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Abstract; The output signal to interference-plus-noise ratio (SINR) of linear multi-

stage parallel interference cancellation receiver in a random environment is consid-

ered. When the number of users and the spreading factors tend to infinity with their

ratio fixed, the properties of limiting SINR are studied. Under some weak condi-

tions, the strong consistency and asymptotic normality of the SINR are obtained.

the tools of large dimensional random matrices are mainly employed.
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0 Introduction

Recently, there are a lot of papers concerning the large system performance of code
division multiple-access (CDMA). Some popular linear multiuser receiver is usually con-
sidered, such as single matched filter (MF) receiver, decorrelator receiver and linear mini-
mum mean square error (MMSE). In [1], a new approach is presented, where the sprea-
ding sequence is modelled as random sequences. So one can study the asymptotic limit of a
large number of users and a large spreading factor by the tool of large dimensional random
matrices. This paper focuses on a linear multistage parallel interference cancellation (IC),
which can attain near-MMSE performance with less computational load . Our linear
multistage partial parallel IC (PPIC) is based on the first-order stationary linear iterative

method™® , which has only one partial cancellation factor. In this paper the performance
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measure for each user is considered as the output signal to interference-plus -to noise ratio
(SINR) of the receiver. We show that the limiting SINR is independent of the specific re-
alization of the random spreading sequences. The fluctuations of SINR around the limit is
proved to be asymptotically Gaussian. In a related work, Louis et al ") studied the problem
of large system of linear multistage parallel IC. They showed that the SINR converges in
probability to a deterministic scalar, and provided a simulation result for mean-squared er-
ror (MSE) between SINR and the large system SINR. In contrast to their results, the con-
vergence of the SINR is with probability one in our paper and the asymptotically Gaussian
of the SINR is justified by limit theorems.

Our results are asymptotic in nature, with both K and N going to infinity. Through-

out this paper, the ratio of K and N is denoted by y = lim %, as is the standard" %,
K->oo

1 System Model

We consider the following discrete time model for a synchronous CDMA system. Sup-
pose there are K users in the system when the processing gain is N. The baseband received

signal in a symbol interval is
b

r:E«/ﬁbis’i—O—w (D
i=1
where b, is the symbol transmitted by useri,s; € RYis the spreading sequence of user i and
the noise vector wis Gaussian with zero mean and covariance matrixs* I. We assume that b;
is independent, Eb; = 0, Eb,> = 1 are independent of the noise. Here the received powers
of different users are assumed to be the same with common power P.

We shall now focus on the demodulation of user 1. A linear receiver generates an out-
put of the form 6, * = ¢f r and the output SINR is defined by
P (T 5)?

e .
(el e+ D Pl s)?
i=2

SINR, = (2

(refer to [1],[2]and [4]). For performance analysis, we assume that the spreading se-

quences are as follows:

5; = Tlﬁ (v ,...’vm)’l‘, i=1,,K.
For all 7 and %, the random variables v; s are independent and identically distributed (i. i.
d. ), zero mean and variance 1. Write S =[5, 5k | for the N X K matrix of the sprea-
ding sequences and S; = [ 55 s535 s 5 | for the N X (K —1) matrix with spreading sequence
of user one removed.

The first-order stationary linear iterative method is

X1om :rr+<1—r <5151T+6T:,1>>I1.,7H (3
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* T
and bl,m — S1T1,m
where x.,, € R" is a measurement vector for user 1 after the mth stage of filtering and can-

celling and 7 is a partial cancellation factor, which is a scalar. After simple calculation, we

m i

have that ¢, = r(E [I—T<5151T+(;I>] )51 ,
i—0

m

(g}%z—%&sﬂ+%gfﬁf

=0

and SINR, = P €Y

ﬁ‘((sls%w—;z)z<1ff<sls{+%1>> Jo

ivj

2 Main Results
Obviously, one can observe that a key item is s{ (S, ST)’s, in the analysis of the large
system SINR. Let Sq, = /NS,
VK

and Fy be the empirical spectral distribution of the eigen-

N

DI < )
values of Sy Sy » 1. e. » Fy(z) = = N . There are plenty of results for the limit-
ing sprectral distribution in the literature!” """, The following is a well known result.

Lemma 1 Suppose that N_, v, and that Ev};, < o, then

K
Fy(x) = F,(x) a. s. as K—co
and Armx(s<1>S<Tl>)_’(1+«/§)2 a. S. sas K—co

where F,(x) is a continuous , deterministic probability distribution function, having a
. . ) ) 1
density with support on ((1 —+/y)?,(14++/y)?), and for y > 1, F,(x) places mass 1 ——
Y

at 0. The following lemma also plays an important role in our analysis.

Lemma 27270 et X = (X, ,++,X,) where X;’s are i. i. d. complex random vari-
ables with zero mean and unit variance. Let C be a deterministic n X n complex matrix.
Then, for any p == 2, we have

E| X" CX —uC|» < K,(E| X, |'trCC*)* +E| X,

Now we can set up our lemma.

e (CC* ).

Lemma 3 Assume that vy ,j.k = 1,2,-, are i. i. d. real random variable with Evy;

=0, Evi, =1, for p > 2, Evi{ < ©© and Air’n\ N _ vy > 0, then, the random variable

K
sT(S,ST)' s, converges with probability one to the fixed scalar
8 = (4 Twz "dF, () (5)
i\Y) = (y) . xrdr, (x).

Proof Note that s, is independent of S, and (S;ST)’ is a symmetric matrix. Hence, by

lemma 2., we have that
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E|sT(S S s, —%msls{)f

' E(E(

ST(S,STY's, —%msl STy

p

Si8T)) <

]\II/JC,,E{[Evhtr(Sl SHI((S,SHDTTE + Evtr((S,SH ' ((S,SHHTHT ) <
ﬁcp«Evhﬁ’ E(tr(S,SDH*) + Evif Eu(S,SH") <
1 (S SH#\ % 1
FOE(TNT) <G

where the last inequality follows from the proof of [9] and C, may denote different con-

stants at different positions. By appealing to Borel-Cantelli lemma, we have
T(SISD 51 = (SIS =0 as, (6)

Furtherly, observe that
1 . 1, K i . 1, K i N 1
NTI’(S]S?) :N<ﬁ> tr(SmS(Tl)) = N(N) ;#] —

i _ iraem»E
(%) J ' dFy(x) — (%) JO x dF, (x) a. s. )
which follows from Helly-Bray lemma and lemma 1 or directly from the proof of Theorem
2.10f [9].

Combing (6) and (7), one can conclude that

v 1 ifa»t
TSSD s~ () jo 2dF, () >0 as.

Thus the proof of the lemma is completed.
Theorem 1 Under the conditions of lemma 3, the SINR of the m-stage PPIC receiver

converges with probability one to a fixed scalar

|

SINR® = —
DG+ Dgi+ =g ]
i=0

BRI I SN

where h; = ( T)]Z:;)(P r) (j)S{)](y)

5= (— fyjjo (%—%)’ﬂ C)(@-H (» +“—;¢,<y>>.

Proof Applying lemma 3 and some matrix knowledge, one can obtain theorem 1. For
details, refer to [2].
Before moving on, we need some notations and one more lemma.

Let Ay = S, S8, and UyA v UYL denote the spectral decomposition of Ay.
Let Yy = (3153255 yn) = v NUL s1. Define the process

1 [Nt]
Xy () =, /ﬁ; (y2—1).
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Lemma 45 Toen A1l f the assumptions of lemma 3 are satisfied and v;; is symmetri-

cally distributed about 0, then

£
Xo (Dot »D[WUH ﬁt} 8)
N c[0,1] 2 et

where W(¢) denotes a Brownian bridge, & denotes a Gaussian random variable with zero
mean and variance Evi; —1,W(z) and £ are independent and the convergence is in the sense
of distribution in D[0,1], the space of right continuous functions with left limits, e-
quipped with the Skorohod topology. Now we can set up the next result.

Theorem 2 Under the assumptions of lemma 4,

m

2(1—T<slsw“2 ))"sl)Z—(}VEtri<I—T(sls?+ff;1))")z i

5
/N2 _ L N,
S{((Sls’f“%%I)E(I*T<Slskf‘+%l>>ﬁ]>51 N0

inj

)]

m

where ¢% = (Z(—r)’zi] (ﬁ—lyj(%)%(y))z X

i=0 7=0 T

[ZJ(H@Z(i(lT(‘j;—l—j)))dF(I)—l—(EvuS)U(Hﬂ?lmo( (% y))idFy(r))j
(

0

2 [(Z+ l)g + (7}’L— Z)ém—h—H])
(10

W(sfi ([—T<Sls{+%l>>[h — <tr,2 I—T<S1S1T+U*;I>>i)> =

i=0

A
AR (ST o e (R ({55 ) ]+
AR (S50 ) RE (R (ST )J2

=0 i

Sy, + Sy, - an

L m B i K i N m B d K i
LetBN—dlag<§(1 T(P_'_N’u 1)) ety ;(1 z-(P—f—N/uN)) ) and (By); denote
the j-th diagonal element. In the sequel, a~ denotes the value smaller than a. Expanding

out the first item on the right side, we obtain

N
Sy = VN(SUBU, ——}VmB\o) = TIN YA'ByYy —tr(By) = %E — DBy, =
N e & K
22 (By); Xy Fx((Bo; ) — Xy (Ey((By); ) = J 2 (A= o) dXy(Fy (@) =
j= i=0

_ﬁﬁij”(F”(I»d< > (1_7(% +IN<I)) >)+ﬁ2 (1—r<% +I—]§x) )ixw(mx)) tos L
C 24

=0
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ﬁz (1—(2 +%) ) % —ﬁj(%’zwo@u)) +éFy<x>>d[2 (1—T<% +2) ”:

j<1+f> lTZ(l_T( ;‘))i]d(WO(Fy(I))JréFy(I)) (12)

which follows from the lemma 4 and lemma 1 P~V , Furthermore, note that

LA (Z o B EeE (e 5))] <

Ne 2B

SUEBI)) (IS R)) ) <
m 2

i
m E E[(—T Z‘,("—;—l)ﬁ C)ur(sls'{)fEtr<sls§‘>f>} <

T

m

mEH_ 2(%f

i=0 =0

26— 1.2
) (l) E(tr(S,STY — Etr(S,S1)1)? (13)
7]

Al

. .
which follows from C, inequality. Define Ry = J:rj dFy(x) = U‘(;S]l\fi’ then, we have
) ogN\)*
E(Ry —ERy)? = o( ON2 ) (14)
(one may see [ 9],P 67). Based on (16) and (17),
SN2 —- 0 in probability. (15)
Hence v, Sy, =" N(o.03) (16)

where o, =2

J(l%)

(S0

i=0

)) ) dF, () +

o Py
(Eoly —3) (J(% 70( <%+§)) dFy(x)>2.

Next, observe that

}V<Etri (1—T<sls{+”—}i1>>i) o) <”—; 1>ij<l_)]ifEtr(S1Sif)’ -
i=0 i=

= im0 T J
PICLD) <"—; —%)W (;) (%)EJ 0 dFy () >
R (e 0

which follows from Lemma 3.
Applying Theorem 2. 5. 21"} and Slutsky’s Theorem, with (19)and (20), one can

conclude that
m ; m 9 i 2

WU.{;<I—T<sls{+“;1>>.'sl>2—<1Etr2<1—r(sls?+‘;1))'> ]3
N<o,<ﬁ;<—r>f§<ﬁ— 1) ( )95 (y)) o, ) (18)

Thus the final result follows from Slutsky’s theorem and lemma 3.
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