Article ID: 0253-2778(2006)03-0241-03

Connectivity of strong product graphs*

SUN Li, XU Jun-ming

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, China)

Abstract: The symbols κ_i , δ_i are used to denote the connectivity and the minimum degree of a graph G_i for i = 1, 2. $\kappa(G_1 \boxtimes G_2) \geqslant \min\{\kappa_1(1 + \delta_2), \kappa_2(1 + \delta_1)\}$ is established if G_1 and G_2 are connected undirected graphs, where $G_1 \boxtimes G_2$ is the strong product of G_1 and G_2 .

Key words: graph; connectivity; strong product graphs; minimum degree

CLC number: O157. 5; TP302. 1 Document code: A

AMS Subject Classification(2000):05C40

强乘积图的连通度

孙 犁,徐俊明

(中国科学技术大学数学系,安徽合肥 230026)

摘要:用 $\kappa_i > 0$ 和 δ_i 表示图 G_i (i = 1, 2) 的连通度和最小度,给出了无向图强乘积的连通度一个下界: $\kappa(G_1 \boxtimes G_2) \geqslant \min\{\kappa_1(1 + \delta_2), \kappa_2(1 + \delta_1)\}.$

关键词:图;连通度;强乘积图;最小度

0 Introduction

The strong product of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \boxtimes G_2$ with vertex set $V_1 \times V_2$ and two distinct pairs (x_1, x_2) and (y_1, y_2) are adjacent in $G_1 \boxtimes G_2$ for each i = 1, 2 either $x_i = y_i$ or $x_i y_i \in E_i$. Many properties of strong products have been studied in [1, 2, 3]. The strong product is also an important method to construct a big graph from two small graphs, and plays an important role in the design and analysis of networks^[4].

The connectivity of graph G is the minimum number of vertices in a vertex-cut, and will be

denoted by $\kappa(G)$. The complete graph K_n has no vertex-cuts, but it is conventional to define $\kappa(K_n)$ to be n-1.

For the connectivity of the strong products, up to now, no results have been reported. In this paper, we will give the following bounds of connectivity of strong products.

1 Theorem

Theorem 1.1 Let G_i be a connected undirected graph, κ_i , δ_i be the connectivity and the minimum degree of a graph G_i for each i = 1, 2. Then

$$\kappa(G_1 \boxtimes G_2) \geqslant \min{\{\kappa_1(\delta_2+1), \kappa_2(\delta_1+1)\}}.$$

Foundation item: Supported by NNSF of China (10271114).

Biography: SUN Li, male, born in 1978, Master. Research field: graphs and combinatorics. E-mail: lewis@ustc. edu. cn

Corresponding author: XU Jun-ming, Prof. E-mail: xujm@ustc. edu. cn

^{*} **Received**: 2004-12-09; **Revised**: 2005-10-17

2 Proof of Theorem 1. 1

For terminology and notation on graph theory not given here, the reader should refer to [5]. Let G = (V, E) be a finite simple undirected graph with vertex set V = V(G) and edge set E = E(G). For a vertex x in $G, d_G(x)$ denotes the degree of x in G. The symbol δ G denotes the minimum degree of vertex of G and the symbol xG denotes $\{x\} \boxtimes G$. By the strong product of graphs, the following results are clearly true.

Lemma 2.1 Let G_i be a connected undirected graph for each i = 1, 2 and $G = G_1 \boxtimes G_2$. Then

 $\begin{array}{l} (\ \ |\)\ d_G(xy)\ =\ d_{G_1}(x)d_{G_2}(y)\ +\ d_{G_1}(x)\ + \\ d_{G_2}(y)\ \text{for any}\ x\in V(G_1)\ \text{and}\ y\in V(G_2)\ , \end{array}$

$$(\|) \delta(G) = \delta(G_1)\delta(G_2) + \delta(G_1) + \delta(G_2).$$

Lemma 2.2 Let $G_i = (V_i, E_i)$ be a connected undirected graph with $\delta(G_i) = \delta_i$ and $\kappa(G_i) = \kappa_i$ for each i = 1, 2 and $G = G_1 \boxtimes G_2$. Then

(|) $\kappa(G; xa, xb) \geqslant \kappa_2(\delta_1 + 1)$ for any $x \in V(G_1)$ and $a, b \in V(G_2)$, $a \neq b$;

(ii) $\kappa(G; xa, ya) \geqslant \kappa_1(\delta_2 + 1)$ for any $x, y \in V(G_1), x \neq y$ and $a \in V(G_2)$.

Proof To prove the first conclusion, it is sufficient to prove that there is an (xa,xb)-path in G-S for any $S \subseteq V(G) \setminus \{xa,xb\}$ with $|S| = \kappa_2(\delta_1+1)-1$.

Let us consider any vertex $x \in G_1$ and all the vertices in graph G_1 which are adjacent to vertex x. Assume that vertex set H is composed of all these vertices, $H = \{x\} \cup N_{G_1}(x)$. It is obvious that $|H| \geqslant \delta_1 + 1$. Note that for any $y \in H$, yG_2 is a subgraph of G and any two such subgraphs have no common vertex. Since $|H| \geqslant \delta_1 + 1$ and the vertex cut set $|S| = \kappa_2 (\delta_1 + 1) - 1$, there must be at least one $y \in H$ such that yG_2 contains at most $\kappa_2 - 1$ vertices in S. Since yG_2 is κ_2 -connected, there is a (ya,yb)-path P in yG_2 . Thus, if y = x then P is an (xa,xb)-path in G - S; if $y \neq x$ then $(xa,ya) \cup P$ $\cup (yb,xb)$ is an (xa,xb)-path in G - S.

In conclusion, $\kappa(G; xa, xb) \geqslant \kappa_2(\delta_1 + 1)$ for any $x \in V(G_1)$ and $a, b \in V(G_2)$, $a \neq b$.

Similarly, we can prove the second conclusion.

Proof of Theorem 1.1 To prove the theorem, it is sufficient to prove that $G_1 \boxtimes G_2 - S$ is connected for any $S \subset V(G_1 \boxtimes G_2)$ with |S| = $\min\{\kappa_1(\delta_2+1),\kappa_2(\delta_1+1)\}-1$. To this end, assume that $x = x_1 x_2$ and $y = y_1 y_2$ are two distinct vertices in $G_1 \boxtimes G_2 - S$, where $x_1, y_1 \in V(G_1)$ and $x_2, y_2 \in V(G_2)$. Note that each vertex has at least $(\delta_1+1)(\delta_2+1)-1$ neighbors in graph $G_1\boxtimes G_2$. For simplicity, arbitrarily taking δ_1 vertices of $N(x_1)$ in graph $G_1 \boxtimes \{x_2\}$ and adding the vertex x_1x_2 , we have vertex set $N_{G_1}^*(x_1)$; arbitrarily taking δ_2 vertices of $N(x_2)$ in graph $\{x_1\} \boxtimes G_2$ and adding the vertex x_1x_2 , we have vertex set $N_{G_2}^*(x_2)$. It is obvious that $N_{G_1}^*(x_1)$ \bigcup $N_{G_2}^*(x_2) \setminus \{x_1 x_2\}$ consists of $(\delta_1 + 1) \cdot (\delta_2 + 1) - 1$ neighbors of vertex x in $G_1 \boxtimes G_2$. Similarly, we define $N_{G_1}^*(y_1)$, $N_{G_2}^*(y_2)$ and $N_{G_1}^*(y_1)$ \bigcup $N_{G_2}^*(y_2) \setminus \{y_1 y_2\}$ consists of $(\delta_1 + 1)(\delta_2 + 1) - 1$ neighbors of vertex y in $G_1 \boxtimes G_2$. It is obvious that

$$ig|N_{G_1}^*(x_1)ig| = ig|N_{G_1}^*(y_1)ig| = \delta_1 + 1, \ ig|N_{G_2}^*(y_2)ig| = ig|N_{G_2}^*(y_2)ig| = \delta_2 + 1.$$

It is possible that there are some common vertices in vertex sets $N_{G_1}^*(x_1)$ and $N_{G_1}^*(y_1)$. It is also possible that there are some common vertices in vertex sets $N_{G_2}^*(x_2)$ and $N_{G_2}^*(y_2)$. In order to build some pairs of vertices with no common vertex, we partition the two sets of vertices with common vertices into three sets with no common vertex, as follows:

$$\begin{split} &C_1 = N_{G_1}^*(x_1) \cap N_{G_1}^*(y_1), \\ &X_1 = N_{G_1}^*(x_1) \backslash C_1, Y_1 = N_{G_1}^*(y_1) \backslash C_1, \\ &C_2 = N_{G_2}^*(x_2) \cap N_{G_2}^*(y_2), \\ &X_2 = N_{G_2}^*(x_2) \backslash C_2, Y_2 = N_{G_2}^*(y_2) \backslash C_2. \end{split}$$

Now it is obvious that X_1 , C_1 and Y_1 are pairwise disjoint. So are X_2 , C_2 and Y_2 . Since $|N_{G_1}^*(x_1)| = |N_{G_1}^*(y_1)|$ and $|N_{G_2}^*(x_2)| = |N_{G_2}^*(y_2)|$, we have $|X_1| = |Y_1|$ and $|X_2| = |Y_2|$. Assume $|X_1| = |Y_1| = m$ and $|X_2| = |Y_2| = n$, then $|C_1| = \delta_1 - m$ and $|C_2| = \delta_2 - n$. Let

$$C_1 = \{c_{11}, c_{12}, \cdots, c_{1(\delta_1 - m)}\},\$$

 $C_2 = \{c_{21}, c_{22}, \cdots, c_{2(\delta_2 - n)}\},\$

$$X_1 = \{x_{11}, x_{12}, \dots, x_{1m}\}, X_2 = \{x_{21}, x_{22}, \dots, x_{2n}\},\$$

 $Y_1 = \{y_{11}, y_{12}, \dots, y_{1m}\}, Y_2 = \{y_{21}, y_{22}, \dots, y_{2n}\}.$

We know that $(X_1 \cup C_1) \cup (X_2 \cup C_2)$ are neighbors of vertex x (including vertex x itself) and $(Y_1 \cup C_1) \cup (Y_2 \cup C_2)$ are neighbor vertices of vertex y (including vertex y itself). Let

$$S_{1} = C_{1} \cup C_{2} = \{c_{1i}c_{2j} \mid i = 1, 2, \dots, \delta_{1} - m; j = 1, 2, \dots, \delta_{2} - n\},$$
 $S_{2} = C_{1} \cup X_{2} = \{c_{1i}x_{2j} \mid i = 1, 2, \dots, \delta_{1} - m; j = 1, 2, \dots, \delta_{2} - n\},$
 $S_{3} = C_{1} \cup Y_{2} = \{c_{1i}y_{2j} \mid i = 1, 2, \dots, \delta_{1} - m; j = 1, 2, \dots, \delta_{2} - n\},$
 $S_{4} = X_{1} \cup C_{2} = \{x_{1i}c_{2j} \mid i = 1, 2, \dots, m; j = 1, 2, \dots, \delta_{2} - n\},$
 $S_{5} = Y_{1} \cup C_{2} = \{y_{1i}c_{2j} \mid i = 1, 2, \dots, m; j = 1, 2, \dots, \delta_{2} - n\},$
 $S_{6} = X_{1} \cup X_{2} = \{x_{1i}x_{2j} \mid i = 1, 2, \dots, m; j = 1, 2, \dots, n\},$
 $S_{7} = Y_{1} \cup Y_{2} = \{y_{1i}y_{2j} \mid i = 1, 2, \dots, m; j = 1, 2, \dots, n\},$
 $S_{8} = X_{1} \cup Y_{2} = \{y_{1i}y_{2j} \mid i = 1, 2, \dots, m; j = 1, 2, \dots, n\},$

It is easy to see that $S_i (i = 1, 2, \dots, 8)$ are pairwise disjoint and

 $\{x_{1i}y_{2i} \mid i=1,2,\cdots,m; j=1,2,\cdots,n\}.$

$$(X_1 \cup C_1)(X_2 \cup C_2) = S_1 \cup S_2 \cup S_4 \cup S_6,$$

 $(Y_1 \cup C_1)(Y_2 \cup C_2) = S_1 \cup S_3 \cup S_5 \cup S_7.$

In order to prove the theorem, we construct some pairs of vertices as follows, from which we can find a surviving path between vertices x and y.

It is clear that S_1 consists of $(\delta_1 - m)(\delta_2 - n)$ vertices, which are common neighbors of x and y, as follows:

$$S_1 = igcup_{i=1}^{\delta_1 - m} igcup_{j=1}^{\delta_2 - n} \left\{ c_{1i} c_{2j}
ight\};$$

 $S_2 \cup S_3$ consists of $(\delta_1 - m)n$ pairs of vertices as follows:

$$S_2 \cup S_3 = \bigcup_{i=1}^{\delta_1 - m} \bigcup_{i=1}^n \{c_{1i}x_{2j}, c_{1i}y_{2j}\};$$

 $S_4 \cup S_5$ consists of $m(\delta_2 - n)$ pairs of vertices as follows:

$$S_4 \cup S_5 = \bigcup_{i=1}^m \bigcup_{j=1}^{\delta_2 - n} \{x_{1i}c_{2j}, y_{1i}c_{2j}\};$$

 $S_6 \cup S_7 \cup S_8$ consists of *nm* pairs of vertices as follows:

$$S_6 \cup S_7 \cup S_8 = \bigcup_{i=1}^m \bigcup_{j=1}^n \{x_{1i}x_{2j}, y_{1i}y_{2j}, x_{1i}y_{2j}\}.$$

It is easy to calculate that there are $(\delta_1 + 1) \cdot (\delta_2 + 1)$ pairs of vertices in the above. And it is obvious that all these pairs of vertices are pairwise disjoint since S_i , $i = 1, 2, \dots, 8$ are pairwise disjoint.

Now we consider the surviving graph of $G_1 \boxtimes G_2$ of vertex cut S with cardinality $\min\{\kappa_1(\delta_2+1), \kappa_2(\delta_1+1)\}-1$. Since $\kappa_1 \leqslant \delta_1$ and $\kappa_2 \leqslant \delta_2$, we have $\min\{\kappa_1(\delta_2+1),\kappa_2(\delta_1+1)\}-1 < (\delta_1+1)(\delta_2+1)$ It indicates that there is at least one pair of vertices in which all vertices are surviving after deleting |S| vertices.

If there is a surviving pair of vertices in S_1 , without loss of generality, assume that such a pair of vertices is $\{c_{1s}c_{2t}\}$, then vertex $c_{1s}c_{2t}$ is the vertex x or adjacent to the vertex x and $c_{1s}c_{2t}$ is the vertex y or adjacent to the vertex y, so vertices x and y are connected.

If there is a surviving pair of vertices in $S_2 \cup S_3$, without loss of generality, assume that such a pair of vertices is $\{c_{1s}x_{2t}, c_{1s}y_{2t}\}$. By Lemma 2.2,

$$\kappa(G_1 \boxtimes G_2; c_{1s}x_{2t}, c_{1s}y_{2t}) \geqslant \min\{\kappa_1(\delta_2+1), \kappa_2(\delta_1+1)\},$$

so the vertices $c_{1s}x_{2t}$ and $c_{1s}y_{2t}$ is connected in graph G-S. Since the vertex $c_{1s}x_{2t}$ is the vertex x or adjacent to the vertex x and the vertex $c_{1s}y_{2t}$ is the vertex y or adjacent to the vertex y, the vertices x and y are connected in G-S.

If there is a surviving pair of vertices in $S_4 \cup S_5$, without loss of generality, assume that such a pair of vertices is $\{x_{1s}c_{2t}, y_{1s}c_{2t}\}$. By Lemma 2. 2,

$$\kappa(G_1 \boxtimes G_2; x_{1s}c_{2t}, y_{1s}c_{2t}) \geqslant \min\{\kappa_1(\delta_2 + 1), \kappa_2(\delta_1 + 1)\},$$

so the vertices $x_{1s}c_{2t}$ and $y_{1s}c_{2t}$ are connected in G—S. Since the vertex $x_{1s}c_{2t}$ is the vertex x or adjacent to the vertex x and the vertex $y_{1s}c_{2t}$ is the vertex y or adjacent to the vertex y, the vertices x and y are connected in G—S.

(下转第248页)