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Abstract 
 

In this article, we use an efficient analytical method called homotopy 
analysis method (HAM) to derive an approximate solution of stagnation flow on a 
moving solid boundary. Actually, we solved the Navier-Stocks and energy 
equations by the HAM. Unlike the perturbation method, the HAM does not 
require the addition of a small physically parameter to the differential equation. It 
is applicable to strongly and weakly nonlinear problems. Moreover, the HAM 
involves an auxiliary parameter, h  which renders the convergence parameter of 
series solutions Controllable, and increases the convergence, and increases the 
convergence significantly. This article depicts that the HAM is an efficient and 
powerful method for solving nonlinear differential equations. 
 
Keywords: Nonlinear differential equations; stagnation flow; Homotopy analysis 
method (HAM), Homotopy perturbation method (HPM). 
 
 
1 Introduction 
 

Modeling of natural phenomena in most sciences yields nonlinear differential  
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equations the exact solutions of which are usually rare. Therefore, analytical 
methods are strongly needed. For instance, one analytical method, called 
perturbation, involves creating a small physically parameter in the problem, 
however, finding this parameter is impossible in most cases [1, 2]. Generally 
speaking, one simple solution for controlling convergence and increasing it does 
not exist in all analytical methods. 

In 1992, Liao [3] presented homotopy analysis method (HAM) based on 
fundamental concept of homotopy in topology [4-9]. In this method, we do not 
need to apply the small parameter and unlike all other analytic techniques, the 
HAM provides us with a simple way to adjust and control the convergence region 
of approximate series solutions. HAM has been successfully applied to solve 
many types of nonlinear problems [10-14]. 

In this work, the basic idea of HAM is described, and then we apply it to the 
stagnation flow equations.   Stagnation flow on a moving solid boundary is 
basic in many convection-cooling processes. Stagnation flow towards a moving 
plate has been considered by Root [16], Wang [17], Libby [15] and extended by 
Weidman and Mahalingam [18]. These sources applied the conventional no slip 
condition on the solid boundary. 
 
 
2 Basic idea of HAM 
 

Let us consider the following differential equation 

[ ( )] 0,N u τ =                                                                     (1) 
where N is a nonlinear operator, τ  denotes in dependent variable, ( )u τ  is an 
unknown function that is the solution of the equation. We define the function  

0( ; ) ( ),
0

p u
p

φ τ τ=

→
                     (2) 

where, [0,1]p ∈  and 0 ( )u τ  is the initial guess which satisfies the initial or 
boundary condition and is  

lim ( ; ) ( ).
1

p u
p
φ τ τ=

→
                        (3) 

By means of generalizing the traditional homotopy method, Liao [3] 
constructs the so-called zero- order deformation equation 

0(1 ) [ ( ; ) ( )] ( ) [ ( ; )],p L p u p H N pφ τ τ τ φ τ− − = h             (4) 

where h  is the auxiliary parameter which increases the results convergence, 
( ) 0H τ ≠  is an auxiliary function and L is an auxiliary linear operator, p increases 

from 0 to 1, the solution ( ; )pφ τ  changes between the initial guess 0 ( ; )u pτ  and  
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solution ( )u τ . Expanding ( ; )pφ τ  in Taylor series with respect to p, we have 

0
1

( ; ) ( ) ( ) ,m
m

m
p u u pφ τ τ τ

∞

=
= + ∑                   (5) 

where 

0

1 ( ; )( )
!

,
m

m m
p

pu
m p

φ ττ
=

∂
=

∂
                      (6) 

if the auxiliary linear operator, the initial guess, the auxiliary parameter h , and the 
auxiliary function are so properly chosen, the series (5) converges at 1p = , and 
then we have 

0
1

( ) ( ) ( ),m
m

u u uτ τ τ
∞

=
= + ∑                       (7) 

which must be one of the solutions of the original nonlinear equation, as proved 
by Liao [7]. It is clear that if the auxiliary parameter is 1= −h  and auxiliary 
function is determined to be ( ) 1,H τ = Eq. (4) will be 

0(1 ) [ ( ; ) ( )] [ ( ; )] 0,p L p u p N pφ τ τ φ τ− − + =             (8) 

this statement is commonly used in HPM procedure. Indeed, in HPM we solve the 
nonlinear differential equation by separating every Taylor expansion term. 

Now we define the vector of mur  as follows 

{ }1 2 3 ., , ,...,m nu u u u u=
r r r r r  

According to the definition Eq. (6), the governing equation and the 
corresponding initial condition of ( )mu τ  can be deduced from zero-order 
deformation Eq. (4). Differentiating Eq. (4) for m-times with respect to the 
embedding parameter p and setting p = 0  and finally dividing by m!, we will have 
the so-called mth order deformation equation in the following from 

1 1[ ( ) ( )] ( ) ( ),m m m m mL u x u h H R uτ τ τ− −− =
r             (9) 

where 

1

1 1
0

1 [ ( ; )]( )
( 1)!

,
m

m m m
p

N pR u
m p

φ τ−

− −
=

∂
=

− ∂
r                         (10) 

and 

0 1,
1 1.m

m
x

m
≤⎧

⎨ >⎩
=                           (11) 
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So by applying inverse linear operator to both sides of the linear equation, 
Eq. (9), we can easily solve the equation and compute the generation constant by 
applying the initial or boundary condition. 

 

4 Applications 

Now we consider the two-dimensional stagnation flow. Fig. 1 shows a two- 
dimensional stagnation flow in the x-z plane impinging on a plate at z=0 moving 
with velocity U in the x direction and velocity V in the y direction. The flow far 
from the plate is given by the potential flow  

2 2 2
0, 0, , ( ) / 2,u a x v w a z p p a x zρ= = = − = − +                  (12) 

where , ,u v w  are velocity components in the Cartesian , ,x y z  directions, a is the 
strength of the stagnation flow, ρ is the density, p  is the pressure and 0p is the 
stagnation pressure. For viscous flow, set 

( ) ( ), ( ), ( ),u a x f U g v V h w a fη η η ν η′= + = = −                                 (13) 

2 2 2
0 ( / 2 / 2 ),zp p a x w wρ ν= − + −                                               (14) 

where /a v zη ≡  and v  is the kinematic viscosity. The subscript z denotes 
differentiation with respect to z. The three-dimensional Navier- Stokes equations 
then reduce to the similarity ordinary differential equations [19]. 

2( ) 1 0,f ff f′′′ ′′ ′+ − + =                                                          (15) 

0,g fg f g′′ ′ ′+ − =                                                               (16) 

0.h f h′′ ′+ =                                                                   (17) 

On the plate, Navier’s condition gives  

, ,z zu U N v u V Nρ υ ρνυ− = − =                                               (18) 

Where N is a slip constant. The no slip condition is recovered when N=zero. For 
(no slip) the boundary conditions: 

(0) 0, ( ) 1, (0) 0,f f f′ ′= ∞ = =                                   (19) 

( ) 0, (0) 1,g g∞ = =                                                    (20) 

( ) 0, (0) 1,h h∞ = =                                                    (21)   

Let the temperature far from the plate be T∞  and temperature on the plate be 
.T0 Set   



Explicit analytic solution for stagnation flow                              171 

 

( ) .
T T
T T

θ η ∞

∞

−
=

−0

                                                                (22) 

The energy equation becomes 

,P fθ θ′′ ′+ = 0                                                                  (23)  

where P is the Prandtl number. A temperature slip condition similar to Navier’s 
condition is 

,zT T ST− =0                                                                   (24) 

where S is a proportionality constant. Eq. (24) can be written as  

( ) ( ),θ βθ ′= +0 1 0                                                               (25) 

where aS
v

β ≡  is the thermal slip factor. At infinity the condition is  

( ) .θ ∞ = 0                                                                      (26) 

Now we solve the problem for no slip condition. 

 

 

 

 

 

 

 

 

Fig.1. Two-dimensional stagnation flow. 

 

We choose the initial approximation. 
2

0 ( ) 0 / 616295 ,f η η=                                                            (27) 

0 ( ) 1 0 / 8113 ,g η η= −                                                            (28) 

0 ( ) 1 0 / 57047 ,h η η= −                                                           (29) 

 

 

  

Z 
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2
0 ( ) ,θ η η=                                                                     (30) 

and the linear operator for equation (15) 
3

1
1 3

( ; )[ ( ; )] ,pL p φ η
φ η

η
∂

=
∂

                                                        (31) 

and the linear operator for equation (16) 
2

2
2 2

( ; )[ ( ; )] ,pL p φ η
φ η

η
∂

=
∂

                                                        (32) 

and the linear operator for equation (17) 
2

3
3 2

( ; )
[ ( ; )] ,

p
L p

φ η
φ η

η
∂

=
∂

                                                        (33) 

and the linear operator for equation (23) 
2

4
4 2

( ; )[ ( ; )] ,pL p φ η
φ η

η
∂

=
∂

                                                        (34) 

we change equations (15), (16), (17) and (23) to nonlinear form 
3 2

21 1 1
1 1 13 2

( ; ) ( ; ) ( ; )[ ( ; )] ( ; ) ( ) 1,p p pN p pφ η φ η φ η
φ η φ η

ηη η
∂ ∂ ∂

= + − +
∂∂ ∂

                       (35) 

2
2 2 1

2 1 2 1 22

( ; ) ( ; ) ( ; )[ ( , ), ( , )] ( ; ) ( ; ),p p pN p p p pφ η φ η φ η
φ η φ η φ η φ η

η ηη
∂ ∂ ∂

= + −
∂ ∂∂

              (36) 

2
3 3

3 1 3 12

( ; ) ( ; )
[ ( ; ), ( ; )] ( ; ) ,

p p
N p p p

φ η φ η
φ η φ η φ η

ηη
∂ ∂

= +
∂∂

                              (37) 

2
4 4

4 1 4 12

( ; ) ( ; )
[ ( ; ), ( ; )] ( ; ) ,

p p
N p p P p

φ η φ η
φ η φ η φ η

ηη
∂ ∂

= +
∂∂

                             (38) 

assuming ( ) 1,H τ = we use above definition to construct the zero-order 
deformation equations.

 
( ) 1 0 1 11 [ ( ; ) ( )] [ ( ; )],p L p f p N pφ η η φ η− − = h                                         (39) 

( ) 2 0 2 1 21 [ ( ; ) ( )] [ ( ; ), ( ; )],p L p g p N p pφ η η φ η φ η− − = h                                 (40) 

( ) 3 0 3 1 31 [ ( ; ) ( )] [ ( ; ), ( ; )],p L p h p N p pφ η η φ η φ η− − = h                                 (41) 

( ) 4 0 4 1 41 [ ( ; ) ( )] [ ( ; ), ( ; )],p L p p N p pφ η θ η φ η φ η− − = h                                 (42) 

Obviously, when p=0 and p=1, 
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1 0 1( ;0) ( ), ( ;1) ( ) ,f fφ η η φ η η= =                                          (43) 

2 0 2( ;0) ( ), ( ;1) ( ) ,g fφ η η φ η η= =                                         (44) 

3 0 3( ;0) ( ), ( ;1) ( ) ,h hφ η η φ η η= =                                         (45) 

4 0 4( ;0) ( ), ( ;1) ( ) ,φ η θ η φ η θ η= =                                         (46) 

Differentiating the zero-order deformation equations (39), (40), (41) and (42) 
m-times with respect to p. 

1 1 1 1 1 1[ ] ( , , , ),m m m m m m m mL f x f R f g h θ− − − − −− =
r rr

h                                        (47) 

1 2 1 1 1 1[ ] ( , , , ),m m m m m m m mL g x g R f g h θ− − − − −− =
r rr

h                                       (48) 

1 3 1 1 1 1[ ] ( , , , ),m m m m m m m mL h x h R f g h θ− − − − −− =
r rr

h                                        (49) 

1 4 1 1 1 1[ ] ( , , , ),m m m m m m m mL x R f g hθ θ θ− − − − −− =
r rr

h                                        (50) 

where 

3 21
1 1 1

1 1 1 1 1 3 2
0

( ) ( )( ) ( )
( , , , ) [ ( ) ] (1 ),

m
m m n n m n

m m m m m n m
n

f ff f
R f g h f x

η ηη η
θ η

η ηη η

−
− − − − −

− − − −
=

∂ ∂∂ ∂
= + − + −

∂ ∂∂ ∂∑
r r rr (51) 

2 1
1 1

2 1 1 1 1 12
0

( ) ( ) ( )
( , , , ) [ ( ) ( )],

m
m m n n

m m m m m n m n
n

g g f
R f g h f g

η η η
θ η η

η ηη

−
− − −

− − − − − −
=

∂ ∂ ∂
= + −

∂ ∂∂ ∑
r r rr

       
(52) 

2 1
1 1

3 1 1 1 1 2
0

( ) ( )
( , , , ) ( ) ,

m
m m n

m m m m m n
n

h h
R f g h f

η η
θ η

ηη

−
− − −

− − − −
=

∂ ∂
= +
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r r rr                           (53) 

2 1
1 1

4 1 1 1 1 2
0

( ) ( )
( , , , ) ( ) ,

m
m m n

m m m m m n
n

R f g h P f
θ η θ η

θ η
ηη

−
− − −

− − − −
=

∂ ∂
= +
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r r rr                         (54) 

and 0 1,
1 1.m

m
x

m
≥⎧

= ⎨ >⎩
                                                         (55) 

From (27) to (30) and (51) to (54), we now successively obtain the 
( )f η , ( )g η , ( )h η and ( ).θ η The equations (47), (48), (49) and (50) are linear and 

thus can be easily solved, especially by means of symbolic computation software 
such as Mathematica, Maple, MATLAB and so on. We used 25 terms in 
evaluating the approximate solution. 

∑
=

+=
25

1
0 ),()()(

m
mfff ηηη              (56) 

∑
=

+=
25

1
0 ),()()(

m
mggg ηηη              (57) 



174                                  A. Doosthoseini, A. Sharifi and K. Takin 

 

 

∑
=

+=
25

1
0 ),()()(

m
mhhh ηηη               (58) 

∑
=

+=
25

1
0 ),()()(

m
m ηθηθηθ              (59) 

Note that this series contains the auxiliary parameter h , which influence its 
convergence region and rate. We should therefore focus on the choice of h  by 

plotting of h -curve. Fig.2 shows the h -curve of 
3

3

(0) ,f
η

∂
∂

  Fig.3, shows the 

h -curve of 
3

3

(0)g
η

∂
∂

and Fig.4 shows the h -curve of 
4

4

(0)h
η

∂
∂

 and Fig.5 shows the 

h -curve of (0)θ
η

∂
∂

. 

Fig.2. The 25th-order approximation of ( )f ′′′ 0 versus h      Fig.3. The 25th-order approximation of ( )g ′′′ 0  versus h  

 

 

         

Fig.4. The 25th-order approximation of ( )ivh 0  versus h      Fig.5. The 25th-order approximation of ( )θ′ 0  versus h  
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We should select optimal h  from the region in which the diagram is quite 
horizontal. Horizontal region is the optimal h  region. Regarding figure (2) 
optimal h  equals zero, regarding figure (3) optimal h equals -1, regarding figure 
(4) optimal h  equals -1 regarding figure (5) optimal h  equals -1. In this article 
we have obtained the values of f,g,h by applying HAM remarkable method as well 
as by numerical method and you will see the consequences of these methods in 
figures No,6,7 and 8. These three diagrams apparently show that quite analytic 
method of HAM is so close to numerical solution with great exactness which is a 
token of its high accuracy. 
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Fig.6. Comparison of numerical results with HAM of ( )f η  
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Fig.7. Comparison of numerical results with HAM of ( )g η  
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Fig.8. Comparison of numerical results with HAM of ( )h η  
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Table 1 

The values of ( ).θ′ 0  for no slip condition. ( P = 7 ) 

β  0  .0 5  1  5  

numerical  .1 21176  .0 752941  .0 523529
 

.0 170588  

HAM  .1 21175  .0 752941  .0 523528
 

.0 170585  

 

We consider four different situation of the no slip energy equation 
( , . , )andβ β β β= = = =0 0 5 1 5  which led us to identical h -curve for different 
values of .β  Then we obtain ( )θ ′ 0  for Prandtl number seven. Prandtl number 7 
represents liquids. In Table1, we can see that the HAM solution is very close to 
the numerical solution. 

 

 

4 Conclusions  

In this paper, we utilized the powerful method of homotopy analysis to 
obtain the stagnation flow equations. We achieved a very good approximation 
with the numerical solution of the considered problem. In addition, this technique 
is algorithmic and it is easy to implementation by symbolic computation software, 
such as Maple and Mathematica. Different from all other analytic techniques, it 
provides us with a simple way to adjust and control the convergence region of 
approximate series solutions. Unlike perturbation methods, the HAM does not 
need any small parameter. It shows that the HAM is a very efficient method. We 
sincerely hope this method can be applied in a wider range. 
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