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Abstract 
 

Dynamic stresses are solved for two cylindrical cracks in an infinite elastic 
medium. Incident shock stress waves pass through the elastic medium normal to 
the cracks’ axis. In the Laplace transform domain, the mixed boundary value 
equations with respect to stresses and displacements are reduced to two sets of 
dual integral equations by means of the Fourier transform technique. To solve 
these equations, the differences in the cracks’ surface displacements are expanded 
in a series of functions that are zero outside the cracks. The boundary conditions 
inside the cracks are satisfied by means of the Schmidt method. Stress intensity 
factors are defined in the Laplace transform domain and are numerically inverted 
in physical space. Numerical calculations are performed for the dynamic stress 
intensity factors corresponding to some typical shapes assumed for the cylindrical 
cracks. 
 
Keywords: Stress intensity factor, Two cylindrical cracks, Transient stresses, 

Numerical Laplace inversion, Schmidt method 
 
 
1 Introduction 
 
Structural components are usually weakened during their lifetime by cracks 
initiated by fatigue or corrosion. Initial cracks are characterized by their small size 
and planar surfaces. If mixed mode loading is applied to the cracked material, 
however, the crack will not propagate in a plane, but may curve to form a  
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shell-shaped crack. For non-planar cracks of this type, analytical methods cannot 
be used to solve for the stress intensity factors. In these cases, solution of the 
stress intensity factors requires the use of numerical techniques such as the finite 
element method, the surface integral method, etc. 
    If a numerical method is utilized to solve the stress intensity factors for a 
shell-shaped crack, the accuracy of the results must be verified. For this purpose, 
it is useful to compare the results with results from the analytical method for a 
crack of similar shape to the shell-shaped crack. In a previous study [2], the author 
solved the transient stresses around a cylindrical crack in an infinite elastic 
medium during the passage of incident stress waves. Since the results for the 
cylindrical crack obtained using the numerical method were coincident with the 
analytical solutions given in Ref. [2] with acceptable accuracy, the numerical 
method can also be used to solve the stress intensity factors for a shell-shaped 
crack. 

For a similar purpose, the transient stresses around two cylindrical cracks in 
an infinite medium are also solved using an analytical method in this study. The 
incident shock stress waves impinge normal to the cracks’ axis. In the Laplace 
domain, differences in the displacements at the cracks’ surfaces are expanded in a 
series of functions that diminish to zero outside the cracks. The unknown 
coefficients in the series are solved so as to satisfy the stress-free conditions inside 
the cracks with the Schmidt method [2, 4]. The stress intensity factors are defined 
in the Laplace domain, and they are inverted numerically in physical space using 
Miller and Guy’s method [3]. 
 
 
2 Stress intensity factors for two shell-shaped cracks 
 
Consider an infinite elastic medium weakened by two non-planar cracks similar to 
the shell-shaped cracks shown in Fig. 1. The stress intensity factors for these 
cracks can only be solved with a numerical method such as the finite element 
method, the surface integral method, etc. It is therefore necessary to verify 
 
 
 

          
 

Figure 1 Two shell-shaped cracks in an infinite elastic medium. 
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Figure 2 Two cylindrical cracks in an infinite elastic medium.  
 
 
whether the accuracy of the numerical results is satisfactory or not. If the same 
numerical method is utilized to solve the stress intensity factors for two 
cylindrical cracks as shown in Fig. 2, it can be verified whether the numerical 
results given by the numerical method are reliable or not by comparing the results 
with those obtained by the analytical method.   
 
 
3 Fundamental Equations 
 
With respect to the cylindrical coordinates ),,( zr θ , consider two cylindrical 
cracks located on br =  and extending from fz −=  to ez −=  and from 

ez =  to fz = , as shown in Fig. 3. For the sake of convenience, the infinite 
medium is divided into a cylinder (1) denoted by ( br ≤≤0 ), and an infinite 
region (2) denoted by ( rb ≤ ). 
 

          
Figure 3 Two cylindrical cracks and coordinate system. 

 
   The rectangular coordinates ),,( zyx  are used in the expression of the 
incident stress waves; these are related to the cylindrical coordinates ),,( zr θ  by 
the equations: 
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zzryrx === ),sin(),cos( θθ .                                (1) 
Consequently, the incident stress waves that impinge on the cracks as shown in 
Fig. 4 are expressed by the equations: 
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where p  is a constant, Lc  is the longitudinal wave velocity, )(tH  is the 
Heaviside unit step function and time, t, is zero when the wave front reaches the 
crack surface )0,( == θbr .  
 
 

           
 
Figure 4 Incident stress waves expressed by rectangular coordinates ),,( zyx . 

 
 

The incident waves can be defined in the cylindrical coordinate system 
),,( zr θ  by the equation: 
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Thus, the boundary conditions for the scattered field are given by the equations: 
 

∞≤==== zbrrrzrzrrrrr ,at,,, 212121 θθ ττττττ         (4) 
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zfezbruuuuuu zzrr <<≤==== ,0,at,, 212121 θθ     (6) 
where ru , θu  and zu  are defined as the r , θ  and z  displacement 
components, respectively, and subscripts 1 and 2 denote the variables for the 
cylinder (1) and the infinite region (2), respectively. 

Using the cylindrical coordinate system ),,( zr θ , displacement potential 
functions nφ , nϕ  and nχ  are introduced according to the following 
relationships [5], 
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    Substituting Eq. (7) into the equations of motion yields:  
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with 
ρμρμλ /,/)2( 22 =+= TL cc .                                     (9) 

 
In Eqs. (8) and (9), Tc  is the transverse elastic wave velocity; λ  andμ  are 
Lame’s elastic constants and ρ  is the density of the material.  

 
The stresses in the medium are expressed in terms of nφ , nϕ  and nχ  by 

the equations: 
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4 Analysis 
 
To obtain the solution, we introduce the Laplace transforms, 
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and the Fourier transforms, 
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Applying Eqs. (11) and (12) to Eq. (8) yields: 

.0*])//(/)/1(/[

,0*])//(/)/1(/[

,0*])//(/)/1(/[

2222222

2222222

2222222

=++−+

=++−+

=++−+

nT

nT

nL

csrndrdrrdd

csrndrdrrdd

csrndrdrrdd

χξ

ϕξ

φξ

              (13) 

The solutions of Eq. (13) for the cylinder (1) and the infinite region (2) 
assume the following forms: 
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where )(ξnK  and )(ξnI  are modified Bessel functions, and the unknown 
coefficients )(),(),( )2()2()2( ξξξ nnn CBA can be expressed with the unknown 
coefficients )(),(),( )1()1()1( ξξξ nnn CBA  by employing Eq. (4) as shown in Ref. [2]. 
    In order to satisfy Eq. (6), the differences in the displacements at br =  in 
the Laplace domain are expanded by means of the following series: 
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where nmnm ba , and nmc  are unknown coefficients, )sgn(z  is the signum 
function, and subscript b  denotes the variables at br = . The Fourier 
transformed expressions of Eqs. (17), (18) and (19) are: 
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where )(ξmJ  is the Bessel function. Using a method described in Ref. [2], the 
unknowns )(),( )1()1( ξξ nn BA  and )()1( ξnC  can be represented in terms of the 
coefficients nma , nmb  and nmc . Consequently, the stress and displacement 
fields can both be expressed in terms of these coefficients. For example, 
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where the known functions )(,),(),( 921 ξξξ nnn QQQ L  have the same expressions 
given in Ref. [2].  
      Finally, the remaining boundary condition (5) can be reduced to the 
following equation in the Laplace transform domain: 
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In Eq. (23), 21 , εε  and 3ε  are shown by the expressions: 
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in Ref. [2]. 
 

The variable θ  in Eqs. (23) and (24) is given by: 
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Now, Eq. (22) can be solved for the unknown coefficients nma , nmb  
and nmc  by means of the Schmidt method [2, 4]. 
 
 
5 Stress Intensity Factors 
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the stress intensity factors can be determined in the Laplace domain as follows: 
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     The inverse Laplace transformations of the stress intensity factors are 
performed by the numerical method described by Miller and Guy [3].  
       The relation between )(* sg  and g t( )  is expressed as: 
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ts ∞→→

=                                           (30) 

The static results of the stress intensity factors in physical space can be obtained 
by the use of Eq. (30). 
 
 
6 Numerical Examples and Results 
 
The stress intensity factors are calculated for a Poisson’s ratio 3.0=ν  using 
quadruple precision. The crack length is denoted by )( ef − , and is fixed at b2 . 
The Schmidt method is applied such that the infinite series in Eq. (22) are 
truncated by summing from 1=m  to 11 and from 0=n  to 7. The values of the 
left-hand side of Eq. (22) are shown in Tables 1, 2 and 3 for 4.1)/( =Tcsb , 

1.0/ =be  and 1.2/ =bf . The corresponding values of the right-hand side of Eq. 
(22) are in parentheses in these tables. From this data, it is evident that the 
Schmidt method yields satisfactory results. 

 
 

 
Table 1 
Values of 

)]//(/[)]/,/()/,/()/,/([
7

0

11

1
Tmnmnmnmn

n
mnmn

m

csbpbzbxRcbzbxQbbzbxPa ++∑∑
==

 

for 4.1)/( =Tcsb  and 1.2/,1.0/ == bfbe . {Values of )/,/(0 bzbxw−  

)//( Tcsb  are in parentheses.} 
 

 =bx / -0.999990     0.0    0.99999 
=bz / 0.100010 -0.1599065

(-0.1599094)
-0.0000120
(0.0)

-0.7139420 
(-0.7142661) 

        
1.10000 

-0.1599341
(-0.1599094)

0.0000045
(0.0)

-0.7142271 
(-0.7142661) 

        
2.09990 

-0.1599560
(-0.1599094)

0.0000519
(0.0)

-0.7145377 
(-0.7142661) 

 
 
Table 2 
Values of 

)]//(/[)]/,/()/,/()/,/([
7

0

11

1
Tmnmnmnmn

n
mnmn

m

csbpbzbxVcbzbxUbbzbxSa ++∑∑
==

 

for 4.1)/( =Tcsb  and 1.2/,1.0/ == bebe . {Values of )/,/(0 bzbxx−  

)//( Tcsb  are in parentheses.} 
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Table 3 
Values of 

)]//(/[)]/,/()/,/()/,/([
7

0

11

1
Tmnmnmnmn

n
mnmn

m

csbpbzbxYcbzbxXbbzbxWa ++∑∑
==

 

for 4.1)/( =Tcsb  and 1.2/,1.0/ == bfbe . {Values of )/,/(0 bzbxy−  

)//( Tcsb  are in parentheses.} 
 
 
 
 
       
 
 
 
 
 
 

The stress intensity factors are inverted numerically in physical space; these 
factors are affected by the values of the parameters δ β, , and N  in Miller and 
Guy’s method [3]. However, if the value in physical space varies slowly with time, 
the numerical Laplace inversion can be performed readily, as described in Ref. [1]. 
The present Laplace inversion is such a case. The numerical Laplace inversions 
were performed by setting 2.0,0.0 == δβ  and 13=N .  

 
The dynamic stress intensity factors eIK  at )180,0( 00=θ , eIIIK  at 

090=θ  and eIIK  at )180,0( 00=θ  were plotted against btcT /  in Fig. 5 
for 1.0/ =be . The values of fIK  at )180,0( 00=θ , fIIIK  at 090=θ  and 

fIIK  at )180,0( 00=θ  are plotted for 1.0/ =be  in Fig. 6.  
 
 
 

 =bx / -0.999990     0.0    
0.999990 

=bz / 0.100010 -0.0007148
(-0.0007151)

-0.0000538
(0.0)

0.0031924 
(0.0031943) 

       
1.100000

-0.0007151
(-0.0007151)

-0.0000064
(0.0)

0.0031940 
(0.0031943) 

       
2.099990 

-0.0007150
(-0.0007151) 

 
0.0000062 
(0.0)

0.0031939 
(0.0031943) 

 =bx / -0.999990     0.0    
0.999990 

=bz / 0.100010 -0.0001789
(0.0)

-0.0006812
(0.0)

0.0010880 
(0.0) 

        
1.100010

0.0000022
(0.0)

-0.0000136
(0.0)

0.0000231 
(0.0) 

        
2.099990

-0.0001837
(0.0)

0.0006479
(0.0)

-0.0010225 
(0.0) 
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Figure 5 The dynamic stress intensity factors eIK  at )180,0( 00=θ , eIIIK  at 

090=θ  and eIIK  at )180,0( 00=θ  for 1.0/ =be . 
 
 
 
 

     

Figure 6 The dynamic stress intensity factors fIK  at )180,0( 00=θ , fIIIK  at 
090=θ  and fIIK  at )180,0( 00=θ  for 1.0/ =be . 
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Figure 7 The dynamic stress intensity factors eIK  at )180,0( 00=θ , eIIIK  at 
090=θ  and eIIK  at )180,0( 00=θ  for 2.0/ =be . 

 
 
 
 
 

     

Figure 8 The dynamic stress intensity factors fIK  at )180,0( 00=θ , fIIIK  at 
090=θ  and fIIK  at )180,0( 00=θ  for 2.0/ =be . 
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Figure 9 The dynamic stress intensity factors eIK  at )180,0( 00=θ , eIIIK  at 
090=θ  and eIIK  at )180,0( 00=θ  for 5.0/ =be . 

 
 
 

     
Figure 10 The dynamic stress intensity factors fIK  at )180,0( 00=θ , fIIIK  

at 090=θ  and fIIK  at )180,0( 00=θ  for 5.0/ =be . 
 
 

The corresponding values of the dynamic stress intensity factors are 
plotted in Figs. 7 and 8 for 2.0/ =be , and in Figs. 9 and 10 for 5.0/ =be , 
respectively. The straight lines on the right hand side of Figs. 5 through 10 
indicate the corresponding static values that are obtained by the use of Eq. (30). 
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7 Discussion 
 
A dynamic crack problem for two non-planar cracks such as two shell-shaped 
cracks may only be solved using a numerical method. However, in order to 
ascertain whether the numerical values are reliable or not, it is necessary to check 
the numerical results against results obtained analytically. If a numerical method 
is applied to solve a dynamic problem for two cylindrical cracks in an elastic 
material, the results can be compared with those provided in this study. If both 
sets of results are coincident with each other, the practicality of the numerical 
method for solving the stress intensity factors for two non-planar cracks is 
demonstrated. The numerical results presented in this study are useful for this 
reason, despite the fact that the crack geometry of two co-axial cylinders is 
unlikely to occur in practice.  
 
 
8 Conclusions 
 
The following may be concluded from the numerical calculations: 
(i) The largest value of the stress intensity factors is the peak value of eIK  

 at 00=θ  and it appears near 0.2/ =btcT . A consequent design consideration 
is that the fracture toughness of the material exceeds this peak stress intensity 
factor by a sufficient margin.  

(ii) The values of the stress intensity factors fIK  at )180,0( 00=θ , fIIIK  
   at 090=θ  and fIIK  at )180,0( 00=θ  are not significantly affected by 

the distance e2  between the inner edges of the two cylindrical cracks. The 
values of the dynamic stress intensity factors are similar to those for a single 
cylindrical crack [2].  

(iii) The maximum peak value of eIK  at 00=θ  for 1.0/ =be  is 1.3 times 
larger than the corresponding value for a single cylindrical crack. It is 
difficult to estimate whether this ratio would exceed 1.3 as the be /  ratio 
decreases.  
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