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0 Introduction
This paper considers the initial—value problems of the nonlinear heat equations with

singular potentials and singular coefficients in the form

[ ut—t—{Au — V() fG) +g(a)s (2.0 € R X (0,00),

(D
1 u(Ist):Mo(l")9 -TGR“7
and the initial-boundary-value problem
w = = V) [+ () 1€ Q. 0<1<T,
uCs0) = uy (), r € 0 2
1 ulxst) ‘ <o, = 0,

where n >3, V(2), g(a), uy(x) are given functions in 2, and 2 C R" is a smooth domain
containing the origin.
In the cases = 0, f(w) = u”, p > 1. (1) reduces to the following problem:
w, — M = u’, (x,t) € R" X (0,00),
{ u(x,0) = uy(x), x €& R
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There have been a number of papers devoted to the study of this problem "%, Recently,
JIAN et al. ") studied (1) in the case where V(z) =1, 6 >0, f(u) = |u|? " u, p>1
and u, (x) = 0. They got the existence and non-existence of global solutions; ZHANG and
ZHAOY studied (2) in the case whereg = 0, f(u) = |u|?'uand V(&) possesses singu-
larities and they got the existence of singuar solutions, and CHEN, ZENG" discussed
the singular case when f(u) = |u|? " wu

In this paper we investigate the existence of weak solutions of problems (1) and (2)
in the case wheres >0, V(&) is a singular function, and the rightside possesses a general
form. Our results intensively extend the results metioned above to more general and more
difficult situations, i. e., the non-singulairity or mono-singularity case is extended to
multi-singulairity case, and the special nonlinear term form of singularity is extended to

the more general form with singularity.

1 Preliminares

Given an open set 2 & R"and a function f(x), we denote

Ky(f) = SupJ' sl

‘ . n—2 dy‘
e | X y

Definition 1" A Borel measueable function f is said to belong to the Kato class K, ,

if
lim[ supJ ‘f#)ﬁz dy} = 0.
>0 . eRr o=y <r | — N
Definition 2'> A Borel measueable function f is called a Green tight function in K",
if f € K, and
lim[supJ ‘f#)r? dy} = 0.
M—>co ZER" | y‘ =M | X — Y -

Replacing R" by 2, we get the Green tight function finQ.

Remark From [11] we know that K,(Q) D L,.?(Q) (¢ > n/2), and from [13] we
have that if fis a Green tight function in R", then Ky ( f) < co,

We denote by

2
T3

Go(xsy) =cla—yl*"s 2 £y, c = JO an;ad‘
the fundmental solution of Hy =—A inR", and by G(x,y) the Green function of the opera-
tor Hy =— A in (2 with the homogeneous-Dirichlet boundary condition.

In the following arguments we shall use the 3G theorem in a substantial way:
Lemma 1( 3G Theorem)  Let 2 be a domain with the Lipschtiz boundary. Then,
there exists a constant C = C(n), such that

G, y)G(ys2) 1 1
G(x,2) \C[\x—y ”ﬂL\y—z

If Gis replaced by G, and 2 by R*, then (3) still holds. For the proof we refer the reader to

,Iz]styy,ZE.Q. (3)
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[13].

From the 3G theorem, we get immediately

Corollary 1 Let f be a Green tight function in 2 or R". Then there exists a constant
C, such that

L[ GGy | 750 16320 dy < CKy () )
or
1 L s .
G%(I’O)Jﬁf)o(x,gﬂ\\f(y)\(}o(y,o) dy < CKer (). (5
Let e ™ (x,y) be the fundmental solution of the operator d, — Hy, i. e. ,
() = L
e "o (x,y) (e )¢ .

Then the fundmental solution G, (x,y) of the operator H, and the fundmental solution of

d, — H, have the following relation:

Lemma 2
J e M (2, )ds < Go(asy)s xF y (6)
0
fje*‘HO (xoy)ds = Go(x,y), a7y P
0
Proof (6) follows easily from the non-negativity of the intergrand . To prove (7) we
make the change of variables = =, and get

N

Z 3

Jwe"‘Ho (x.y)ds :J e Nx—ylPds=c |za— ]| =Go(xsy), if 2 #£ .
0 0 (47_()71,

This completes the proof.

Denote by G(x,y) the Green function of the operator H, in 2 with homogeneous-
Dirichlet boundary condition, and by I'(x.z;y,s)(t > s) the heat kernel of the operator
d,— H, with the homogeneous-Dirichlet boundary condition on QX (0,c2)!", We then
have

Lemma 3™

frum%o$<cuwx (8
0

ﬁ%u@%m&:abw. (9)
We denote h(z) = V(2)/| x| “ 2%, Note that Q is a ball and V = V(| z|) is a radial

function. The following lemma gives a sufficient condition of h(x) being in K,, .

Lemma 4 (a) LetV = V(| z|) be a radial function, for some r, > 0,
| dr < o, (10)
0
Then the function h(x) =V (2)/|x

oD@~ defined in B(0,r,) belongs to the class K,.
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C

Especially, if V(x) = [0 [ <2 1< p <:*é, then (10) holds. i. e+ h(x) =
- —
C/‘I r=2) (p—1D)+H. 6 K,.
(b) LetV =V (| x|) be a radial function and satisfy

| Ve dr < oo (11)
0
Then the function h(x) =V (x)/ |z

D@D defined in R is a Green tight function. Espe-

cially, if V(z) = M[(li e L B 1< p< =L, then (1) holds. i.e. .
hix) = c is a Green tight function in R".

- “T (rzmrl)ﬂ(l + ‘I‘ﬁ)
Lemma 5" Leth(x) =V(2)/| x| 2%V € K,. Assume that w(x,t) is a bounded

function in R* X [0,00) . Then the funtion

w(ent) = wa ¢ (2D V ) [y, )Gy, 0) JPdyds

is continuous in R" X [0,00),

Remark Lemma 5 still holds if we replace e "0 by I'(xst;3y,5) .

2 Main Results
Suppose that
(HD) uy(x) € C*(R") is nonnegative and for some M, > 0, M, > 0, it satisfies
uy () < MGy (x,0), x € R'\{0}, (12)
| Auo () | < MoGo (2,0 by ()4 & € R'\{0}, (13)
where i, (2) is a Green tight function in R" ;
(H2) g(x) € C°(R") and there exists a constant M; >> 0 such that
| g() | < MGy (a0 hy (), x € R'N\{0}, o

where h; (x) is a Green tight function in R” ;

(H3) The function h(x) = % is a Green tight function in R” ;
X

(H4) f(w) € C'(R") and there exist C,,C, such that | f(uw) |<<C, | u |? and | f(w)
<G lul".

We then have

Theorem 1  Assume that (H1)~(H4) hold. If M; > 0G =1, 2, 3) in (12) ~(14)
are small enough, then there exists a sufficiently small number @ > 0 such that the Cauchy
problem (1) has a weak solution u(x,2) satisfying | u(x.t) | <<aGo (2,0) s 2 € R'\{0},0<
t << T, where T is an arbitray fixed number .

For the problem (2), we suppose that

(HD' uy € C*(Q) is nonnegative and there exist m; > 0, m, > 0 such that

uo () < mG(z,0), x € O\{0}, (15
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Do () | << moG(x O hy (1) s x € Q\{0} . (16)
where h; () € K, inR",
(H2)' g(x) € C°() and there exists m; > 0 such that
| g [ < m;Ga s 0Oh (&) s x € O\{0}, an
where h,(x) € K, inR" ;
(H3) h(x) = V() /x| 2P € K, inR".
Theorem 2 Assume that (H1)'~ (H3)" and (H4) hold, If m; >0 (i = 1,2,3) in

(15)~(17) are small enough, then there exists a sufficiently small number ¢ > 0 such that

problem (2) has a weak solution u(x,t) satisfying
| ulz. D[ < aG(x,00, € O\{0}, 0Tt << T.
Remark If we keep all other conditions in theroem 1 and theroem 2 and replace h(x)
C C (n—1D

| DG and [ [ PF DA+ [ 2P (n—2)

tively, then the results of theroem 1 and theroem 2 still hold.

by‘ » (1<<I<C2,8>1,1<p << ) respec-

Proof of Theroem 1
Case | ¢>0andos =~ 1.
Let u(x,t) be a weak solution of the problem (1) and let w, (x,¢) = u(x,2) —u, ().

Then w, (x,t) satisfies
w, —t—{Awl — V(@) £ (oat) +ay (2)) + g(a) +7{Auo, (220) € R (0, 02|

w (x,0) =0, x € R" [
(18)
We call w, (x,1) a weak solution of the problem of (18) if it satisfies the following integra-

tion equation

w (2.0) :J TCECs) — eV f (aas) + 1, (1)) + g(a) +%Auo<x>]ds, (19)

B 1
where T(Z’)g(l) :JR” e ©Hy (1,y)g(y)dy» E(f) = m.
Set *E(‘)*S(z‘)*é 11 0<<e<ls<<t
e = &Cs _6_1<5r1 trl)’ ExIsn

Then, s = s(z,t) = t[ 1+ (6 — l)trlrjl%v Jds =—r[14+ (6— D' de =— ¢°dr.
so that

e>0'vE S
(o) .
v lirr}lJO T [ V(@) f(w (s (2 0) Fup (1)) + g J[ 1+ (6— D' o] de+
e>0

(e)
lim J T @M () e (20)

64’0‘

_ 1 11
where r(e)—[fil(&ﬁ tﬂ>.
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We now consider two different situations.

(a) Assume thats > 1. Then lirrlr(e) =-+ oo and (20) can be written as

e>0

wy (x51) —J T(o) Auy (2) errz“’J T [V (x) flw (x, (s(rst)) +up (2)) +g(a) ] »

(14 (c— D '] dr. (AD)
Let w, (x,t) = w(x,t)Gy(x,0). Then by lemma 2,

| T@an @ de = [ e ymn dyde =[Gy, (dy

] .
W = (J,O)J G, v+ ’O)J T [+ G— D e de +
J T(r)[V(x)f('w(l,s(r,t))00(1,0)+u<)(x))] 1+ (— D' c]fdr=
(Io(IaO) 0
IL(o)+ L{(x.t) +Fwlx.t) = Fowlx,t). 22)
Set

Sor = {wé& C RN} X[0.TD | |wlz.t) | < al. (23)

Sinces = s(zst) = t[1+ (¢ — 1)Z‘HT:|1 —~, We have 0 < s(z,t) << t, Yz > 0. Thus,
w(x,s(z,t)) € S, 1 supposed wlx,t) € S,r. We show below that the mapping F has a
fixed point in S,.7 .
By (13) and (5), we have
M,
= Gy(x,0)
Since #°[1+ (¢ — l)z‘(rl)r]“ t, fore >1,Y7>0. By lemma 2, (H2) and (5), we

have,

Lo |< j G sy (G (3500 dy < OV Ko (). 20)

Lo <] Goen e ldy <

(25)
M |
G(}(;iO)JRIGO(x,y)hz(y)Go(y 0)dy < (M, Ky (h)ee.
From (5), (H1), (H3) and (H4), we obtain
\Flu\\Go(;‘,o)JJ “Hy (o) [ V) [w(yss(zs )Gy (350 + 1o () | ) dydr <
(fo(x’o)mleP)J Gl [V | G306y (v, 0 dy <
S <aP+MP>J' Go (s )h(Gy (3, 0)dyds <
G()(I,O) 1 I 0 ’ 0 9 SRS
C27 7 (o + M, ") K (h). (26)

We get, from (24)~(26), that

| Fow | < ML K (hy) + CM K Gho) T2 4 C27 o + MDD K (B) T
For a fixed T, by virtue of p > 1, we might as well suppose M, < a, it’s easy to find a,
M, (i =1,2,3) such that | Fro| <a. To prove the continuity of Fro(x,2) , it is sufficient to
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prove the continuity of Fiw(x,#).

Fraw(est) c,()<§,o>ﬂ DIV f(y sty (3:0) +up ()] +

[1+ (G — D" ]%de
Since [1+ (6 — D™ ] < 1 and

f(u'(y,s(T,t))Go(:)UO)+u0<y))<CUJ(ny(T9t))Go(y O)+Mo(y))‘/j
Go(y,0)? Go(y,0)?

‘Z(VD(a”—ﬁ—Mlp)
By lemma 5, we find that Fyw(x,¢) is continuous in R"\{0} X [0,20). Thus Fw(x,t) is

continuous in S, r.
Therefore, F:S, + — S,.ris a continuous mapping. Now we verify that F is a contrac-
tion mapping.
For any w, ,w» € S,.r» we have
| Fay (xs1) — Fw, (xs) | = | Frwy (240) — Fiw, (x,0) | =

r
(JO (170)

| Dt =D e @V f GG, +

(1 - (9)'102Go + Uy ) (w1 — Wo )Godydl'

<
Golat+M)"
Go(IaO)
| (yas(z:0)) — w0, (yys(oat)) |« [14 (6— D e 7o dyde <
C’TG(O(+M1)I%IKR”(}L) | W) — Wy | (27)
For a fixed T, since p > 1, we can choose postive numbers a,M; small enough so that
CT?(a+M)" ' Kgr (h) < 1,

Therefore F is a contration mapping. By the Banach fixed point theroem, F has a unique

L ) [ V) |G (3,0) -

fixed point w(x,2) in S, .+ which is the continuous solution of (22), and then w, (x,t) =
wlx )Gy (x,0) (r € R"\{0}) is the solution of (21) or (19), i.e.
ulx,t) = wlx,t)Gy(x,0) 4+ uo (x)

is a weak solution of Cauchy problem (1).
( —0)

(b) Assume that 0 << ¢ <C 1. Then hmr(e) =1 < oo, and (20) reads

e—>0

(=)

wy () —j T<T>Auo<l>df+ffj

(I—o)
1=

nl 7T

T(o) -

[V(2) [ (@ss(rs) +us () +g(@) ] [1+ (— D" Ve ede. (28)

Because of s = s(z.2) = t[ 14 (6— 1)t“ P z]7+. we obtain
t(l*r)
1_

Therefore, the arguments in (a) are still valid in this case and then the desired assertion

<S(T7I)<t9 V O<T<
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holds.

Case [[ ¢ = 1.

We call w, (x,t) a weak solution of (18) if it satisfies the following integration
equation
w G = T(In- )4“0(1)d +[ T(In-) V) faen (o) g0 + gl s (29)

where T(0) g(x) = JR oz, g(ydy .

Letr = In(¢/s), thens = te *, ds =— te “"dr =— sdr. Therefore, (29) becomes
w; (. 1) ZJJJRI@*THO (xsy)Auy(y)dydr+ tj;lefij”eﬁHO (x,y) o
[V(y) o flw (yes(za)) +uo(3)) + g(y) ]dydz (30)

where 0 < s(z,t) = te < ¢, Y >0. The above conditons are similar to those of (a), so
we can make use of Banach fixed point theroem to obtain the existence of solution of the a-
bove integration eqution and hence we obtain a weak solution of problem (1). The proof of
theroem 1 is complete.

Proof of Theroem 2

Let u(x,2) be a weak solution of problem (2), and let w, (x,1) = u(x,t) —uy,(x). By
virtue of the fact uy(x) € C*(R"), we see that w; (x,t) satisfies the following problem

wy,, ft—lgAwl = V(2 f(w (xs8) +up(2)) + g(x) —O—t%Auo,(x,t) € O\{0} X (0,T7,
w ‘mxm.ﬂ =0,
wh (1‘70) - O,-T 6 Q.

3D

We call w, (x,1) a weak solution of (31) if it satisfies the following integration equation

w (T51) :J; TG —EGNH[ V(@) flw (xst) +uo () + g(2) —I—T{Auo (2)]ds, (32)

where T(0) g(x) :J I'(x,t59,00g(y)dy. I'(x,t;y,s) is the heat kernel of the operator
0

d, — A with the homogeneous-Dirichlet boundary condition in the region X (0,o0), and

S S .
£(t) = J(J—I)Z‘H’ if o7 15

—In i, ifo=1.
Then, replacing (H1) ~(H4) by (H1)'— (H3)' and (H4), using Lemma 3 instead of
Lemma 2, and deriving by similar arguments as in section 2, we get all the assertions in

this section. This completes the proof.
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