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Abstract

Creep stresses for a transversely isotropic thick-walled rotating cylinder under
internal pressure have been obtained by using Seth’s transition theory. Results
obtained have been discussed numerically and depicted graphically.
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1 Introduction

Thick-walled circular cylinders are used commonly either as pressure vessels
intended for storage in industrial gases or as media transportation of high
pressurized fluids. Many authors [1-2,4-8,10-11] have discussed creep of
thick-walled cylinders under internal pressure. These authors made the following
assumptions:

1. The volume of the material remains constant.

2. The ratios of the principal shear strain rates to the principal shear
stresses are equal.

3. Norton’s law holds in the special case, i.e. for uniaxial case.

4. The creep deformation is infinitesimally small.

Transition theory [9] does not require any of the above assumptions and thus
poses and solves a more general problem from which cases pertaining to the
above assumptions can be worked out. It utilizes the concept of generalized
principal strain measure and the asymptotic solution at transition points of the
governing equations defining the deformed field. It has successfully been applied
to a large number of creep problems.
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In this paper, we calculated creep stresses and strain rates for a thick-walled
circular rotating cylinder under internal pressure by using transition theory.

2 Governing Equations

Consider a thick-walled circular cylinder made of transversely isotropic material
of internal and external radii 'a'and 'b' respectively and rotating with an
angular velocity '@' and pressure 'p' applied at the internal surface.

The displacement components in cylindrical polar co-ordinates are given by
u=r(l-4), v=0, w=dz

where £ isafunction of r=./x*+y?and d isa constant.
The Almansi generalized principal components of strain is given as,

Eii :11(1_ 2ei¢)g_ldei/: :%[l_(l—zei/:)nlz] (1)

where n is the measure and e; is the principal Almansi finite strain
components.
Using (1), the generalized components of strain is defined as
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where g’ =dg/dr.
The stress-strain relations for transversely isotropic material are
T, =Cpe, +(Cy - Zcee)ega +Cpe,
Top = (C11 —2Cy )err +Cuep +Ciey,
T, =Cse, +Cpe, +Cye,
T,=T,=T,=0 (3)
where C;'s are material constants.
Using equation (2) in (3), we get

Cn hi-(g+rp)" ]+( ; nzcsej(l_ﬁn)+clseﬂ
W(ﬂﬁl oS,

13[1 prrpy]s S (1 B )+cgsezz
Tr6’ _Tez _Tzr - 0 (4)

Equations of equilibrium are all satisfied except
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where pis the density of the material.
Substituting equation (4) in (5), we get a non-linear differential equation in g3 as

n+ n- dpP n n n
nPC, A" (1+ P) 1@:—nPCnﬂ (1+P)" —(C,, —2C)nPp ©
+2C66|:1_ﬂn(1+ P)n]_zces(l_ﬂn)+pnrza)2

where rp’'= P

The transition points of £ in equation (6) are P ——-land P — to.
The boundary conditions are,

T,=-p at r=a

T,=0 at r=>Db (7)
The resultant force normally applied to the ends of cylinder is,

b
27 [ rT,dr = 7a’p (8)

3 Solution through the Principal Stresses

It has been shown that the transition function through the principal
stress-difference [3-4,9-10] at the transition point P — -1 gives the creep
stresses. For finding the creep stresses at the transition pointP — —1, we define
the transition function Ras,
2Cg 0 n
- Py (©)
Taking the logarithmic differentiation of equation (9) with respect to'r', and

R :Trr _THH =

substituting the value of g—; from equation (6), we get

2C,PB"fl— (1+P)" |+ 2PCq " (1+ P)"

9 logR)= 1| +2C, (1-C)PA" ~2CouCp™- (L4 P)"}|  (10)
dr rR n

~C,priw?
where C, =2C,/C,,

Now taking the asymptotic value of equation (10) as P — -1 and integrating, we
get

n 2
R=T,-T, =Ar" {ZCT%?—H} exp(f) (11)

. . D .
where asymptotic value of g is — and D isa constant.
r
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2 D"
7C66& ~C,pro?
Also f:I r dr and A, isa constant of integration.
2C4 D"
n r"
From equation (11) and (5), we get
n? 2 2
A r_(m{_zcﬁe D_} exp(f)dr—przw A, (12)
n r

where A, is a constant of integration.
From equation (11), we get

99 _T Air_C1|:

The constants A and A, are obtained by using boundary conditions (7) in
equation (12), we get
2
A @ —b*)-p
Ay 2C,, D" |
Ir(l*cl’[nee n} exp( f)dr
r

a
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2 2 b

n 2
J‘r‘“*cl){zc66 —Dn } exp( f)dr
n r

a

2C,, ‘:n" } exp(f) (13)

Substituting the values of A and A, in equation (12) and (13), we get

2 r n 2
{p—pa) (a’ —bz)}_fr‘(m{zc% Dﬂ} exp(f)dr
2 n r

= . 2 +pa) (bz_rz) (14)
7 2C D" 2
J‘r’(lJrCl) Tmin exp(f)dr

r

a

{”f(az “b)- p}r*{f% H exp(1)
_ (15)

b

n 2
J.r‘(“cl){zc“’ Dn} exp(f)dr
n r

a

00 — 'rr

The axial stress is obtained from equation (4) as

_ C13 (T +T )_‘_{Csa (Cll _Cse) _C123 }e (16)
2z 00 2z
( 1 66) C11 - C66

Using equation (16) in the end condition (8), the axial strain is given as
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where K = {Css (Cn B Ces) - C123 }
C11 - Cse

Substituting equation (17) in equation (16), we get
C p C ‘.
Ty =Ty + T |+ - - r(T, +T,)dr (18)
z(cn—cee)[ o) (b)z G _az)(cn—cae)! "
a

Now we introduce the following non-dimensional quantities

R=" r=-2 s o _Too o _Ta QZ__pbzwz
=—, Ry =—, 0, = , O, = , 0, = , =

b b C66 C66 C66 C66

The transitional stresses in non-dimensional state are
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If the angular speed becomes zero, then the transitional stresses become

=P fr-ao| L [D] 2
{C}[jR { : {b” exp(fz)dR]

o = . (22)
1 2C..[D]"
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where f, = R b .
o)
nR" \ b

4 Isotropic case

For an elastically isotropic material,
Cp=Cy=Cyu=4+2u, Cpp=Cy=Cp=Cy=Cyp=C;=C,;-2C; =41
For incompressible rotating cylinder under internal pressure, the stresses are

o ] e

S 2 a-rY)
IR {ZC% D | ectaen

Ry

r 2
Q2 p 2c66(Dj"
= (RZ2-1)- " exp( f
{2(0 )C%}anb p( f)

o) =0, - LR (26)
1 n
jR{iﬁeﬂe(Ej } exp( f,)dR
Ro
1 R’
o, :(Ej[q-l_o-g]-i_Ci(l—(l)?zJ Y IR(G +0,)dR (27)
66 0
where f, =0

The stress-strain rate relationship can be given as,
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A-2 A— 5
€, = _ﬁ@ + ZMT” + Ti A-2C, — C1Cos (28)
H H H 33
00 = 2(A_ C66)T¢99_ (A_ 2C66) @ +Ti A— 2C56 - 2C13C66 (29)
H H H 33

- _ 2C13C66 ®+ Tzz {Cn — Cee + 2C13:| (30)

eZZ
HC33 C33 4(A - CGG)
where ¢€,,é,,€, is the strain rate tensor with respect to flow parametert

2
and ®=T, +T,,+T,,,H=4C,(A-C,), A=C, —%
33

Differentiating equation (2) with respect tor, we get

€ =P H,B (31)
For Swainger measure (n=1) we have from equation (31)

Egp = _IB (32)
The transition value of equation (9) as (P — —1) gives

1/n
n
- T, -T 33
ﬂ |:2C66 { r 90 }:| ( )

Using equations (31)-(33) in equations (28)-(30), we get

2C,.C
. zz{gz (a_ﬂJ_%(o-r +0o, +az)+%}

n C1Cas
é@@ :X & _g(o-r +U¢9 +Gz) +&(a - 2C13C66J
2 7 n CuCss
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CuCun Caal7 Ch Cy
where 77:4[1_C_123_%J a=1_c_123_ﬁ B=1- Ch
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L3}
n n
X = [E(O-r _O-H)}
For isotropic materials, strain rates (34) becomes

érr =Z|:_g(o-r +O-49 +o_z)+ﬂ+ﬁ(a_c(l_zc))j|
n 2 7
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5 Numerical Illustration and Discussion

For calculating the stresses and strain rate distribution based on the above analysis,
the following values of measure n, D, pressure P, and angular velocity Q? have
been taken as:

Q*=0,5 n=11/3and 1/7 (ie. N =13 and 7)

p=2"r -0515 D=1
CGG
Elastic constants C; for transversely isotropic material (Magnesium) and

isotropic material (Brass) have been given in table 1.

Table 1: Elastic Constants C; (in terms 0f10"°N/m?)

C44 Cll C12 C13 C33
TIM(Mg) | 1.64 5.97 2.62 2.17 6.17
IM (Brass) 1.0 3.0 1.0 1.0 3.0

Curves have been drawn in figures 1-2 between the stresses and radii ratio
(R:r/b) for transversely isotropic / isotropic material for different angular
velocity.

It can be seen from figure 1 that without rotation, circumferential stress is
maximum at the internal surface for transversely isotropic / isotropic circular
cylinder under internal pressure for measure n = 1 and n = 1/3 while for measure
n = 1/7, the circumferential stress is maximum at external surface. With the
increase in angular speed, it can be seen from figure 2 that circumferential stress
increases at internal surface for transversely isotropic circular cylinder under
internal pressure as compared to isotropic circular cylinder. With the increase in
measure, circumferential stress decreases at internal surface for transversely
isotropic / isotropic circular cylinder under internal pressure.

In figures 3-4, curves have been drawn between strain rates and radii ratio
(R=r/b). With the increase in angular speed, the creep rate has large value at the
internal surface as compared to cylinder made of transversely isotropic material
for measure n = 1/3 and these values further increases at the internal surface with
the increase in pressure. For measure n = 1/7 (i.e. N = 7), the creep rates have
lesser value at the internal surface as compared to measure n = 1/3 (i.e. N =3). The
value of creep rates decreases with the increase in strain.

Acknowledgment: The author wishes to acknowledge his sincere thanks to Prof.
S.K. Gupta for his encouragement during the preparation of this paper.
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Figure 1: Creep Stresses in a Thick-walled Rotating Cylinder along the Radius (R)

for different measure of N (=1/n) and angular speed (QZ = O)
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Figure 2: Creep Stresses in a Thick-walled Rotating Cylinder along the Radius (R)
for different measure of N (=1/n) and angular speed (QZ = 5)
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Figure 3: Strain Rates Distribution in a Thick-walled Rotating Cylinder along the

Radius (R) for different measure of N (=1/n) and angular speed (QZ = 0)
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Figure 4: Strain Rates Distribution in a Thick-walled Rotating Cylinder along the
Radius (R) for different measure of N (=1/n) and angular speed (92 = 5)
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