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Abstract

Dynamic stresses are solved for two cylindrical cracks in an infinite elastic
medium. Incident shock stress waves pass through the elastic medium normal to
the cracks’ axis. In the Laplace transform domain, the mixed boundary value
equations with respect to stresses and displacements are reduced to two sets of
dual integral equations by means of the Fourier transform technique. To solve
these equations, the differences in the cracks’ surface displacements are expanded
in a series of functions that are zero outside the cracks. The boundary conditions
inside the cracks are satisfied by means of the Schmidt method. Stress intensity
factors are defined in the Laplace transform domain and are numerically inverted
in physical space. Numerical calculations are performed for the dynamic stress
intensity factors corresponding to some typical shapes assumed for the cylindrical
cracks.

Keywords: Stress intensity factor, Two cylindrical cracks, Transient stresses,
Numerical Laplace inversion, Schmidt method

1 Introduction

Structural components are usually weakened during their lifetime by cracks
initiated by fatigue or corrosion. Initial cracks are characterized by their small size
and planar surfaces. If mixed mode loading is applied to the cracked material,
however, the crack will not propagate in a plane, but may curve to form a
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shell-shaped crack. For non-planar cracks of this type, analytical methods cannot
be used to solve for the stress intensity factors. In these cases, solution of the
stress intensity factors requires the use of numerical technigques such as the finite
element method, the surface integral method, etc.

If a numerical method is utilized to solve the stress intensity factors for a
shell-shaped crack, the accuracy of the results must be verified. For this purpose,
it is useful to compare the results with results from the analytical method for a
crack of similar shape to the shell-shaped crack. In a previous study [2], the author
solved the transient stresses around a cylindrical crack in an infinite elastic
medium during the passage of incident stress waves. Since the results for the
cylindrical crack obtained using the numerical method were coincident with the
analytical solutions given in Ref. [2] with acceptable accuracy, the numerical
method can also be used to solve the stress intensity factors for a shell-shaped
crack.

For a similar purpose, the transient stresses around two cylindrical cracks in
an infinite medium are also solved using an analytical method in this study. The
incident shock stress waves impinge normal to the cracks’ axis. In the Laplace
domain, differences in the displacements at the cracks’ surfaces are expanded in a
series of functions that diminish to zero outside the cracks. The unknown
coefficients in the series are solved so as to satisfy the stress-free conditions inside
the cracks with the Schmidt method [2, 4]. The stress intensity factors are defined
in the Laplace domain, and they are inverted numerically in physical space using
Miller and Guy’s method [3].

2 Stress intensity factors for two shell-shaped cracks

Consider an infinite elastic medium weakened by two non-planar cracks similar to
the shell-shaped cracks shown in Fig. 1. The stress intensity factors for these
cracks can only be solved with a numerical method such as the finite element
method, the surface integral method, etc. It is therefore necessary to verify

Figure 1 Two shell-shaped cracks in an infinite elastic medium.
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Figure 2 Two cylindrical cracks in an infinite elastic medium.

whether the accuracy of the numerical results is satisfactory or not. If the same
numerical method is utilized to solve the stress intensity factors for two
cylindrical cracks as shown in Fig. 2, it can be verified whether the numerical
results given by the numerical method are reliable or not by comparing the results
with those obtained by the analytical method.

3 Fundamental Equations

With respect to the cylindrical coordinates (r, 8, z), consider two cylindrical
cracks located on r=b and extending from z=-f to z=-e and from
z=e to z=f, as shown in Fig. 3. For the sake of convenience, the infinite

medium is divided into a cylinder (1) denoted by (0<r<b), and an infinite
region (2) denoted by (b <r).

Figure 3 Two cylindrical cracks and coordinate system.

The rectangular coordinates (x, y, z) are used in the expression of the
incident stress waves; these are related to the cylindrical coordinates (r, 8, z) by
the equations:
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X =r cos(d), y=rsin@), z=z. 1)
Consequently, the incident stress waves that impinge on the cracks as shown in
Fig. 4 are expressed by the equations:

) = pH[t+(x-b)/c.], r§'y’ =7 = “X) =r§iz’ =0 2
where p is a constant, c,_ is the longitudinal wave velocity, H(t) is the
Heaviside unit step function and time, t, is zero when the wave front reaches the

crack surface (r=b, 6=0).

A r @)

Figure 4 Incident stress waves expressed by rectangular coordinates (x, vy, z).

The incident waves can be defined in the cylindrical coordinate system
(r, 8, 2) by the equation:

) = pH[t+(x—b)/c Jcos’ @,  z§) = pH[t+(x—b)/c ]sin’ 4,

3
rr(;,’ =—(1/2)x pH[t + (x—b)/c 1sin(26), V=70 =70 =0 ®)

Thus, the boundary conditions for the scattered field are given by the equations:

T n=Tror T =Ti2r Tro1=T g at r=b, |Z|£oo 4)
o=t o == =20 at r=h, e<|z|§f (5)
Uy=U,, U,=U,, U,=U, a r=b 0<|z|<e, f<]|z| (6)
where u,, u, and u, are defined as the r, @ and z displacement

components, respectively, and subscripts 1 and 2 denote the variables for the
cylinder (1) and the infinite region (2), respectively.
Using the cylindrical coordinate system (r, &, z), displacement potential

functions ¢, , @, and y, are introduced according to the following
relationships [5],
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[0¢,1 v 0%, 1(Ordz) + (nlr)x x,]cos(nd),

7 8
8 gMS i

[ (n/r)xg,+(nlr)xde, 1 z—0y, lor]sin(nb), (7

Z[ﬁqﬁ 102+ 6%, 10r* + (U r)x g, 16r —(nlT1)* x @, ]cos(nd).
0

Substltutmg Eq. (7) into the equations of motion yields:
Ol 1or’+@r)xd g, 1or—(nir)>xg¢ +0°¢, 102° =1Ict xo%¢, 1017,
Alp, lor*+@Ar)xd e lor—(nir)’ x e, +3%¢p, 102 =11c2 x %@, 16t?, (8)
Oy lor*+@Unyxdy 1or—(nir)’x y, +0% y, 102> =11c2 x 2% y, 10t?,
with
=(A+2u)lp,  ci=pulp 9)

In Egs. (8) and (9), c; is the transverse elastic wave velocity; A andu are
Lame’s elastic constants and p is the density of the material.

The stresses in the medium are expressed in terms of ¢., ¢, and y, by
the equations:

:i{(ﬂlcﬁ)xé’2¢n/0”t2+2y[é’2¢n/é’r2—0”3(pn/0”r20”z+(n/r)xa;(n/8r
- —(n/r?)x x,1}cos(nd)
= SRR x 24,1 A+ 2l ¥) x [Og,1 57 — (02 I¥)x 6,
" +(n*I1)x 8¢, 102—0°p,15roz+(nlr)x y, —ny, 1}cos(nd)
=i{(llcf)xé’2¢n/é’t2+2y [0%¢,152° —(nIr)* x e, IOz
- +@In)x %, 16rdz+ %@, 1 Or?dz]}cos(nd)
=3 1 {2 0%4,10102+ 9,1 58 + (U T)x 22,1 X% ~[(N? +1)r?]x Op, | O
- +(2n° 113 %@, — °p, 1 0rd2% + (nlr)x &y, | &7}cos(nd)
:iy{(Z nir)x (@, Ir —0¢,1r)+(@2nIr)x g, 1 6rdz—(2n1r*)x g, 1 F2
" +@/r)x3y 1dr—(nIr) xy, —°y. 1 Ar*}sin(nd)
=i,u{—(2 n/r)yxdg, 16z +n/r)x[(n/r)’ xp, +3%p,101°
o

— (@)% P 10r -3¢, 10r*]1- 3%y, 1 6rdz}sin(nd)
(10)
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4 Analysis

To obtain the solution, we introduce the Laplace transforms,

g*(s)=[ g exp (-st)ydt,  g(t) =1/(27) [ g*(s) exp (st) ds (11)
Br.

and the Fourier transforms,

f(é):J: f(2)exp(iz)dz, f(2)= 1/(2m)><'[ f(&)exp (-ifz) d&.  (12)

Applying Egs. (11) and (12) to Eq. (8) yields:

[d2/dr?+@/r)d/dr —(n2/r2+&E2+52/c?)] g * =
[d2/dr2+@/r)d/dr —(n?/r?+ &2 +5%/c?)] @, *=0, (13)
[d2/dr2+(@/r)d/dr —(n2 /1% + &% +s2/¢2)] 7.* =

The solutions of Eq. (13) for the cylinder (1) and the infinite region (2)
assume the following forms:

=APE) 1, (@r), @, *=iBPE) 1, (Br), xu*=CP(E) 1, (Br) (14)

0¥ = AP (O K, (@r), ¢,*=iBP (&) K, (Br), r1.,*=CP (&K, (Br)
(15)

with

a=(E2+s2/ck)?,  p=(£2+s/ck)? (16)

where K (&) and 1,(&) are modified Bessel functions, and the unknown

coefficients A (&), B? (&), CP(&) can be expressed with the unknown

coefficients A" (&), BP (&), CP (&) by employing Eq. (4) as shown in Ref. [2].
In order to satisfy Eq. (6), the differences in the displacements at r=b in

the Laplace domain are expanded by means of the following series:

7 Uy *—U, %) = Z{Zamn sm[m sin?{(e+ f —2z)) /(f —e)}—mz/2]} cos(n6)

n=0 m=1
for e<|z|< f
=0 for 0<zl<e, f<|z|<w
(17)
7 Uy * Uy ™) = Z{men sm[m sin{(e+ f —2z)/(f —e)}-mz/2]}sin(n6)
n=0 m=1
for e<|z<f
=0 for 0<|z<e, f<|z<w

(18)
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7 (U * U, %) = Z{Zcmn sm[m sin*{(e+ f —2z))/(f —e)}—ms/2]sgn(z)}

n=0 m=1
xcos(nd)  for e<|z<f
=0 for 0<|z<e, f<|zj<oo
(19)
where a,,, b,, andc,, are unknown coefficients, sgn(z) is the signum
function, and subscript b denotes the variables at r=Db . The Fourier
transformed expressions of Egs. (17), (18) and (19) are:

WU ") =S a,, ||sm[(e+f)|§|/2 mz/2]x 3, [(f — )|/ 2T} cos(né)

(U g™ U ™) = S0 by : |sm[(e+f)|§|/2 mz/2]x 3, [(f —e)&]/ 2]} sin(no)
(U U %) = Ii{icmn & |COS[(9+ e[/ 2-mz/2]x 3 [(f —e)|&|/ 21}

xsgn(&)cos(nd)

(20)
where J_ (&) is the Bessel function. Using a method described in Ref. [2], the
unknowns A" (&), B®(£) and CP(£) can be represented in terms of the
coefficients a,,, b,, and c,, . Consequently, the stress and displacement
fields can both be expressed in terms of these coefficients. For example,
T o™ T.op> and 7, * can be expressed as:

Frt =Y apx U wx [ QU Exsinl(e+ 1)E/2-mr /2]
" xJ.[(f —e)&/2]cos(Ez)dEYx cos(nd)
{3 b <1 [ Q&) Exsinl(e+ T)E/2-mr /2]
" xJ,[(f —e)d/2]cos(Sz)d S} x cos(nb)
{3 o (D [ Q& Excos[(e+ T)E/2-mr /2]
" xJ. [(f —e)&/2]cos(Ez)dEYx cos(nd)
e =L apo x| QU Excsinl(e+ 1)E/2-mr12]
" x J.[(f —e)&/2]cos(Ez)dEYxsin(nd)
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{3 b, U [ Q& Exsinf(e+ T)E/2-mr /2]
" x J,[(f —e)&/2]cos(Ez)dEYxsin(nd)
+{icmnx(—l)/7zx_|.0w QI ()] Excos[(e+ f)E/2—mr /2]
" xJ,[(f —e)&/2]cos(&z)dSExsin(no)

fra =Y ap U [ QU@ Exsinl(e+ F)E/2-mz /2]
" x J,[(f —e)&/2]sin(¢z)dEY x cos(nd)
{3 b, U x| QI Exsinf(e+ 1)EI2-mr/2]
" xJ,[(f —e)&/2]sin(£z)d &} x cos(no)
300X (D mx [, QU xcosle+ 1)E/2-m/2

x J [(f —e)&/2]sin(&z)dE} x cos(nb)

(21)
where the known functions Q' (&), Q; (&), -++, Qg (&) have the same expressions
given in Ref. [2].

Finally, the remaining boundary condition (5) can be reduced to the
following equation in the Laplace transform domain:

i iamm P.. (X z)+i ibanmn(x, z)+i icmn R, (X, 2) =-w, (X, z)
m=1 n=0 m=1l n=0 m=1 n=0
Z.O: Z.O:amnsmn (Xv Z)‘*’Z«j: ibmnumn (X’ Z)"'i icmnvmn (Xv Z) =_XO(X! Z)
m=1l n=0 m=1 n=0 m=1l n=0
i iamnwmn(x, z)+i ibmnxmn (X, z)+i icmnYmn(x, 2) ==Y, (X 2)
m=1 n=0 m=1 n=0 m=1l n=0
for —b<x<b, e<z<f
(22)
where

P,n (¥ 2) =1/(27) xcos(nO) x[[ " [Q] (£)/£ - Q11 3, (£,8)

x{cos(mz/2)[sin(e; &) +sin(e, &)]
—sin(mz / 2)[cos(e,&) +cos(e, £)] FdE
oL sinf{mz/2-msinT (g, /&,)} "

£
_ Lot 1
o N “ X1/62—82 x{e, +4 &7 — &’ }m]
1 3 2 1 2 2 1
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Qun (%, 2) =1/(27) xcos(nO) x[[ "[Q} (£)/ €1 3, (2, )
x{cos(mz/2)[sin(e; &) +sin(e, &)]
—sin(mz /2)[cos(e,&) +cos(s, £)]3dE ]
Ry (X, 2) = =1/(27) x cos(nO) < [[ "[Q3(£)/&] 3, (£:€)
x{cos(mz / 2)[cos(e,¢) + cos(e, &£)]
+sin(mz / 2)[sin(e,&) +sin(e, £)] }dE ]
S (%, 2) =1/(27) xsin(nO) x[[ " [Q] (£)/ €] I, (&, )
x{cos(mz/2)[sin(e;&) +sin(e, &)]
—sin(mz /2)[cos(e, &) +cos(e, £)]FdE ]
U (%, 2) =1/27) xsin(n6) <[ "1Q5(£)/ € - Q11 3, (,€)

x{cos(mz/2)[sin(e; &) +sin(e, &)]
—sin(mz /2)[cos(e; &) + cos(e, £)] }d&
_Qansin{mfz/Z—msin’l(g3lgl)}JrQan & ]
: &l — &l i Jer—gl x{e, +el &l }"
Vo (%, 2) = =1/27) xsin(nO) x[[ "[Q{(£)/£] 3, (2, )
x{cos(mz/2)[cos(e,&) +cos(e, &)
+sin(mz / 2)[sin(g,&) +sin(e, £)] }d& ]
W, (x, 2) =1/(27) x cos(nd) x[[ " [Q} (£)/£] 3,, (£,.8)
x{cos(mz/2)[cos(e, &) —cos(e, &)]
—sin(mz /2)[sin(e, &) —sin(e; &)1} dS ]
Xon (X, 2) =1/(27) x cos(nO) < [[ "[Q5 (£)/ ] 3, (2, &)
x{cos(mz /2)[cos(e, &) —cos(e, )]
—sin(mz /2)[sin(e, &) —sin(e; &)1} dSE ]
Yo (%, 2) = =1/(27) x cos(nO) x[[ " [Q3 (€)/ ¢ -Q3"1 I, (,€)

x{cos(mz/2)[sin(e, &) —sin(e,; £)]
+sin(mz / 2)[cos(e,&) —cos(e, £)] }d&
oL sinfmz/2-msin (e, /)} &

nL
+Qg % 2 2 +Qg % 2 2 2 2qm
Vé1 — &3 VE, =& X{52+\/52_51}

(23)

m

]




264 Shouetsu Itou

W, (X, ¥) = p exp[(x—b)s/c, ]xcos*(8)/s

Xo (X, ) =—p/2xexp[(x—b)s/c ]xsin(26)/s

Yo(X, y)=0. (24)
In Eq. (23), ¢,, ¢, and &, are shown by the expressions:
e =(f-e)2, g,=(+1+22)/2, ¢;=(+f-22)/2. (25)

The known functions Q, Q2", Qi" in Eq. (23) have the same expressions given
in Ref. [2].

The variable @ in Egs. (23) and (24) is given by:
6 =cos™(x/h). (26)
Now, Eqg. (22) can be solved for the unknown coefficients a,, , b, ,
and c,,, by means of the Schmidt method [2, 4].

5 Stress Intensity Factors

The stresses 7 ,.,*,  7,,* and 7 ,,* can be expressed by Eq. (21). If the
integrands in Eq. (21) are slightly modified and the following relation is used,
[, 3.(ag)[cos(£2), sin (§2)]dé
={-a"(z*-a®>) " [z+(z* -a®)?*]"sin(nz/2),
a"(z? —a®>) M [z+(z* —a*) 2] "cos(nz/2)} for a<z

(27)
the stress intensity factors can be determined in the Laplace domain as follows:

2re- D *|, =Y Ya,, Q' cos(ng) /22T —€)
n=0 m=1
Kllle*: [272'(9 - Z)]llzrrglb *| 76— = an L S'n(na)/ﬂZﬂ'(f —e)
oo Qatcos(n@)/J2x(f —e)

ﬁMS

K

Ile 7—>e—

NgE
?MS ?Ms

*= [Zﬂ(e - Z)]ll2 Tra1b *| =

o

n=

(28)

2>+ z Zamn anL (_1)m+1 COS(ne)/VZﬂ'(f _e)
rts Z b,, Qi (-D)™" sin(ng)//2z(f —e)

z>f+ T Z Cinn Q;L (_1)m+l COS(ne)/VZﬂ-(f _e)
_ 29)

K, *=[27(z = 1)]"* 7,3, *

K *=[27(z- f)]llzrrelb *

0 MS

3

Ky¢*=[27(z~ f)]llzfrzm*

\MS

n 1

3
|



Dynamic stress intensity factors 265

The inverse Laplace transformations of the stress intensity factors are
performed by the numerical method described by Miller and Guy [3].
The relation between g*(s) and g(t) is expressed as:
lim[s g*(s)]:!im g(t). (30)

s—0
The static results of the stress intensity factors in physical space can be obtained
by the use of Eqg. (30).

6 Numerical Examples and Results

The stress intensity factors are calculated for a Poisson’s ratio v =0.3 using
quadruple precision. The crack length is denoted by (f —e), and is fixed at 2b.
The Schmidt method is applied such that the infinite series in Eq. (22) are
truncated by summing from m=1 to 11 and from n=0 to 7. The values of the
left-hand side of Eq. (22) are shown in Tables 1, 2 and 3 for (sh/c;)=14,
e/b=0.1 and f/b=2.1. The corresponding values of the right-hand side of Eq.
(22) are in parentheses in these tables. From this data, it is evident that the
Schmidt method yields satisfactory results.

Table 1
Values of

11 7
> 3 [agPon (X /b, 2/0) b, Qu (X/b, 2/b) + ¢, Ry (X/b, 2/B)]/[p/(sb ¢, )]

m=l n=0

for(sb/c;)=14 and e/b=0.1 f/b=21. {Values of —w,(x/b,z/b)
/(sb/c;) arein parentheses.}

x7D = -0.999990 0.0 0.99999
/b =0.100010 | -0.1599065 -0.0000120 | -0.7139420
(-0.1599094) (0.0) (-0.7142661)
-0.1599341 0.0000045 | -0.7142271
1.10000 (-0.1599094) (0.0) (-0.7142661)
-0.1599560 0.0000510 | -0.7145377
2.09990 (-0.1599094) (0.0) (-0.7142661)

Table 2

Values of
11

7
> 3 [8ny S (X7, 2/b) 40, U (X710, 2/B) + €V (X7, 2/ D))/ p/(sb/ ;)]

m=1 n=0

for (sb/c;)=14 and e/b=021e/b=21. {Values of —x,(x/b,z/b)
/(sb/c;) arein parentheses.}
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x/b =-0.999990 0.0
0.999990
z/b =0.100010 -0.0007148 -0.0000538 | 0.0031924
(-0.0007151) (0.0) (0.0031943)
-0.0007151 -0.0000064 | 0.0031940
1.100000 (-0.0007151) (0.0) (0.0031943)
-0.0007150 0.0031939
2.099990 (-0.0007151) 0.0000062 (0.0031943)
(0.0)
Table 3
Values of

11 7
> 3 AW, (X7, 2/B) 4B, X o (X110, 2/B) + €Yo (b, 2/0)]/[p/(sb1 ¢, )]

m=1l n=0

for (sb/c;)=14 and e/b=0.1 f/b=21. {Values of —y,(x/b,z/b)
/(sb/c;) arein parentheses.}

X7D = -0.999990 0.0
0.999990
2/ =0.100010 | -0.0001789 -0.0006812 | 0.0010880
(0.0) (0.0) (0.0)
0.0000022 -0.0000136 | 0.0000231
1100010 (0.0) (0.0) (0.0)
-0.0001837 0.0006479 | -0.0010225
2.099990 (0.0) (0.0) (0.0)

The stress intensity factors are inverted numerically in physical space; these
factors are affected by the values of the parameters 6, £, and N in Miller and
Guy’s method [3]. However, if the value in physical space varies slowly with time,
the numerical Laplace inversion can be performed readily, as described in Ref. [1].
The present Laplace inversion is such a case. The numerical Laplace inversions
were performed by setting #=0.0, 6=0.2 and N =13.

The dynamic stress intensity factors K,, at ¢=(0°, 180°), K, at
0=90° and K,, at &=(0°, 180°) were plotted against c,t/b in Fig. 5
for e/b=0.1. The values of K, at #=(0°, 180°), K, at 8=90° and
K,; at @=(0° 180°) are plotted for e/b=0.1 in Fig. 6.
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Figure 5 The dynamic stress intensity factors K,, at ¢=(0°, 180°), K,,. at
#=90° and K,, at #=(0°, 180°) for e/b=0.1.
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Figure 6 The dynamic stress intensity factors K,, at 6 =(0°, 180°), K, at
#=90° and K,, at #=(0°, 180°) for e/b=0.1.



268 Shouetsu ltou

=
w

K per Kip M pJa(f=e)12]

(K,

Figure 7 The dynamic stress intensity factors K,, at #=(0°, 180°), K,,, at
#=90° and K,, at #=(0°, 180°) for e/b=0.2.
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Figure 8 The dynamic stress intensity factors K,, at 6=(0°, 180°), K, , at
#=90° and K,, at #=(0°, 180°) for e/b=0.2.
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Figure 9 The dynamic stress intensity factors K,, at #=(0°, 180°), K,,, at
0=90° and K,, at #=(0°, 180°) for e/b=0.5.
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Figure 10 The dynamic stress intensity factors K, at =(0°, 180°), K,
at 9=90° and K,, at 8=(0° 180°) for e/b=0.5.

The corresponding values of the dynamic stress intensity factors are
plotted in Figs. 7 and 8 for e/b=0.2, and in Figs. 9 and 10 for e/b=0.5,
respectively. The straight lines on the right hand side of Figs. 5 through 10
indicate the corresponding static values that are obtained by the use of Eq. (30).
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7 Discussion

A dynamic crack problem for two non-planar cracks such as two shell-shaped
cracks may only be solved using a numerical method. However, in order to
ascertain whether the numerical values are reliable or not, it is necessary to check
the numerical results against results obtained analytically. If a numerical method
is applied to solve a dynamic problem for two cylindrical cracks in an elastic
material, the results can be compared with those provided in this study. If both
sets of results are coincident with each other, the practicality of the numerical
method for solving the stress intensity factors for two non-planar cracks is
demonstrated. The numerical results presented in this study are useful for this
reason, despite the fact that the crack geometry of two co-axial cylinders is
unlikely to occur in practice.

8 Conclusions

The following may be concluded from the numerical calculations:

(i) The largest value of the stress intensity factors is the peak value of K,
atd =0° and it appears near c,t/b=2.0. A consequent design consideration
is that the fracture toughness of the material exceeds this peak stress intensity
factor by a sufficient margin.

(ii) The values of the stress intensity factors K, at #=(0°, 180%), K,,,

at 9=90° and K,, at &=(0°, 180°) are not significantly affected by
the distance 2e between the inner edges of the two cylindrical cracks. The
values of the dynamic stress intensity factors are similar to those for a single
cylindrical crack [2].

(i) The maximum peak value of K, at &=0° for e/b=0.1 is 1.3 times
larger than the corresponding value for a single cylindrical crack. It is
difficult to estimate whether this ratio would exceed 1.3 as the e/b ratio
decreases.
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