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Abstract

Thermo elastic-plastic stresses for a transversely isotropic thick-walled rotating
cylinder under internal pressure by using transition theory have been discussed
numerically and depicted graphically. It has been observed that at room
temperature, thick-walled circular cylinder made of isotropic material having
thickness ratio (b/a)=4 vyields at the internal surface at high pressure as
compared to cylinder made of transversely isotropic material. For a smaller radii
ratio, thick-walled circular cylinder vyields at lower pressure. With the
introduction of thermal effects and angular speed, cylinder made of isotropic/
transversely isotropic material yields at lower pressure. With the increase in
angular speed and thermal effects much less pressure is required for initial
yielding. It has been observed that for fully plastic state circumferential stress is
maximum at external surface. Therefore, circular cylinder under internal pressure
made of transversely isotropic material is on the safer side of the design.
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1. Introduction

The constantly increasing industrial demand for axisymmetrical cylindrical
components has concentrated the attention of designers and scientists on this
particular area of activity. The progressive world-wide scarcity of materials
combined with their consequently higher cost, makes it increasingly less
attractive to confine design to the customary elastic regime only. Thick-walled
cylinders of circular cross-section are used commonly either as pressure vessels
intended for storage in industrial gases or as media for transportation of high
pressurized fluids. A thick-walled cylinder is also widely used as a structural
component in oil refineries, power industries etc. Problem of thick-walled
cylinder under internal pressure have been analyzed by many authors [1-4] for
isotropic homogeneous elastic-plastic states. In their treatment, the following
assumptions were made: (i) the incompressibility conditions, (ii) the deformation
is small, (iii) the yield criterion.

Incompressibility of the material in plasticity is one of the most important
assumption that simplifies the problem. Infact, in most of the cases, it is not
possible to find a solution in closed form without this assumption. Transition
theory [2] does not require any of the above assumptions and thus solves a more
general problem. This theory utilizes the concept of generalized principal strain
measure, which not only gives the well-known strain measures but can also be
used to find the stresses in plasticity and creep problems.

In this paper, thermo elastic-plastic stresses for a transversely isotropic
thick-walled rotating cylinder under internal pressure have been obtained by
using transition theory. Results obtained have been discussed numerically and
depicted graphically.

2. Governing Equations

Consider a thick-walled circular cylinder of internal and external radii ‘a’ and ‘b’
respectively, subjected to internal pressure (p) and rotating with an angular
velocity (w) and temperature (TO) applied at the internal surface. The

generalized principal components of strain is defined as,

€ = J.[l_zei/i-\]a_ldei? :%[1_(1_2eiiA)2]’ (i,j=123 (1)
0
where n is the measure and eif is the principal Almansi finite strain components
4. o . .
The displacement components in cylindrical polar co-ordinates are given by,

u=r@-4), v=0, w=dz (2

where g is a function of r = /x> + y*> only and d is a constant.
The finite components of strain are given as
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k=5 [-(f + p)7) el == f), i =Z{1-(-d)’], ey —et=el=0(d)
where g’ =dg/dr
Substituting equation (3) in equation (1) we get the generalized components of
strain as,
1 ' n 1 n 1 n
€ :H[l_(rﬂ +ﬁ) ]’ eae :H[l_ﬂ ]1 €, :H[l_(l_d) ]l ere :e& =€, =0 (4)
The stress-strain relations for transversely isotropic material are
T, = Cllerr + (Cll - Zces)eee + C13ezz - ﬂlT’
Ta@ = (Cll - 2C66)err + Cneae + Clsezz - ﬂzT
Tzz = C:13err + C13e6’9 + C33622 _ﬂZT ) Tzr :Tﬂz :TrH =0 (5)
where S, =Cpoy +2C,a,; Br =Cr1 +(Cyp +Cy3)ay;
C;'s = Material constants ; T = Temperature change ;
a, = Coefficient of linear thermal expansion along the axis of symmetry,
a, = Corresponding quantities orthogonal to axis of symmetry.
Using equations (4) in equations (5), we have
T, =(Cu/ni-(8+rp) [+[C—2Cs )inlt- g ]+ Coe, - BT
Tae = [(Cll - 2C66 )/ n][l_ (ﬂ + rﬂ')n ]"' (Cll / n)[l_ ﬂn ]+ C13ezz _:BzT
Tzz = (Cl3 / n)b‘_ (ﬂ + rﬂ’)n J+ (Cl3 /n)[l_ ﬂn ]+ C:33ezz - ﬂZT

Ty=Tp=T,=0 (6)
Equations of equilibrium are all satisfied except,

i(Trr)+(ﬂj+pra)2 =0 (7)

dr r

where p is the density of the material. The temperature field satisfying Laplace
equation(VzT :0) and T=Tjatr=a, T=0atr=b0
where T, is a constant given by
T
T=—2"log(r/b). 8
log(a/b) g(r/b) (8)

Substituting equation (6) and (8) in equation (7), we get a non-linear differential

equation in S as,
nPC,A" (1+ P)”‘lf

g~ PG @ P) ~(Cu= 2GR +2C i 7 1+ P)' -

~2C(1~ B") =nBT, + (B, — B)nT, log /b) + pnre®
where g’ = P andT, =T, /log(a/b).
The transitional points of P in equation (9) are P — -1 and P — +.
The boundary conditions are
T,=—patr=aand T, =0atr=Db (10)
The resultant force normally applied to the ends of cylinder is
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b
27r_[ (T, dr =ma’p (11)

3. Solution through the Principal Stresses

It has been shown [5-9] that the asymptotic solution through the principal stress
leads from elastic to plastic state at the transition point P — +oo . For finding the
plastic stresses at the transition pointP — oo, we define the transition
function R as,
R= 2(C11 - Cee )+ nCl3ezz - IqTrr - nﬂlT = ﬂn [Cll - 2C66 + C11 (1+ P)n] (12)
Taking the logarithmic differentiation of equation (12) with respect to ‘r’, and
taking the asymptotic value asP — +o0, and integrating, we get
R=Ar"® (13)

where A is a constant of integration andC, =2C, /C,;.
Using equation (13) in equation (12), we get

T, =C,— B, log(r/b)—(A /n)r = (14)
where C, =[2(C,, —C,,) +NnCye, |/n and 8, = A.T,.
Using boundary condition (10) in equation (14), we get

A - nbc{ P~/ Iocg(a/m} c, {p—ﬂo Iog(a/b)} 15
(b/a)= -1 (b/a)™ -1
Substituting the value of A, and C, in equation (14), we get
_[p-pgatog@rt)], (0|, (T
T { Ola -1 | (rj } & '°g(bj (19

Using equation (16) in equation (7), we have

T, :[p—ﬂo log(a/b) 1_(1_C1)(bJ 1}%{1“09&]}”2@2 17)

(b/a)® -1 T

The axial stress is obtained from equation (5) as

T, = Cys [Trr +T,, ]+ {Cm (Cll —Ces )_ C123 }ezz
2(C11 - C66 ) Cpu - Cea

T
+ m[cm (B, +B,)-2p,(Cy —Cqs )]

(18)

Applying the end condition (11) in equation (18), the axial strain is given by,
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a’p__a’Cy(p-f,log/b)) = A,Ci2’° logbla)
b* -a’ (Cu _Cee)(bz _az) (Cu _Cse)(bz _az)

2,
e, = (Cu _Cee) Cs P of (bz " az)_ 5 Cm[l‘*‘zlj (19)
lcss(cn _Ces) _C123J 4((:11 _Cee) 2(C11 _Cee) ,32
_2; (Cu _Ces)

1 a’logb/a)
=+
2 (b*-a’

Substituting equation (19) in equation (18), we get

_Cs |[[p-Bloga/t)Y, . ~yb\'). &p  Cub {rﬂ
TZZ_C11(2_C1)H (b/a)q 1 IZ (2 Cl)(r] ]}'bz_az Cll(z_cl){l—FZlo b

2a°pG, n Cor’e _ Cpppcf (bz + az) (20)

B Cll(z_cl)(bz _az) C11(2_C1) 2C11(2_C1)
A

A B B~ azlogb/a)_}_ r
Cul _Cl){cls[l"'ﬁl] Zﬂl(cn Caa)}{ (bz _a2) 2 Og{bj}

From equation (16) and (17), we get

. | p=pylog(arb)|. (b )
Too Trr_{ (b/a)cl—l :|Cl(r} Byt prio (21)

It is found that the value of [T,, —T, | is maximum atr = a, which means yielding
of the cylinder will take place at the internal surface. Therefore, we have

T =T =Y(say) (22)

rr | r=a

¢
Cl—| -p,+pae’
(b/a)% —1 a] fo+ pre

{p—ﬂo Iog(a/b)} (b

The relation between pressure and temperature for initial yielding is given by,

P 222(14‘(130 /Y)_(pacsz/Y)j[(Ej 1 _1:|+&Iog(a/b) (23)
Y C,(b/a)™ a Y

Using equation (23) in equation (16), (17) and (20), we get transitional stresses as
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o = T _| P=(4sY)loglalb) 1_(9)% B mg@

Y (b/a)* -1 Cr Y b

o T _ Pi—(ﬁolY)Iog(a/b)__l_(l_C)(E)Q 4 1+|og(£j e’
0 0 Ur Y b
P

(b/a)* -1

et 23

G (/B /Y) 1+2|0€{ j Cpy plof _ 2a°C,3R,
C (2 C) Cu(2-C) Y C11(2_C1)( -a’

Gy pa’h’? B C, pow‘a’
2C,(2-C) Y ‘2c,(2-c) Y

e A s e e ]

Equations (24) give thermo elastic-plastic transitional stresses in thick-walled
rotating cylinder under internal pressure.

For fully plastic state (C, — 0), equation (22) becomes

) e

_ _ p_:Bo Iog(a/b) _ 2 2| _y*
|T€6 Trr|r b _‘[ Iog(b/a) } By + b 0| =Y (SaY) (25)
From equation (23), we have

P, === lL- (b0 /¥ log(ora) (26)

From equation (24), we get stresses for fully plastic state as

el
oA )
&{ s

a’Cy Iog Cis pr o’ C13 %
11 b2 —a 2C A4C, Y

BN (1, 5 28, Cn C%) a Iog(b/a)_;_.o (LJ
2C,, By B b* -2’ 2 ; b

*
2

pb2a>2 b
v ]Iog[gﬂ
Y b*+a?)  (27)
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4. lsotropic Case

For an isotropic material, the stresses required for fully plastic state (c - O) IS
given as,

o, = [:|.—pb2a)2/Y*]|Og(l’/b),O'; = [Zl.—pbza)z/Y*Il+ log(r /b)]+ priw?/Y"
o, :1{[1— pzz?zj(lulog(r/b))}%przfoz —pbzfoz (1+(a/b)2)

‘2 Y Y 4
(b/a) 1 )
_Bo |y B, | toglbla) 1 _
o ﬂj{(b/a)z—l 2 '°g(”b)}

These equations are same as obtained by Gupta et.al. [5].

5. Numerical lllustration and Discussions

As a numerical illustration, the values of pressure (p) required for initial
yielding (P, )and for fully plastic state (Pf) at different temperatures for different

angular speeds has been given in table 1.

It has been observed from figurel that at room temperature, thick-walled
circular cylinder made of isotropic material having thickness ratio (b/a):4

yields at the internal surface at high pressure as compared to cylinder made of
transversely isotropic material. With the introduction of thermal effects and
angular speed, cylinder made of isotropic/ transversely isotropic material yields at
lower pressure. With the increase in angular speed and thermal effects much less
pressure is required for initial yielding. From table 1, it has been observed that a
thick-walled circular cylinder made of transversely isotropic material requires
high percentage increase in pressure to become fully plastic from its initial
yielding and this percentage increases with the increase in temperature and
angular speed. It means that at room temperature, thick-walled cylinder made of
isotropic material is to withstand a greater pressure to initiate yielding at the
internal surface as compared to cylinder made of transversely isotropic material.
With the introduction of thermal effects and angular speed they yield at a lower
pressure, where as cylinder made of isotropic material requires less percentage
increase in pressure to become fully plastic state from its initial yielding.

In figures 2-3, elastic plastic transitional stresses for fully plastic state have been
drawn with radii ratioR =(r/b). For fully plastic state circumferential stress is

maximum at external surface. Circumferential stress decreases with the increase
in angular speed. It has been observed that for fully plastic state, radial and
circumferential stresses are independent of thermal effects.
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Table 1: The pressure required for initial yielding and Fully-plastic state at
different Temperatures (ﬁo /Y) and different angular speeds

0°=n Transversely Isotropic Material{(Magnesium) Isotropic Material{Brass)
p-fZh it
i i
B _ B is the percencentage increase is the percencentage increase
bia P I o T 035 %=U-?5 in pressure required from initial ";3," =0 %= 05 %=D_?5 in pressure reguired from initial
yielding to fully-plastic stateat yielding to fully-plastic stateat
different temperatures. different temperatures.
B g Peps [Pecors Bo g [Pegs [Pecngs
i ¥ i ¥ ¥ ¥
.
2 = D.5742 | 05148 | 04851 | on707 | 346348 | 428778 [29098 | 05901 | 08053 | 45 910g | 300574 | 37.188
ks 0.6931 0.6931 0.6931 0.6931 0.6931 0.6931
P
3 = : 082 0 BB08 DBT1 34.0195 | B1.368 | 79.7742 0 8453 07186 06553 299656 | 52.8806 | 67.6454
ks 1.0986 1.0986 1.0986 1.0986 1.0986 1.0986
F.
4 = D.9635 | 0752 | 0.6463 | 420817 | 943484 |114.4979 — 08069 | 07103 | 3553 | 71.8056 | 95.1711
£ 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863
=2 Transversely Isotropic Material(Magnesium) Isotropic Material(Brass)
. Pf -F P Pf -F
, 7
B B is the percencentage increase is the percencentage increase
bia P T 0 30 ’{; =075 lin pressure required from initial %= I %= 05 | £a_g7s fin pressure required fram initial
yielding to fully-plastic stateat ¥ yielding to fully-plastic stateat
different temperatures. different temperatures.
£=U £=D_5 £=D.?5 &:D &:D.j £=D.?5
bd ¥ ¥ ) ¥ ¥
E.
2 Iz : 0.2671 02277 0.198 341.414 | 404352 | 450.051 0.2925 | 02390 | 0214 336.634 | 389755 | 426318
! 0.6931 | -0.6531 | -0.6931 0.6931 | -0.6931 | -0.6931
£
E = 0.8978 | 0.4986 | 04289 | 509245 | 300.381 | 356144 25575 | 08908 | 04675 |50 na7 | 305971 | 334.995
7 -1.0986 | -1.0986 | -1.0986 -1.0986 | -1.0956 | -1.0936
£
4 = i 0.543 06316 | 05258 64448 | 31949 | 63605 0.575 06819 | 0.5853 50431 | 3093 | 932872
7 -1.3863 | -1.3863 | -1.3863 -1.3863 | -1.3863 | -1.3863
Fig. 1: Relationship between (,/Y) and P, at different thickness and
different angular speed
2 2 2
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Fig. 2: Fully-plastic Stresses for a Thick-walled Cylinder under Internal
Pressure at different temperatures and angular speed (QZ = O)
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Fig. 3: Fully-plastic Stresses for a Thick-walled Cylinder under Internal
Pressure at different temperatures and angular speed (QZ = 2)
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