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Galerkin boundary element method for solving
the boundary integral equation with hypersingularity
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Abstract; A Galerkin boundary elements method is applied to solve the integral equation with
hypersingularity, which can be deduced from the double layer solution for the Neumann problem
of Laplace equation. The scheme of integration by parts in the sense of distributions is performed
to reduce the hypersingularity integral into a weak one, which shifts the partial derivatives of
hypersingular kernel to the unknown function in the variational formulation. Thus, the boundary
rotation of an unknown function is used to substitute for the original unknown function in the
variational equation. When linear boundary elements are used in two-dimensional cases, the
boundary rotation can be discretized into a constant vector on each element, so that the
integrations can be performed in a simple way. The numerical tests illustrate the effectiveness and
practicality of the scheme presented.
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0 Introduction

In boundary element methods, we often

encounter the calculation of hypersingular

integrations. Such as the following Neumann

problem of Laplace equation,

Au(x) = 0,x € (s 1
dul(x) (la)
() | = 8@ €5
or
Au(x) = 0.2 € O l
Ju(x) (1h)

nCey | — 8@ €|

Here (2 is an open bounded domain with boundary
I'in R?, and Q' is the infinite complementary of
Q=0-+I. When a double layer solution is used
(where ¢ is a constant, p=[u]=u" —u is an
intermediary unknown function on the boundary to

be determined) ,

ulx) = %Jpgp(y) i(lnﬁ)d«serc,

(2)
from which the corresponding boundary integral
equation has a hypersingular kernel.

1 (,)2 1 ~ J—
ZJFSO(A/) 9n,9ny(1n z—> |>d.sy = g(2).

(3)

Actually, this expression of the normal

derivative of such a potential is not an integral. It
is a finite part expression. Therefore, we use a
formulation. By Green's
formula, we have'"" Vv € (H'(Q)/py) Xwh(Q)

and

Galerkin variational

Y e L'Q),Dv e L)),

Leo'y —
wWo (\Q ) {rln r
A variational formulation of problem (1) is
given by
grad w « grad vdx = (g0 177 o<t @/py 5
oua

(4)

where y=v" —v € H? () /pos and p, is a constant.

Further, one can obtain an explicit expression

of the bilinear form in the left hand side of Eq.
(4), which needs to do double integration on I,

b)), pu(y)) =
=h|
o) ] @) = ) Gula) — () +
PE 1
an()yan(y) (n | x—

The following variational equation has a unique

p ) ds. ds,. (5

solution (allowing a difference of constant) in

H* (D)/ ps »
bp) = [ ptods,, |
H I (6)
Y€ (H'WQ)/po) X wh Q). J

The variational formulation (4) is the key
starting point to the numerical solution, but since
Eq. (5) is inconvenient for implementation, we
shall use another expression for the bilinear form &
(s deduced directly from Eq. (4). According to
the idea of integration by parts in the sense of
distributions, one can shift the partial derivatives
of hypersingular kernel to the unknown function in
the variational formulation. Then, we try using
the boundary rotation of unknown function to
substitute for the original unknown function in the
variational equation. Finally the calculation of
coefficients of the corresponding matrix becomes

very simple in spite of the complicated deduction.
The scheme of integration by parts in the
sense of distributions is commonly used in order to
reduce hyper singularity, but regularization can be

accomplished in  different  ways''.  Some

approaches transform the normal derivative to the

first, then perform the

[6,7,8.15]

tangential derivative

integration be parts Some other techniques

were used also, such as using singularity
subtraction technique to reduce the hyper-singular

operator to a weakly singular onel®;

Hadamard

hypersingular integral''™ ; some use the Maue-type

some
calculate  the finite-part of a
identities to replace the hyper-singular operator

with the weakly-singular operator'’™.  When
Green’s function instead of fundamental solution is
used, one can develop the hypersingular kernel in
series and separate the singular parts®~'", but the

domain should be regularly shaped, otherwise we can
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not find the explicit expression of corresponding
Green’s function. The approach to shifting the
partial derivatives of hypersingular kernel to the
boundary rotation (curl) of the unknown function
in three-dimensional proposed by
Nedelec*~*/,

implementation later’™. The approach presented in

cases was
Duong gave the numerical
this paper used the same idea for 2D problems

different from the approaches cited above.

1 Variational formulation based on
boundary rotation

In R*, suppose Iy is an open neighborhood of
boundary I'. For a proper §, any point x in I has a
local projection p(x) from I'; onto I. Then for any
smooth function ¢(x) defined on I',one can define
a vector field orthogonal to the plan

rotrp () = grad ¢(x) Xn, Yo € s (7)
where n(x) is the unitary exterior normal to the
boundary I's and the function g}(.r) is explicited on
s by

() = o(p(x)), x €I, pl) €I (8)
One can define a scalar function rot;X (x) to a
vector field X on I" by

rot;X () = n(x) « rotX (). (9)
Here, rot is the ordinary rotation operator in R?.,
X (2) is a vector field defined in I’y by

X(@) = X(p(a)), x € Tys pla) € I (10
According to the definitions above, one can obtain
the Laplace-Beltrami operator on I,

Arp(x) = rotr }apgp(x). an
Then, for the double layer potential u (x) (Eq.
(2)), we have

grad u(z) =— zlni Totrg () X

1

grady<lnw>dsw reR—I. (12)

After a long deduction, the bilinear form 6(g, )

given by Eq. (4) has the expression™'*,

L .
b(psp) = Zﬂjplln | o —y | rotpep(y) «

oty (2)ds, ds, . (13)

Then, we are going to solve the following

variational equation with the left hand term

expressed by Eq. (13),

1 —
b(psp) = Zﬂllln | a—y | rotrp(y) -

Wl ()ds,ds, = [g(@ptods,. (10

r
2 Implementation of the variational
formulation
We now give the approximation process to
solve Eq. (14). The boundary I' is approximated
by I, :;QF" , where boundary elements I =P,P,.,

are straight lines, P; denote boundary nodes (i =
1,2,+-, N). For the closed boundary Py:; = P;.
We use linear elements, then, the approximation
of a distribution ¢ (or ), using linear basis

functions, may be written as a linear combination

N
o= D0¥, G(=12,-,N), (15
=1

where the basis ¥, are the linear polynomials, and
the coefficients ¢; are determined at the N nodes.
When i=N, I'ny1 =11,

J()[J(i) ’ X 6 Fi;
Y, =<¢""", 2 € s (16)
0, other case.

On each boundary element, we establish a
coordinate system shown as Fig. 1. Suppose that
the source point is Q, and the field point P situated
on the boundary element I"=P,P,,, , r:—Pﬁ. The
bases consist of two vectors (n, m); n is the
unitary normal of I, and m is the unitary vector

Am

P,

$2

r

v

S

r

Py

Fig. 1 The local coordinates
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along the direction of I. The distances from P, P,
and P, to the normal n are denoted by s, s; and s,
respectively. d is the distance from Q to I, We
choose s as the integral variable, then

S(I) _ SE:)

(C)Ju—
¢ L

The letter with up-script (i) denotes the local

i S;FH) _ S(i+l>
g = an

Z 1

coordinate on the ith element, and [ represents the
length of the element.

Substitute Eq. (15) into Eq. (14), and let
p=v;(j=1,2,---,N), we got the linear system
N
Dlajp =b G =1.2,+N), (18
i=1

Where

b= | swwds

UL
(j:1,2,"',N;FN+1:F1); (19)
1 [ —
ay =5 J rot,W; (x) »
LUrh
J In|lxz—y| ;)Ttpllf,v(y)dsydsl
r,0r.,

(isj = 1,253 N). (20)
Further more, the entry a; of the corresponding

matrix can be rewritten as the combination of four

integrals,

(l,]‘ -

%_JJIH | x—y | E;[pgb(” (y) e }6>tp¢(j> (x)ds,ds, +

nr,

ZLJ j Inlxz—y| _I%T[[‘sb(l;H) (y) o E;tnp(” (x)ds,ds, +
T(Fjpi—l

= J Jln | 2—y | Wi () » 10t () ds, ds, +
Trrjﬂrl

ZL J J In|xz—y| r—ottfgb(*“ (y) » r—(;tfg[;(jﬂ) () ds,ds,
Trrjﬂr,ﬂ

(i:1929"'9N;j:1729°°'9N). (21)

3 Calculation of the boundary rotation

Suppose that the coordinates of Py, Py, P,Q
are P1:(1'13y1)7pz:(1'2 9y2)7P:(19y)9Q: (1'/73//)»

[=|P,—P,|, we can calculate

m = (1'27’“,”7”), (22)

w— (2, 23)

r = (n 71/’3’1 *y/)v r, = (x; *I/d’z‘ *y,).
We have
S| =F M, s, =F, *M, s =7rem,
d=r +n=r; *n.
Therefore,

s—s1 __(r—r)m _

l "‘2_1‘1‘

(x—x) (s —x1) + (y—3y)(ys — y1)
2 )

(24)
Let i,j denoted the coordinate axis on the plan and

grad<5751>:lej‘rli+y2;y1j. (25)

According to the definition (7),

}ap(s_lsl >: grad(s_ls1 >><n :—%k. (26)

Similarly
w0t (S0 ) = grad (Y )xn = %k. 27

Finally, the coefficients of the matrix can be

calculated in a simple formula

1 J J L
@ znz,»sz_pln |z —y [ dsyds,
: J J In|x—y[ds,ds, —
27Tll+l lj mr
1 J Jln | x—y | ds,ds, +
ZT('l,Z];HF %
1

— 1 — ds,ds,
el leJ J n ‘ x—y | SyaAs
1l

(i=1,2,-+,N;j =1,2,--,N). (28)

Now that the integrations are simplified, the

first integral can be calculated by an analytical

formula, and the second integral is calculated by
Gaussian quadrature.

The linear system (18) gives the values ¢

(i=1,2,-,N)

approximate solution of the problem (1) will be

on boundary nodes, and the

given by a discretized form of Eq. (2),

1w J (y—a) o n, o
" —2ﬂ2<Fw,<y) S ds, i +c =
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LN ([0 G on
B ©) ° ¥ s
i 4l
J¢<i+1> @L)'?ydsy)%ch. (29)
; | y—z|
+1 ﬁ
We need some fixed values to determine the _
=
constant ¢, when x € Q, but for the exterior g ¢
problem, the solution is unique. -
4 Numerical results 10
In order to test the efficiency of the proposed o V
numerical approach, we did some numerical tests -3 2 3

on problems with analytical solutions known.
. . ) Fig.2 In E(w)=2In h~+1In a (a is a positive constant)
Uniform mesh refinement is used.

Example 4.1 Q={(x,y) |22 +y' =1}, E(uw)=0(h*). The convergence rates are displayed
22 in Fig. 2.
u—=Leos 20— L2 e ‘ o
r (x* + %) Example 4.2 () is a square domain with side
The boundary condition is length 8. u(x,y) = xy. Subjected to the boundary
Ul 9os 20 = 22 — 247 condition g==+y at x==44; g==Fx at y=*F4.
dnlr )

The results for this case are shown in Tab. 2.

The results for this case are shown in Tab. 1. The convergence rate is also about O(h*), which

We can see that the relationship of approximation ) .
agrees with the theoretical convergence for

error E(u) = | u—w, | with the element length Galerkin boundary element method (12). Fig. 3

h(h:%ﬁ) can be described by expression like illustrates the visual simulated results.

Tab.1 The comparison of the solutions with the numbers of boundary elements increasing

approximate solution uy,

r analytical solution
N=16 N=32 N=64 N=128
1.5 0.418 084 7 0.437 849 3 0.442 814 2 0. 444 039 6 0. 444 444 4
3.0 0.104 447 9 0.109 463 8 0.110 703 6 0.111 010 O 0.111 1111
5.0 0. 037 600 95 0. 039 406 17 0. 039 853 26 0. 039 963 57 0. 040 000 00
7.0 0.019 184 58 0. 020 105 87 0. 020 333 31 0. 020 389 58 0. 020 408 16
9.0 0. 011 605 04 0.012 162 25 0.012 300 39 0.012 334 44 0.012 345 68
12.0 0. 006 527 783 0. 006 841 213 0. 006 918 968 0. 006 938 119 0. 006 944 444

[Note] N is numbers of the elements, is the distance to the centre of the circle

Tab.2 The comparison of the solutions with the numbers of boundary elements increasing

approximate solution uy,

x y analytical solution
N=16 N=32 N=64 N=128

3.0 3.0 0.901 894 7TE+1 0.899 411 8E+1 0. 899 980 5E+1 0. 899 980 5E+1 9.0

1.0 1.0 0.998 112 1E+0 0. 999 757 2E+0 0.100 014 1E+1 0.100 000 1E+1 1.0

0.5 0.2 0.998 773 SE—1 0.999 745 4E—1 0. 100 005 2E+0 0. 100 000 4E+0 0.1
—0.4 —0.6 0.239 612 8E+0 0.239 941 1E+0 0. 240 002 3E+0 0. 240 000 5E+0 0. 24
—2.0 —2.0 0. 398 890 5E+1 0. 399 895 0OE+1 0.399 997 8E+1 0.399 999 2E+1 4.0

3.0 —2.0 —0. 598 808E+1 —0.599 804 1E+1 —0.599 986E+1 —0.599 998E+1 —6.0
—1.5 1.0 —0. 149 689E+1 —0.149 963 SE+1 —0. 150 004E+1 —0. 150 000E+1 —1.5
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Fig. 3 Visual simulated result

5 Conclusion

This paper presents an approach that overcomes
the barrier of hyper singular integration, encountered
while applying the boundary element method,
when a double layer solution for the Neumann problem
is used. We introduce a Galerkin variational
formulation in order to implement the integration
by parts. The difference from other integrations by
parts is the employment of the boundary rotation
instead of the tangential derivative. While linear
boundary elements are used in two-dimensional
cases, the boundary rotation can be discretized into
a constant vector on each element, and the hyper
singular integrals turn into weak ones, so that the
smoothly.

integrations can be  performed

Numerical tests show good convergence behavior.
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