the gauge invariance.

2. Selectron loop

The contribution to the polarization tensor coming from the selectron loop depicted in Fig. 1b is given by an
appropriately modified Eq. (17) that is

(b)Π
µν(k) = −i e

2

2

∫

d4p

(2π)4
[

(2p+ k)µ(2p+ k)ν S̃+(p+ k)S̃sym(p) + (2p− k)µ(2p− k)ν S̃sym(p)S̃−(p− k)
]

. (21)

The sign is different than in Eq. (17), as we deal here with the boson not the fermion loop. Substituting the functions

S̃± and S̃sym given by Eqs. (A.19, A.22) into Eq. (21), one finds

(b)Π
µν(k) = −e

2

2

∫

d3p

(2π)3
2fs(p) + 1

Ep

[

(2p+ k)µ(2p+ k)ν

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
+

(2p− k)µ(2p− k)ν

(p− k)2 − i sgn
(

(p− k)0
)

0+

]

, (22)

where the change p → −p was made in the antiselectron part and we assumed that f̄s(p) = fs(p). After adopting
the Hard Loop Approximation Eq. (22) gives

(b)Π
µν(k) = e2

∫

d3p

(2π)3
2fs(p) + 1

Ep

k2pµpν − (pµkν + kµpν)(k · p)
(k · p+ i0+)2

. (23)

3. Selectron tadpole

The contribution to the polarization tensor coming from the selectron tadpole depicted in Fig. 1c is

i(c)Π
µν(k) = 2ie2gµν

∫

d4p

(2π)4
iS̃<(p). (24)

Substituting the function S̃< given by Eq. (A.21) into Eq. (24), one finds

(c)Π
µν(k) = e2gµν

∫

d3p

(2π)3
2fs(p) + 1

Ep

, (25)

where the equality f̄s(p) = fs(p) was assumed.
We get the complete contribution from a single selectron field to the polarization tensor by summing the contribu-

tions from the selectron loop and the selectron tadpole. Thus, one finds

(b+c)Π
µν(k) = e2

∫

d3p

(2π)3
2fs(p) + 1

Ep

k2pµpν −
(

pµkν + kµpν − gµν(k · p)
)

(k · p)
(k · p+ i0+)2

. (26)

As seen, it is of exactly the same form as the electron contribution given by Eq. (20) – it is symmetric and transversal.
Actually, the expression (20) is the polarization tensor of scalar QED, which for equilibrium plasma was discussed in
e.g. [20] using the imaginary-time formalsim. Since there are two selectron fields in N = 1 SUSY QED, the expression
(26) should be multiplied by a factor of 2 to get the complete selectron contribution to the polarization tensor.

4. Final result

Combining the electron (20) and selectron (26) contributions, we get the final expression of the polarization tensor

Πµν(k) = 4e2
∫

d3p

(2π)3
fe(p) + fs(p)

Ep

k2pµpν −
(

pµkν + kµpν − gµν(k · p)
)

(k · p)
(k · p+ i0+)2

. (27)

As seen, Πµν(k) vanishes in the vacuum limit when fe, fs → 0. This is a nice feature of supersymmetric plasma. In the
non-supersymmetric counterpart, the polarization tensor is given by Eq. (20) where the vacuum contribution diverges
and it requires a special treatment. Up to the vacuum contribution, the polarization tensor of supersymmetric plasma
and of its non-supersymmetric counterpart have the same structure.
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a) b)
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FIG. 2: Contributions to the electron self-energy.

B. Electron self-energy

The electron self-energy Σ can be defined by means of the Dyson-Schwinger equation

iS(k) = iS(k) + iS(k)
(

− iΣ(k)
)

iS(k), (28)

where S and S is the interacting and free propagator, respectively. The lowest order contributions to Σ are given by
two diagrams shown in Fig. 2. The solid, wavy, dashed and double-solid lines denote, respectively, electron, photon,
selectron and photino fields.

1. Electron-photon loop

The contribution to the electron self-energy corresponding to the graph depicted in Fig. 2a is given by an appro-
priately modified Eq. (17) that is

− i(a)Σ(k) = (−ie)2 1

2

∫

d4p

(2π)4
[

γµiS+(p+ k)γνiDsym
µν (p) + γµiSsym(p)γνiD−

µν(p− k)
]

, (29)

which trivially gives

(a)Σ(k) = ie2
1

2

∫

d4p

(2π)4
[

γµS+(p+ k)γνDsym
µν (p) + γµSsym(p)γνD−

µν(p− k)
]

. (30)

Substituting the functions D±
µν , Dsym

µν and S±, Ssym given by Eqs. (A.1, A.4, A.9, A.12) into Eq. (30), one finds

(a)Σ(k) =
e2

2

∫

d3p

(2π)3Ep

{[

p/ + k/

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
− p/ − k/

(p− k)2 − i sgn
(

(p− k)0
)

0+

]

[

2fγ(p) + 1
]

(31)

−
[

p/

(p− k)2 − i sgn
(

(p− k)0
)

0+
− p/

(p+ k)2 + i sgn
(

(p+ k)0
)

0+

]

[

2fe(p) − 1
]

}

,

where the change p → −p was made in the negative energy terms. It was also assumed that fe(p) = f̄e(p). Applying
the Hard Loop Approximation, one obtains

(a)Σ(k) = e2
∫

d3p

(2π)3
fγ(p) + fe(p)

Ep

p/

k · p+ i0+
, (32)

which is the well-known form of self-energy of electrons and of quarks in ultrarelativistic plasmas, see e.g. the review
[16].

2. Selectron-photino loop

Since there are two selectron fields in N = 1 SUSY QED there are two contributions to the electron self-energy
corresponding to the graph depicted in Fig. 2b. The first one corresponding the left selectron field equals

− i(bL)Σ(k) = (−ie
√

2)2
1

2

∫

d4p

(2π)4
[

iS̃+(p+ k)PLiD̃
sym(p)PR + iS̃sym(p)PLiD̃

−(p− k)PR

]

, (33)
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�FIG. 3: Contribution to the photino self-energy.

which is

(bL)Σ(k) = ie2
∫

d4p

(2π)4
[

S̃+(p+ k)PLD̃
sym(p)PR + S̃sym(p)PLD̃

−(p− k)PR

]

. (34)

Substituting the functions D̃±, D̃sym and S̃±, S̃sym given by Eqs. (A.14, A.17, A.19, A.22) into Eq. (34), one finds in
the Hard Loop Approximation the following result

(bL)Σ(k) = e2
∫

d3p

(2π)3
fγ̃(p) + fs(p)

Ep

PLp/ PR

k · p+ i0+
, (35)

where we assumed that fs(p) = f̄s(p).
Computing the contribution corresponding to the graph depicted in Fig. 2b with the right selectron field, we get

(bR)Σ(k) = e2
∫

d3p

(2π)3
fγ̃(p) + fs(p)

Ep

PRp/ PL

k · p+ i0+
. (36)

Because PLp/ PR + PRp/ PL = p/ , the total contribution given by the graph from Fig. 2b equals

(b)Σ(k) = e2
∫

d3p

(2π)3
fγ̃(p) + fs(p)

Ep

p/

k · p+ i0+
. (37)

3. Final result

The sum of expressions (32) and (37) gives the complete electron self-energy

Σ(k) = e2
∫

d3p

(2π)3
fγ(p) + fe(p) + fγ̃(p) + fs(p)

Ep

p/

k · p+ i0+
. (38)

As seen, the electron self-energy has the same structure for the supersymmetric plasma and for its non-supersymmetric
counterpart.

C. Photino self-energy

The photino self-energy Π̃ can be defined by means of the Dyson-Schwinger equation

iD̃(k) = iD̃(k) + iD̃(k)
(

− iΠ̃(k)
)

iD̃(k), (39)

where D̃ and D̃ is the interacting and free photino propagator, respectively. The lowest order contribution to Π̃ is
given by the diagram shown in Fig. 3. The solid, dashed and double-solid lines denote, respectively, electron, selectron
and photino fields. Since there are two selectron fields in N = 1 SUSY QED there are two contributions represented
by the diagram corresponding to the left and right selectrons. Appropriately modifying Eq. (17), one gets

− i(L)Π̃(k) =
1

2
(−ie

√
2)2

∫

d4p

(2π)4
[

PRiS
+(p+ k)PLiS̃

sym(p) + PRiS
sym(p)PLiS̃

−(p− k)
]

, (40)

where the contribution from left selectrons is taken into account. Eq. (40) is trivially manipulated to

(L)Π̃(k) = ie2
∫

d4p

(2π)4
[

PRS
+(p+ k)PLS̃

sym(p) + PRS
sym(p)PLS̃

−(p− k)
]

. (41)
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a) b) c) d)

� � � �FIG. 4: Contributions to the selectron self-energy.

Now one substitutes the functions S±, Ssym and S̃±, S̃sym given by Eqs. (A.9, A.12, A.19, A.22) into Eq. (41).
Performing the integration over p0 and changing p into −p in the terms representing antiparticles, we obtain

(L)Π̃(k) =
1

2
e2

∫

d3p

(2π)3Ep

(42)

×
{

[ PR(p/ + k/ )PL

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
− PR(p/ − k/ )PL

(p− k)2 − i sgn
(

(p− k)0
)

0+

]

(

2fs(p) + 1
)

+
[ PRp/ PL

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
− PRp/ PL

(p− k)2 − i sgn
(

(p− k)0
)

0+

]

(

2fe(p) − 1
)

}

,

where we assumed that fs(p) = f̄s(p) and fe(p) = f̄e(p). Adopting the Hard Loop Approximation, one gets

(L)Π̃(k) = e2
∫

d3p

(2π)3
fs(p) + fe(p)

Ep

PRp/ PL

k · p+ i0+
. (43)

Since the contribution to the photino self-energy coming from right selectrons, which is obtained in the same way,
reads

(R)Π̃(k) = e2
∫

d3p

(2π)3
fs(p) + fe(p)

Ep

PLp/ PR

k · p+ i0+
, (44)

one finds, using the well-known identity PRp/ PL + PLp/ PR = p/ , the complete photino self-energy as

Π̃(k) = e2
∫

d3p

(2π)3
fs(p) + fe(p)

Ep

p/

k · p+ i0+
. (45)

As seen, the photino self-energy (45) has the same structure as the electron self-energy (38).

D. Selectron self-energy

The selectron self-energy Σ̃ can be defined by means of the Dyson-Schwinger equation

iS̃(k) = iS̃(k) + iS̃(k) iΣ̃(k) iS̃(k), (46)

where S̃ and S̃ is the interacting and free propagator, respectively. The lowest order contributions to Σ̃ are given by
four diagrams shown in Fig. 4. The solid, wavy, dashed and double-solid lines denote, respectively, electron, photon,
selectron and photino fields. Below we compute the self-energy of left selectron. The result for right selectron is the
same.

1. Selectron tadpole

There are two contributions represented by the graph depicted in Fig. 4a, as the tadpole line corresponds to either
left or right selectron. In the first case we have

i(aL)Σ̃L(k) = −2ie2
∫

d4p

(2π)4
iS̃<(p). (47)
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Substituting the function S̃< given by Eq. (A.21) into Eq. (47), one finds

(aL)Σ̃L(k) = −e2
∫

d3p

(2π)3
2fs(p) + 1

Ep

, (48)

where the equality f̄s(p) = fs(p) was assumed. The second contribution corresponding to the right-selectron field
equals

i(aR)Σ̃L(k) = ie2
∫

d4p

(2π)4
iS̃<(p), (49)

and it gives

(aR)Σ̃L(k) =
1

2
e2

∫

d3p

(2π)3
2fs(p) + 1

Ep

. (50)

Summing up the contributions (48, 49), one finds the following complete result of the selectron tadpole

(a)Σ̃L(k) = −1

2
e2

∫

d3p

(2π)3
2fs(p) + 1

Ep

. (51)

2. Photon tadpole

The contribution to the selectron self-energy coming from the photon tadpole shown in Fig. 4b equals

i(b)Σ̃L(k) = ie2gµν
∫

d4p

(2π)4
iD<

µν(p), (52)

where the symmetry factor 1/2 is included. Eq. (52) gives

(b)Σ̃L(k) = −2e2
∫

d3p

(2π)3
2fγ(p) + 1

Ep

, (53)

when the function D<
µν (A.3) is substituted into Eq. (52).

3. Selectron-photon loop

The contribution represented by the graph depicted in Fig. 4c equals

i(c)Σ̃L(k) =
1

2
(−ie)2

∫

d4p

(2π)4
[

(p+ 2k)µiS̃+
µν(p+ k) (p+ 2k)νiDsym(p) + (p+ k)µiS̃sym

µν (p) (p+ k)ν iD−(p− k)
]

, (54)

which after the substitution of the functions D±
µν , D

sym
µν and S̃±, S̃sym in the form (A.1, A.4, A.19, A.22) leads to

(c)Σ̃L(k) =
1

4
e2

∫

d3p

(2π)3Ep

(55)

×
[(

(p+ 2k)2

(p+ k)2 + i sgn
(

(p+ k)0
)

0+
+

(p− 2k)2

(p− k)2 − i sgn
(

(p− k)0
)

0+

)

(

2fs(p) + 1
)

+

(

(p+ k)2

(p− k)2 − i sgn
(

(p− k)0
)

0+
+

(p− k)2

(p+ k)2 + i sgn
(

(p+ k)0
)

0+

)

(

2fγ(p) + 1
)

]

,

where we assumed that f̄s(p) = fs(p). Within the Hard Loop Approximation, one obtains

(c)Σ̃L(k) =
e2

2

∫

d3p

(2π)3
4fγ(p) − 2fs(p) + 1

Ep

. (56)

We note that the sum of the contributions (53, 56), which equals

(b+c)Σ̃L(k) = −e
2

2

∫

d3p

(2π)3
4fγ(p) + 2fs(p) + 3

Ep

, (57)

represents the scalar self-energy of scalar QED which for equilibrium plasma was discussed in e.g. [20] within the
imaginary-time formalism.
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4. Electron-photino loop

The graph depicted in Fig. 4d provides

i(d)Σ̃L(k) = (−1)(−ie
√

2)2
1

2

∫

d4p

(2π)4
Tr

[

PRiS
+(p+ k)PLiD̃

sym(p) + PRiS
sym(p)PLiD̃

−(p− k)
]

. (58)

Substituting the functions D̃±, D̃sym and S±, Ssym given by Eqs. (A.9, A.12, A.19, A.22) into Eq. (58) and repeating
the same steps which were made in the previous subsections, we find in the Hard Loop Approximation the following
expression

(d)Σ̃L(k) = −2e2
∫

d3p

(2π)3
fγ̃(p) + fe(p) − 1

Ep

, (59)

where we assumed that fe(p) = f̄e(p).

5. Final result

The sum of contributions (51, 53, 56) and (59) gives the complete self-energy of left selectron

Σ̃(k) = −2e2
∫

d3p

(2π)3
fe(p) + fγ(p) + fs(p) + fγ̃(p)

Ep

, (60)

which equals the complete self-energy of right selectron. For this reason the index L is dropped. As seen, the
self-energy (60) is independent of k and because of supersymmetry it vanishes in the vacuum limit when all the
distributions functions are zero. This is also effect of the supersymmetry that the distribution functions of electrons
and of selectrons enter the formula (60) with the coefficients equal to each other. The same is true for the distribution
functions of photons and of photions.

V. COLLECTIVE MODES AND CONCLUSION

When the self-energies computed in Sec. IV are substituted into the dispersion equations presented in Sec. III,
collective modes can be found as solutions of the equations. Below we briefly discuss the photon, electron, photiono
and selectron excitations.

• The structure of polarization tensor (26) is such as of usual non-supersymmetric QED plasma. It also coincides
with the gluon polarization tensor of QCD plasma. Therefore, the spectrum of collective excitations of gauge
bosons is in all three cases the same. In equilibrium plasma we have the longitudinal (plasmon) mode and the
transverse one which are discussed in e.g. the textbook [21]. When the plasma is out of equilibrium there is a
whole variety of possible collective excitations. In particular, there are unstable modes, see e.g. the review [10],
which exponentially grow in time and strongly influence the system’s dynamics.

• The form of electron self-energy (38) happens to be as in usual non-supersymmetric QED plasma. The quark
self-energy in QCD plasma has the same form. Therefore, we have identical spectrum of excitations of charged
fermions in the three systems. In equilibrium plasma there two modes, see in e.g. the textbook [21], of opposite
helicity over chirality ratio. One mode corresponds to the positive energy fermion, another one, sometimes
called a plasmino, is a specific medium effect. In non-equilibrium plasma the spectrum of fermion collective
excitations changes but no unstable modes have been found even for an extremely anisotropic momentum
distribution [11, 12].

• The photino self-energy (45) has identical structure as the electron self-energy (38) and thus the spectra of
collective excitations are also identical. When the plasma momentum distribution is anisotropic and unstable
photon modes occur, the photino modes remain stable. Supersymmetry does not change anything here.

• The selectron self-energy (60) is independent of momentum, it is negative and real. Therefore, Σ̃ can be written

as Σ̃ = −m2
eff where meff is the effective selectron mass. Then, the solutions of dispersion equation (10) are

Ep = ±
√

m2
eff + p2.

We conclude our considerations by saying that the collective modes in ultrarelativistic plasma of N = 1 SUSY QED
are essentially the same as in ultrarelativistic electromagnetic plasma of electrons, positrons and photons.
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Appendix: Green’s functions of Keldysh-Schwinger formalism

We present here the retarded, advanced and unordered Green’s function which are usually labeled with the indices
+,−, >,<, respectively. The form of these functions for free non-equilibrium fields can be found in e.g. [14].

1. Photons

The functions of interest for free electromagnetic field in the Feynman gauge are

D±

µν(p) = − gµν
p2 ± i sgn(p0)0+

, (A.1)

D>
µν(p) =

iπgµν
Ep

(

δ(Ep − p0)
[

fγ(p) + 1
]

+ δ(Ep + p0)fγ(−p)
)

, (A.2)

D<
µν(p) =

iπgµν
Ep

(

δ(Ep − p0)fγ(p) + δ(Ep + p0)
[

fγ(−p) + 1
]

)

, (A.3)

Dsym
µν (p) ≡ D>

µν(p) +D<
µν(p) =

iπgµν
Ep

(

δ(Ep − p0)
[

2fγ(p) + 1
]

+ δ(Ep + p0)
[

2fγ(−p) + 1
]

)

, (A.4)

where fγ(p) is the distribution function of photons which are assumed to be unpolarized. The function is normalized
in such a way that the photon density is given as

nγ = 2

∫

d3p

(2π)3
fγ(p), (A.5)

where the factor of 2 takes into account two photon spin states.
One checks that the functions (A.1, A.2, A.3) obey the required identity

D>
µν(p) −D<

µν(p) = D+
µν(p) −D−

µν(p). (A.6)

The left-hand side of Eq. (A.6) equals

D>
µν(p) −D<

µν(p) =
iπgµν
Ep

(

δ(Ep − p0) − δ(Ep + p0)
)

= 2iπ gµνδ(p
2)
(

Θ(p0) − Θ(−p0)
)

. (A.7)

Using the well-known relation

1

x± i0+
= P 1

x
∓ iπδ(x), (A.8)

one immediately shows that the right-hand side of Eq. (A.6) equals the expression (A.7).

2. Electrons

The functions for free massless electron field are

S±(p) =
p/

p2 ± i sgn(p0)0+
, (A.9)

S>(p) =
iπ

Ep

p/
(

δ(Ep − p0)
[

fe(p) − 1
]

+ δ(Ep + p0)f̄e(−p)
)

, (A.10)

S<(p) =
iπ

Ep

p/
(

δ(Ep − p0)fe(p) + δ(Ep + p0)
[

f̄e(−p) − 1
]

)

, (A.11)

Ssym(p) ≡ S>(p) + S<(p) =
iπ

Ep

p/
(

δ(Ep − p0)
[

2fe(p) − 1
]

+ δ(Ep + p0)
[

2f̄e(−p) − 1
]

)

, (A.12)
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where fe(p) and f̄e(p) are the distribution functions of electrons and of positrons, respectively. We assume here
that both electrons and positrons are unpolarized. The distribution functions are normalized in such a way that the
electron density equals

ne = 2

∫

d3p

(2π)3
fe(p), (A.13)

where the factor of 2 takes into account two spin states of each electron. The functions (A.9, A.10, A.11) are checked
to obey the identity S>(p) − S<(p) = S+(p) − S−(p).

3. Photinos

The functions for free photino field read

D̃±(p) =
p/

p2 ± i sgn(p0)0+
, (A.14)

D̃>(p) =
iπ

Ep

p/
(

δ(Ep − p0)
[

fγ̃(p) − 1
]

+ δ(Ep + p0)fγ̃(−p)
)

, (A.15)

D̃<(p) =
iπ

Ep

p/
(

δ(Ep − p0)fγ̃(p) + δ(Ep + p0)
[

fγ̃(−p) − 1
]

)

, (A.16)

D̃sym(p) ≡ D̃>(p) + D̃<(p) =
iπ

Ep

p/
(

δ(Ep − p0)
[

2fγ̃(p) − 1
]

+ δ(Ep + p0)
[

2fγ̃(−p) − 1
]

)

, (A.17)

where fγ̃(p) is the distribution function of photinos which are assumed to be unpolarized. The function is normalized
in such a way that the photino density is given as

nγ̃ = 2

∫

d3p

(2π)3
fγ̃(p), (A.18)

where the factor of 2 takes into account two photiono spin states. One checks that the required relation D̃>(p) −
D̃<(p) = D̃+(p) − D̃−(p) is satisfied.

4. Selectrons

The functions for free selectron field are

S̃±(p) =
1

p2 ± i sgn(p0)0+
, (A.19)

S̃>(p) = − iπ

Ep

(

δ(Ep − p0)
[

fs(p) + 1
]

+ δ(Ep + p0)f̄s(−p)
)

, (A.20)

S̃<(p) = − iπ

Ep

(

δ(Ep − p0)fs(p) + δ(Ep + p0)
[

f̄s(−p) + 1
]

)

, (A.21)

S̃sym(p) ≡ S̃>(p) + S̃<(p) = − iπ

Ep

(

δ(Ep − p0)
[

2fs(p) + 1
]

+ δ(Ep + p0)
[

2f̄s(−p) + 1
]

)

, (A.22)

where fs(p) is the distribution function of left or right selectrons and f̄s(p) is the distribution function of left or right
antiselectrons. We assume that the distribution functions of left and right (anti-)selectrons are equal to each other.

The functions (A.19, A.20, A.21) obey the identity S̃>(p) − S̃<(p) = S̃+(p) − S̃−(p).
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[11] St. Mrówczyński, Phys. Rev. D 65, 117501 (2002).
[12] B. Schenke and M. Strickland, Phys. Rev. D 74, 065004 (2006).
[13] T. Binoth, E. W. N. Glover, P. Marquard and J. J. van der Bij, JHEP 0205, 060 (2002).
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