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0 Introduction

For all the terminologies and notations not
defined here, we follow ref. [1]. For a graph G =
(V, E) and SC V(G) or S C G, we use E;(S) to
denote the set of neighboring edges of S in G, that
is, Ec(S) = {ay: y e VG—S), 2y € E(G) for
some r € S}.

interconnection networks,

In this paper, we use graph and
nodes and vertices,
links and edges interchangeably.

Edge connectivity is an important parameter to

measure the fault tolerant ability of interconnection
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networks, however, in many cases this parameter
greatly underestimates this ability. Since in many
practical applications it can be safely assumed that
any set of faults in some networks can not contain
all links which are directly connected to some
processor. For these networks, the classical edge
connectivity may not be accurate measures of

2= To compensate for this

network reliability
shortcoming., ref. [ 2 ] proposed the concept of the
restricted edge connectivity A' (G) of G. A subset S
C E(G) is called a restricted edge set, if S does not

contain the neighboring edge set of any vertex as
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its subset; and a restricted edge set S is called a
restricted edge cut if G— S is disconnected. If there
exists a restricted edge cut S in G, then the
restricted edge connectivity A' (G) = min{| S| :Sis
a restricted edge cut of G}. Ref. [ 3] determined
that ' (Q,) = 2n— 2 for n == 3, where
dimensional hypercube. As far as we know, the

folded

. 1s an n-
restricted edge connectivity of the
hypercubes has not been determined.

Ref. [ 5] has generalized the concept of the
restricted edge connectivity to the h-restricted edge
connectivity. A subset S C E(G) is called an h-
restricted edge cut if G — S is disconnected and
every remaining component has the minimum
degree of vertex at least h. If there exists an h-
restricted edge cut S in G, then the h-restricted
edge connectivity A"(G) = min{|S|:S is an
h-restricted edge cut of G}. Ref. [ 5] has

determined that the A-restricted connectivity of Q,
is K (Q)=(—h)2" for0<h g{%j But they did not

determine the h-restricted edge connectivity of Q,.
Ref. [ 6] has defined A(G; %)) for a given non-
negative integer h as the minimum cardinality of a
set of edges, if any, whose deletion disconnects G
and every remaining component has more than h
vertices. And they called this type of conditional
edge connectivity as h-extra edge connectivity of G,
denoted by A, (G). To be exact, an edge-cut S of G
is called a %, edge-cut if every component of G— S
has more than h vertices. If there exists a &, edge-
cut in G, then the
2.(G) =min{|S|:Sis a ¥, edge-cut of G}. By
definition, a graph G having the property &,

h-extra  connectivity

implies that every component of G contains at least
one vertex. Thus, 1, (G) = A(G) if G is not a
complete graph.

Since for any graph G and any edge subset F,
the condition that there is no isolated vertex in
G — F and the condition that F does not contain the
neighboring edge set of any vertex is equivalent, so
a P, edge cut of Gis also a restricted edge cut of G,
thus for any graph G, if 1,(G) or A;(1) exists,

then;:
A6 =46,

We are, in this paper, interested in the
hypercube Q, and the folded hypercube FQ, . which

have been widely used in the design and analysis of

Lemma 0. 1

interconnection networks. As we have already

known, 1(Q,) = n. Rel. [7] determined A(FQ,) =
n-+1. Ref. [ 3] has determined A' (Q,) = 2n— 2 for
n == 3. Thus by Lemma 0. 1, 1,(Q,) = 2n— 2 for
n == 3. In this paper, we will determine };(Q,) =
3n—4 forn =4, (FQ,) = A (FQ,) = 2nforn =
4., The result A,(Q,) = 3n — 4 means that the
hypercube can tolerate 3n — 4 link failures without
being disconnected provided that all the
neighboring edges of any subtree with order not
more than 2 can’t fail at the same time. This result
greatly improves the fault tolerant ability of n-cube

theoretically.

1 Results on hypercube

An n-dimensional hypercube(i. e. , n-cube) Q,
can be modelled as a graph G,(V,E), with |V|=
N = 2", and | E| = n2"'. Each node represents a
processor and each edge represents a link between
a pair of processors. Nodes are assigned binary
numbers from 0 to 2" — 1 such that labels of any
two neighbors differ only in one bit position. Links
are also labelled from 0 ton — 1 such that any link
labelled i connects two nodes whose labels differ in
the i* bit. Since the rightmost bit position is the
0" position, so all the links labelled 0 are cross
edges. The neighbors of a node u are called
bordering nodes of u. The bordering node of u
across dimension  is denoted by ;. The bordering
node of u; across dimension j is denoted by u;
(Thus u; = u ). The neighboring links of a node u
are called bordering links of u, the bordering links
of u across dimension 7 is denoted by e;(u), since
e,(u) is a cross edge, we also denote e,(u) by
e.(uw.

Theorem 1.1 2,(Q,) = 3n—4,n > 4.

Proof 1) Find a path P, = (u — v — w) of
length 2 in Q,, it is easy to see that \EQ” (Py)| =
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n—D+n—2)+n—1) = 3n—4. Since A\(Q, —
{us, vy w)) = k(Q, — {uy, vy wW)) =n—3 >0
(whenn > 4), so Q, — P, is connected, so Q, —
Eq (Py) is disconnected and contains no isolated
vertex or isolated edge,, (Q,)<| Eq (Py) | =3n—A4.
2) Suppose A C E(Q,), |A| = 3n— 5, and
there is no isolated vertex or isolated edge in Q, —
A. In the following, we will prove that Q, — A is
connected. Following ref. [ 3], we express Q, as
Q, =L &P R, where L and R are the two (n—1)-
subcubes of Q, induced by the vertices with the
leftmost coordinate 0 and 1, respectively, that is,
all the vertices in L are of the form 0 % +++ ¥ and all
the vertices in R are of the form 1 % «++ %, Let A, =
ANL,Ax=ANR. SinceLR=J,s0 | A, |+
|Ar| << |A|=3n—5<4n—9 (whenn>=4), then
either |A; | << 2n— 5 or | Ag| << 2n — 5. Without
loss of generality, we suppose that | Ag | <<2n—05.
In the following, we will prove that the
vertices in R — Ag is connected to each other in
Q.—A.
Case 1
Ags then by ref. [3], V' (R) =1 (Q1) = 2n—4 >
2n—5= | Ag|, soR—Agis a connected graph, we

If there is no isolated vertex in R —

are done,
Case 2
R— Ags then A(R—18) = x(R—uf) =x(R) —1 =
n—2, and |Ag| — | EGR:R) | <2n—5—(n—1) =
n—4. So at most n—4(<AR—u®)) edges of R—uX
may be faulty(may be in Ag), so the subgraphG =
(R—uR) —Agr = (R—Ag) —uf is connected. In the

R

If there exists an isolated vertex «® in

following we will prove that «® is connected to the
subgraph G in Q, — A. Since there is no isolated
vertex in Q,—A., the cross edge ¢, (uf) =, ul) &
A. For1<{i<{n—1, if there exists an ¢ such that
both e;(u") & A and e, (u;") & A(w;" mean the

neighboring vertex of u" which differs from «* in

the ™ bit), then u«® can be connected to G by the

e (uf) e: (ul) ec(uk)
path: uf ut w;-

G=(R—u®
— Ag, we are done. So we may suppose that for
each 7 at least one of ¢; (") and e, (u;7) is in A. Let

B={e;(u"), e |i=1, 2,n—1} N A,

then | B| =n—1. Since there is no isolated edge in
Q, —A., there exists aj such thate; (") = (u*, ")
g AL letC= {e;(), e |i=1,2, -,n—1
but i % j} it is obvious that E(uf:R) (the
neighboring vertex set of «® in R), B and C are
disjoint. So [C N Al << [A| = [AGF R | — [ B] <
n— 3. Since there are n — 2 pair of edges (e; (¢"),
e.(vF)) in C, so there exists an 7; such that neither
e (+F) nor e (v, LY belonging to A,ug can be
connected to the connected subgraph (R—Ag) —ug
through the edges (ugs ur) s Cups v)se; (07) and
e.(v; "), thus completing our proof that the
vertices in R—Ag is connected to each other in Q, —
A.

In the following paragraph, we will prove that
any vertex of L — A} is connected to the subgraph
R — Ag.

Suppose that x! is any vertex in L — A, if
e.(2!) & A, then we are done. So we suppose that
e (') € A. If there exists ani € {1,2,+,n— 1}
such that bothe;(2') & A ande . (2;') & A, then we
are done. So we suppose that at least one edge
from each of the above n—1 pairs belongs to A. Let
B = {e;(a)se(x)]i=1, 2,--,n—1} N A, then
| B'| =n—1. Since there is no isolated vertex in Q,
— A, there exists aj such thate; (') € A. Suppose
thate; (') = (z2',y"). For all the: € {1, 2,---,
n—1} and i % j, if both e;(y') and e.(3!) do not
belong to A, then we are done. So we suppose that
at least one edge from each of the above n— 2 pairs
belongs to A. Let C' = {e;(3") e. (v |i =1, 2,
eyj—1, j+1,sn—1} N A, then |C'| =n—2.
Since there is no isolated edge in Q, — A, so D =
E(e;(2')) —Ag # () (where E(e; (2')) denotes the
neighboring edge set of the edge ¢;(x')). Suppose
that 2’ is an end-vertex of an element of D, and 2/ &

{«',

y'}. Since there is no triangle in Q,. the
vertex ' can be adjacent to just one of the two
vertices ', y'. Let E' = {¢; (), e.(z') |i €{1,2.,
««,n— 1} and ¢;(2') is not incident to x’ or y'}.
Since {e. (')}, B’y C', E’ are disjoint to each

other, so |[E' NA|<3n—5—U+n—1+n—2)
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= n— 3. Since there are n— 2 pairs of edges in E,
so there exists a pair of edges (2!, zi) and e, (2),
neither of which belonging to A, so 2’ can be
connected to the subgraph R — Ag. Since ' can be

connected to 2, our proof is complete.

2 Results on folded hypercube

An n-dimensional folded hypercube FQ, is
basically a standard hypercube augmented with
some extra links between nodes. There are 2"
links between all pairs of complementary nodes.
Two nodes in a hypercube are said to be

complementary if the exclusive-OR of their

addresses gets all 1s.

Theorem 2.1 M (FQ,) =X, (FQ,)=2n,n=>4.

Proof 1) Lete = (x, y) be an edge of FQ, ,
then it is obvious that FQ, Ery () s
disconnected since e is a component of it. Since
k(FQ, —{z, v})) =k(FQ,) —2=n—1>0 (when
n = 3), so there is no isolated vertex in FQ, —
Ery (e) 22 (FQ,) < 2n.

2) Suppose F C E(FQ,), |F|<<2n—1, and
there is no isolated vertex in FQ, — F. In the
following we will prove that FQ, — F'is connected.
Since at least 2n edges are to be removed to get an
isolated edge in FQ,, there is no isolated edge in
FQ, —F.

First we define a map ¢ between V(Q,.;) and
V(FQ,), We use the symbol u to represent an n-bit
binary string, @ to represent u’s complementary n-
bit binary string. We define ¢ as follows:

$(0u) = u, $(lu) = w.

It is easy to verify that the map ¢ induces
another map p from E(Q,1) to E(FQ,) :

ple) = (). 3(y)) € EFQ,)
where e = (&, y) is an edge of Q1.

So ¢ is a graph homomorphism between Q,,
and FQ),. For any edgee = (u, v) € E(FQ,) , ifeis
not a complementary edge(the two end-vertices of
a complementary edge are complementary n-bit
binary strings), then p= (e) = {(Ou, 0v), (lu,
19)} if eis a complementary edge, thenu =, sop"
(e) = {Ou, 19), (0Ov, lw)} = {Ou, 1lu ), (Ov,

1v)} is a set of 2 cross edges in Q,.;. For any edge

set F C E(FQ,), we definep (F) = [6Jpr (e).

We express Q1 as Q.1 = LP R, where L and
R are the two n-subcubes of Q,., induced by the
vertices with the leftmost coordinate 0 and 1
respectively, and we define I, = o (I)) | E(L)
and F, = p (F) | E(R). We define ¢ as a map
from V(L) to V(R) : ¢(0u) = lu. It is easy to
verify that ¢ is a graph isomorphism between L —F,

andR — F,. Since F, N F, = ¢, |F, |+ |F,|<
lp (F)| = 22n — 1, and |F,| = |F,|. so
|Fl=|F|<2n—1.

For any two vertex u, vin FQ, — F, if there is
a path P between Ou and 0vin Q.11 —p (I, then it
is easy to see that p(P) is a path between u and v in
FQ,—F, so if Qi1 —p () is connected, then
FQ, — F is connected, too. In the following we
will prove that Q,.; —p  (F) is connected.

Consider the graph L —F, and suppose that e =
(u, v)is any edge in L. Since \(L—{u, v} ) =x(L
—{us v} ) =n—2>1=|F,—E.(e)| (whenn>=
4). So if there exists an isolated edge e = (u, v) in
L — F,, then L — F, has just 2 components.

Since | F, | << 2n —

isolated vertices in L — F,. And if there are two

1, there are at most two

isolated vertices in L — F,, the 2 isolated vertices
must be adjacent. In the following we will consider
4 cases and prove that Q,;; —p (F) is connected in
all these cases. A) There are 2 isolated vertices in
L —F,; B)There is just 1 isolated vertex in L —F};
C) There is an isolated edge in L — F,, and D)
There are no isolated vertex or isolated edge in L —
F,.

A) If there are 2 isolated vertices Ou and Ov,
from the above we know that (Ou,0v) € E(L) and
F, = E;. (0w | E; (0v), and since x(L — {Ou, 0v})
>n—2>0(whenn>3), soL—{0u, Ov} =L —
F, — {Ou, Ov} is connected. Since L. — F, is
isomorphism to R—F, under the map ¢, so the two
isolated vertices in R—F, are ¢(Ou) = lu and ¢(0v)
= loand R — {1lu, 19} is connected. Since | F,| =
2n— 1, there is no element of p~ (F) which is a

cross edge between L and R.Ou and Ov are
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connected to the connected subgraph R — {1z, 17}
via (Ou, lu) and (Ov, lv) respectively. The 2
isolated vertices in R — F, are connected to the
connected subgraph L — {u, v} of L — F, via (Ou,
1z) and (0w, 1v) respectively. And since the cross
edges between L — {u, v} and R— {1u, 19} do not
belong to o~ (F), so the two connected subgraph
are connected to each other, thus completing our
proof, Q.1 —p (I) is connected.

B) If there is just 1 isolated vertex Ou in L —
F,, then it’s easy to know that there is no isolated
edge in L — F,. In the following we will prove that
(L — F,) — Ou is connected. For otherwise, we
define F' = F, — ¢, (0w) s in the graph L — F",0u is
connected to only one of its components via the
edge e, (Ou). L—F" is disconnected since (L—F,) —
Ou is disconnected. And there is no isolated vertex
or isolated edge in L — F’ since Ou is the only
isolated vertex in L. — F, and there is no isolated
edge inL—F,. Since |F'| = |F,|—1<2n—2<
1 (Q,) = 3n — 4 (when n == 3), thus we have
obtained a contradiction, which means that (L —
F,) —Ou is connected. Since L —F, is isomorphic to
R — F, under the map ¢, so ¢(0u) = lu is an
isolated vertex in R — F, and R — F, — lu is
connected. Since there are no isolated vertices in
Q.1 —p (F),0u is connected to the connected
subgraph R — F, — lu and lu is connected to the
connected subgraph L. — F, — Ou, since there are 2"
— 2 cross edges between L —F, —OQu and R — F, —
1@z, at most 2(2n—1—n) = 2n— 2 of them may be
inp (F). Since2"—2>2n—2 (whenn=>3), L—
F, —Ou is connected toR—F, —1a. Thatis, Q,., —
o (F) is connected.

C) If there exists an isolated edge e = (Ou,
0v) inL —F,, since | F,| = |E.(e)| = 2n — 2, at
most 2 cross edges belong to o~ (F). Consider the
graph L — F, — {Ou, 0v}, since A\(L — {Ou, Ov}) >
k(L —{0u, 0v}) >n—2>1 (whenn> 3), soL—
F, —{0u, 0v} is connected. By the isomorphism of
L —F,andR—F,,e = (la, 19) is an isolated edge
inR—F, and R — F, — {la, 17} is a connected
subgraph. According to the definition of the map

ps at least one of (Ou,lu) and (0v, lv) does not

belong to o~ (F) (or (u,v) will be an isolated edge
in Fo —F, a contradiction). Thuseis connected to
R—F,—{la, 19}. Similarly the edge e is connected
toL —F, — {Ou, Ov}. There are 2" — 4 cross edges
between L —F, — {Ou, Ov} and R—F, — {1@, 17}.
At most 2 of them can be inp (F), soL —F, —
{Ou, 0Ov} and R—F,— {1, 17} is connected to each
other. Thus we have proved that Q,.; —p (F) is
connected in this case.

D) If there is no isolated vertex or isolated
edge in L—F,, since | F, | <<2n—1 << 3n—4 (when
n>3), so L—F;is connected. By the isomorphism
of L—F,and R—F,,R—F, is connected too. There
are 2" cross edges between L. — F;, and R — F,, at
most 2(2n — 1) << 2" (whenn > 3), so L — F, is
connected to R — F,. Thus we have proved in this
case that Q,.1 —p (I is connected.

The above 4 cases complete our proof that Q,;
—p (I is connected, so FQ, — Fis connected, so
A (FQ,) = 2n.

By 1) and 2), we have proved that A, (FQ,) =
A (FQ,) = 2n. L]
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