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Abstract: A subset SC V(G) is called a restricted cut, if it does not contain a neighbor-set of any
vertex as its subset and G— S is disconnected. If there exists a restricted cut S in G, the restricted
connectivity ' (G) = min{|S|:S is a restricted cut of G}. The Cartesian product graphs are

considered and ¢! (G) = 22/@; — 2 is obtained if for eachi =1,2,-,n(n = 3),G; is a k;-regular

i=1

ki-connected graph of girth at least 5 and satisfies some given conditions, where G = G; X
Gy X+ X G,.
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not defined here.

0 Introduction It is well-known that when the underlying

In this paper, we only consider a simple graph topology of an interconnection network is modeled
G = (V,E). We refer the reader to [1] or [ 2] for by a graph G, the classical connectivity x(G) of G,
basic graph-theoretical terminology and notation defined as the minimum cardinality | S| of a vertex-
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cut S, has been used as a deterministic measure of
reliability and fault-tolerance of the network. The
concept of the connectivity, however, has an
That is,
concept imposes absolutely no restriction on the set
S. To
Esfahanian and Hakimi'® have
concept of the restricted connectivity ' (G) of G. A
subset SC V(() is called a restricted cut, if S does

obvious deficiency. in general, this

compensate for this shortcoming,

proposed the

not contain a neighbor-set of any vertex as its
subset and G — S is disconnected. If there exists a
in G, then the
connectivity k' (G) = min{ | S| :S is a restricted cut
of G}.

For a given integer £, we say a graph G to have

restricted cut S restricted

the property 9, if G satisfies the following two
conditions;

(1) There are 2k — 2 internally-disjoint paths
between any two nonadjacent edges in G.

(]I ) Between every pair of vertex x and edge
(u,v) with x & {u,v}, there are £ — 1 internally-
1,2,0, k—1,
and £ — 1 internally-disjoint (x,v) -paths, say H’,

disjoint (x,u)-paths, say H;,i =

j=2,3,+, bk, such that H, is vertex-disjoint
except x with all H'; and H,” is vertex-disjoint
except x with all H;, and (Ng(v) — {x,u}) )
(UEYWVH) = J = (Ne(w) — {z.v) )
(UL VH)).

For example, K,, C; with d == 4, and the
Petersen graph have the property %, ?; and ®;,
respectively.

In this paper,we show the following theorem.

1 Theorem

Theorem 1.1 If for eachi = 1,2, ,n(n >
3), G;is a k;-regular k;,-connected graph of girth at

least 5 and the property &, , thenx' (G) = 22 k;—
i=1

2, where G = G, X G, X+« X G,.

' (Q,) = 2n— 2 for n = 3.
Corollary 1.3 Let G = Cy X Cy, X ==+ X Cy .

If n > 3 and for eachi = 1,2,**,n, d; == 5, then

' (G) = 4n—2.

Corollary 1.2

Corollary 1.4 Let G; be a copy of the
Petersen graph for eachi = 1,2,++,n. lf n > 3,

then ' (G) = 6n—2, where G=G; X G, X+ XG,.
2 Preliminary

The symbols K, and C, denote a complete
graph and a cycle of order n, respectively. The
girth g() of G is the length of a shortest cycle in
G. For SCV(G) or SC G, let Ng(S) = {y e V(G
—9S):(x,y) € E(G) for some x € S}, and replace
Ne({x}) and Ng({x,y}) with Ng(x) and Ng(x,
v), respectively. The degree d;(v) of a vertex v in
G is the number of neighbors of vin G, i. e. dg(v)
= | N;(v) |. For a vertex v € V and a vertex set U
CV—{v},av—Ufan is a set of |U| internally-
disjoint paths from v to all vertices of U.

The Cartesian product graph G of n graphs G, ,
Gy yor5G,, denoted by G = Gy X Gy X =+ X G, , 1s
the graph with the vertex-set V(G) = V(G;) X
V(Gy) X -+ X V(G,) specified by putting an edge,
called a ;™ dimensional edge. between x =
x5 2, and y = y;yy*+ y,, iff they differ exactly
in the ;™ coordinate and for this coordinate, (x;.,
v;) € E(G)). For anyx; € V(G)), let G, (x;) = Gy
X Gy X oo X Gy XAz} X Gy XGig X2+ X G,. An
n-dimensional hypercube Q, = K; X K, X +++ X Kj,
From the definition of G; X G, X +++ X G,, if P =
(23015005250, 5 ¥ ) is an (27, ¥y )-path in G, X G,
X ++X G, , then for any z; € V(G)), -1 P = (2,2
T1U1 s X1V s s X1V s 1y ) s an (12’ ,x1y") -path
in G; X Gy X +++ XG,. Similarly, if w= (&, u; sus,
“eou;syy) is an (a1 5 y1) -path inG, , then for any «’
€ V(G XGy XX Gy wu’ = (e vuyd susud
csuu sy is an (o sy’ —path in G, X G, X
X G,

If Pis an (x, y)-path in G and u,v € V(P),
then the (u,v)-section of P, denoted by P(u,v), is
a (u,v)-path inG. If for eachi = 1,2,++,n, P; is
an (x;,x;) -pathand P=P, J P, U *-*- U P, an
(xy,x,) -path, then P can be expressed as

P P, P; P, P,

P=xy—x—x,—> 2,1 —>x,,

(D
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and P, can be omitted in (1) if P; is an edge, where
P =1,2,0

a vertex x with ¢ & {x,y} can be expressed as

,n. A path P between an edge (x,y) and

P = (1‘,y)—P>z or P = z—P> (x,y), (2)
and the symbol P above the arrow in (2) can be
omitted if P is the unique path of length 1 between
(x,y) and =.

Lastly, we list three fundamental facts used in
this paper which are well-known and can be found
in the literature.

Fact 1" G, X G, X -+ X G, is k-regular if
each G; is k;-regular, and is k-connected if each G; is
k;-connected, wherei =1,2,**,nandk =k, +k, +

ot A,

Fact 21"

y € V(G) with x # y, then there are % internally-

Let G be a k-connected graph and x,

disjoint (x,y)-paths in G.

Fact 3" Let G be a k-connected graph. LetU
be any vertex set of V(G) such that |U|<Ck and let
v be any vertex in V(G) —U. Then there is av—U

fan.

3 Proof of Theorem 1.1

< 2>k — 2. Let
i=1

(a,b) be an arbitrary edge in G and S = N;(a,b).

First, we show that «' (G)

Then |S| = 22/2,- — 2, since G contains no
i—1
and G — S is

H(/e +1>—22k

forn = 3. It is easy to show that Sis a restrlcted

22/@

To complete the proof of Theorem 1.1, it

triangles, disconnected since

|V(G) — S —{a.b}

cut of G. So k! (G) <

suffices to show that between any two nonadjacent

edges of G there are 22/@- — 2 internally-disjoint

paths. We prove this by induction onn @,
The argument for n = 1 is trivial, since for

each i = 1,2,+**.n, G; has the property @,.

Assume the induction hypothesis for n—1 with n=>2.

Let (x,y) = (129 Zus 12 y») and (u,v) =
(uyuy =+ v,) be two nonadjacent edges in
G, then there is some j € {1,2,:-+,n} such that
x; =y; for all i £ j but (z;,y;) € E(G;). Without

loss of generality, assume x; = y;, then x,y €

Uy »TV1T2°""

V(G (x1)). Letx = xlx/,y = yly/,u = u,u’ and
Let N(,‘] (x1) = {w’l 1 = 1’25"'9]@1}’

/

V=17 .
n

since G is k,-regular. Let s = 2 k; and t=2s— 2.

i=2

We proceed to the induction step and

construct ZZk; — 2 internally-disjoint paths
i=1
between (x,y) and (u,v) by considering several
cases and subcases. To save space, we have to
omit some discussions for some subcases according
to the referee’s suggestions.
Case 1 T €

generality, assume uw; = .

{uy sv ). Without loss of
There are two
subcases, v; % x; and v, = x;.

The case of v, # a; is omitted. We only
Since Gy () == G, X

++ X G, is s -connected by Fact 1, by the induction

consider the case of v, = x;.

hypothesis, between (x,y) and (u,v) in G, (x),
there are ¢ internally-disjoint paths, denoted by
P, =xPiyi=1,2,"
1,2,+,¢, there are two paths which have different

,t. Clearly, among P,;, { =

start and end vertices.
Without loss of generality, assume that P; and

P, are an (x,u) - and a (y,v) -path, respectively.

i
L P J— . wu / uf Pl m
et ttm — X > X > WU > U,
m
P m f PZ m
ttk,+m - w1 w1 7] > U,
o, >

m=1,2,,k,.
Case 2 =, & {w.v).

subcases, v; = u; and v; 7 u,.

There are two

If v; = u;, then there are &, internally-disjoint
(x1,uy) -paths in G, denoted by T;, i = 1,2,+-,
k1. Without loss of generality, assume {w|} =
V(T N Ng, (x)) for eachi = 1,2,

is k; -regular, and T, is of length at least 3 for each

,k1, since G

@O We can start the induction step from n = 1, since the condition n > 3 is only used to prove that S is a restricted cut before.
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m=2,3,,k;, since g(G,) = 5.
Assume {z',y"} = {«',v"}. Without loss of

generality, assume 2’ = u«’ and y' = v’. Obviously,

NG, e (@) NG, oy () =, So, let N o) (23) =

{a1d i = 1,2,+,2}. Let

P, = (x,y) — 1‘1d/<,->ﬂl> widoy—> (usv),

i= 142,01

T/.l" le/
P,+[ =X U, PHr}"l'[ — y_>‘U,l — 1729"'9k1.

Similarly, we can consider the cases of {z’,
YN W) =D and | (&7, N {0 = 1.
The details are omitted.

If v, 5w, »then v =4 and v, € Ng, () —{x1}.

Assume u’ € {z",y"}. Then there are s(s = 2)
internally-disjoint paths, denoted by x, P;,i = 1,2,
-++, s, between the edge (z,y) and the vertex zu’
such that each x P’; contains only a vertex of
Ng, @ (xsy). Without loss of generality, assume
21P} and 2, P’ are an (x,x1u’) - and a (y,x1u) -
path, respectively, and for eachi = 2,3,++,5,2, P’
is of length at least two, since G is triangle free.
Let {x1¢'w} = Ng wp (x1d’) N V(P where
i =2,3,-+ys. Thenx,q(s, & {x.y} for eachi = 2,
3s+++ss. Since Gy has the property @, , between the
vertex x; and the edge (u;,v,), there are by — 1
internally-disjoint (x; ,u;) -paths, say H;,i = 1,2,
cee by — 1, and by —
paths, say H_/,,j = 2,3,***,k;, such that H; is

1 internally-disjoint (x1,v;) -

vertex-disjoint except z; with all H and H;l is

vertex-disjoint except x; withall H; ,and (Ng, (v)—
k1

{I“ul}) ﬂ (z'L:Jl V(H,)) :@: (NG1<141>*{I“

v 1) N (ICJZV( H’)). Obviously, either H, or Hf/q is
of length at least 2, since G, is triangle free.
Without loss of generality, assume HZ,] is of length
at least 2, and {wﬁil b= V(H’k1 ) N Ng, (x1), since
G, is ki -regular. Clearly, H,, and H/, are of length
at least 2 for eachm = 2,3,+++,k; — 1. Let {A]'} =
N, (w) N V(H,) and {g/'} = Ng (o) N
V(H) ., wherem = 2,3,++,k, — 1, since G, is k; -

ky
regular. By the property &, of G, ,h} & _U2 V(H")
k-1

and g1 ¢ U V(H)) for eachm = 2.3,k — 1.
Let {x1 ¢ 11 =s+4.5+5,+,25+1}) = Ng o) (s

0 U (Ngyep G y) NV, PO). Let D= (0,2,
uy' ) U{ugs:i =s+4,s+5,+,25+ 1}, then
| D| = 5. By Fact 3, there is a vD fan in G, (v)).
Letv, Piyi=s+2,5+3,-+,25+1, be all paths in
the fan. Without loss of generality, assume v; P 5,
uwPlsand o Ply i =s+4,s+5,+,2s+1, are a
(o2’ sv)-, a (vy sv) - and a (v ¢%ysv) -path,

respectively. Let

Hl]‘/ ul P/l Hly/ ul P/z
’ ’
Po=x—wux —>u; P, =y—>uy —> u;
x1(Pia’or y'5q)) , Hi ¢
.= ~ L, >
P; (xyy) X1 4
/ .
U iy > us 1= 3,4,
il P/l ’ Hlu/
Py =x xiu u;
’ /
Hi, , v1P
P, =x VX U3
’ ’
Hiyy , v1Pls
Py =y U1y U3
(Hp, (x1501))qw , wuPl

P, = (z,y) = 2190
l: S+495+59'"725+1 — [+3;

21(PY(y ¢ )
ARy a@ )

> U9 > U,

P . / kl /7
e = Y X1q @)~ Wy g

k
P (H;l(wllgvl))v/
w'v > v;

(H,,(x1 1) 7 PR P
hm /

/
P/+3+m - X 1L llilnu —> U,
(H,(xiaginy -, gi Ph
Pt+/el+l+m =y g1y
/7
glu —vem = 2,3,k — 1.

{z",y"}. Without loss of
generality, assume «’ = z’. Thenu' =" = 2’. So
usvyx € V(Gy(ax3)). Then the proof is similar to

that in Case 1.

Assume u €

It is just a routine to check that P;,; = 1,2,

n
,22 k; — 2 in all cases are as required.
i=1
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