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Abstract 
 
Thermo elastic-plastic stresses for a transversely isotropic thick-walled rotating 
cylinder under internal pressure by using transition theory have been discussed 
numerically and depicted graphically. It has been observed that at room 
temperature, thick-walled circular cylinder made of isotropic material having 
thickness ratio ( ) 4/ =ab  yields at the internal surface at high pressure as 
compared to cylinder made of transversely isotropic material. For a smaller radii 
ratio, thick-walled circular cylinder yields at lower pressure. With the 
introduction of thermal effects and angular speed, cylinder made of isotropic/ 
transversely isotropic material yields at lower pressure. With the increase in 
angular speed and thermal effects much less pressure is required for initial 
yielding. It has been observed that for fully plastic state circumferential stress is 
maximum at external surface. Therefore, circular cylinder under internal pressure 
made of transversely isotropic material is on the safer side of the design. 
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1. Introduction 
 
The constantly increasing industrial demand for axisymmetrical cylindrical 
components has concentrated the attention of designers and scientists on this 
particular area of activity. The progressive world-wide scarcity of materials 
combined with their consequently higher cost, makes it increasingly less 
attractive to confine design to the customary elastic regime only. Thick-walled 
cylinders of circular cross-section are used commonly either as pressure vessels 
intended for storage in industrial gases or as media for transportation of high 
pressurized fluids. A thick-walled cylinder is also widely used as a structural 
component in oil refineries, power industries etc. Problem of thick-walled 
cylinder under internal pressure have been analyzed by many authors [1-4] for 
isotropic homogeneous elastic-plastic states. In their treatment, the following 
assumptions were made: (i) the incompressibility conditions, (ii) the deformation 
is small, (iii) the yield criterion.  

Incompressibility of the material in plasticity is one of the most important 
assumption that simplifies the problem. Infact, in most of the cases, it is not 
possible to find a solution in closed form without this assumption. Transition 
theory [2] does not require any of the above assumptions and thus solves a more 
general problem. This theory utilizes the concept of generalized principal strain 
measure, which not only gives the well-known strain measures but can also be 
used to find the stresses in plasticity and creep problems. 

 In this paper, thermo elastic-plastic stresses for a transversely isotropic 
thick-walled rotating cylinder under internal pressure have been obtained by 
using transition theory. Results obtained have been discussed numerically and 
depicted graphically.    

 
 

2. Governing Equations 
 
Consider a thick-walled circular cylinder of internal and external radii ‘a’ and ‘b’ 
respectively, subjected to internal pressure (p) and rotating with an angular 
velocity (ω ) and temperature ( )0T  applied at the internal surface. The 
generalized principal components of strain is defined as, 
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where n  is the measure and A
ije  is the principal Almansi finite strain components 

[4]. 
The displacement components in cylindrical polar co-ordinates are given by, 

dzwvru ==−= ,0),1( β               (2) 

where β  is a function of 22 yxr +=  only and d is a constant. 
The finite components of strain are given as  
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where drd /ββ =′  
Substituting equation (3) in equation (1) we get the generalized components of 
strain as,  
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The stress-strain relations for transversely isotropic material are  
,)2( 113661111 TeCeCCeCT zzrrrr βθθ −+−+=

TeCeCeCCT zzrr 213116611 )2( βθθθθ −++−=
TeCeCeCT zzrrzz 2331313 βθθ −++= ,   0=== θθ rzzr TTT        (5)   

where   2121111 2 ααβ CC += ;  233221122 )( ααβ CCC ++= ;   
sCij '  = Material constants ;  T   = Temperature change ; 

             1α  = Coefficient of linear thermal expansion along the axis of symmetry, 
 2α  = Corresponding quantities orthogonal to axis of symmetry. 

Using equations (4) in equations (5), we have 
  ( ) ( )[ ] ( )[ ][ ] TeCnCCrnCT zz

nn
rr 113661111 1/21/ ββββ −+−−+′+−=    

( )[ ] ( )[ ] ( )[ ] TeCnCrnCCT zz
nn

213116611 1/1/2 ββββθθ −+−+′+−−=

 ( ) ( )[ ] ( )[ ] TeCnCrnCT zz
nn

zz 2331313 1/1/ ββββ −+−+′+−=  
 0=== rzzr TTT θθ             (6) 

Equations of equilibrium are all satisfied except, 
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where ρ  is the density of the material. The temperature field satisfying Laplace 
equation ( )02 =∇ T  and 0TT =  at r = a,   0=T at r = b 
where 0T   is a constant given by  
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Substituting equation (6) and (8) in equation (7), we get a non-linear differential 
equation in β as, 
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where Pr ββ =′  and )/log(00 baTT = . 
The transitional points of P  in equation (9) are 1−→P  and ±∞→P . 
The boundary conditions are   

pTrr −= at r = a and 0=rrT at r = b         (10) 
The resultant force normally applied to the ends of cylinder is 
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3. Solution through the Principal Stresses 
 
 
It has been shown [5-9] that the asymptotic solution through the principal stress 
leads from elastic to plastic state at the transition point ±∞→P . For finding the 
plastic stresses at the transition point ±∞→P , we define the transition 
function R as, 

( ) TnnTenCCCR rrzz 11366112 β−−+−= [ ]nn PCCC )1(2 116611 ++−= β          (12) 
Taking the logarithmic differentiation of equation (12) with respect to ‘r’, and 
taking the asymptotic value as ±∞→P , and integrating, we get 
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1
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where 1A  is a constant of integration and 11661 /2 CCC = .  
Using equation (13) in equation (12), we get  
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where [ ] nenCCCC zz /)(2 1366113 +−=  and 010 Tββ = . 
Using boundary condition (10) in equation (14), we get 
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Substituting the value of 1A  and 3C  in equation (14), we get 
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Using equation (16) in equation (7), we have  

 22
01

0 log1)1(1
1)/(

)/log( 1

1
ωρβ

β
θθ r

b
r

r
bC

ab
bap

T
C

C +⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−⎥

⎦

⎤
⎢
⎣

⎡
−

−
=  (17) 

 
The axial stress is obtained from equation (5) as 
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Applying the end condition (11) in equation (18), the axial strain is given by, 
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Substituting equation (19) in equation (18), we get 
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From equation (16) and (17), we get  

 

( )
22

01
0

1

1 1/
)/log(

ωρβ
β

θθ r
r
bC

ab
bapTT

C

Crr +−⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡

−
−

=−       (21) 

 
It is found that the value of rrTT −θθ  is maximum at ar = , which means yielding 
of the cylinder will take place at the internal surface. Therefore, we have 
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The relation between pressure and temperature for initial yielding is given by, 
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Using equation (23) in equation (16), (17) and (20), we get transitional stresses as  
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Equations (24) give thermo elastic-plastic transitional stresses in thick-walled 
rotating cylinder under internal pressure. 
For fully plastic state ( )01 →C , equation (22) becomes  
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From equation (23), we have  
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From equation (24), we get stresses for fully plastic state as 
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4. Isotropic Case 
 
For an isotropic material, the stresses required for fully plastic state ( )0→c  is 
given as, 
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These equations are same as obtained by Gupta et.al. [5].   
 
        
 
5. Numerical Illustration and Discussions 
 
As a numerical illustration, the values of pressure (p) required for initial 
yielding ( )iP and for fully plastic state ( )fP  at different temperatures for different 
angular speeds has been given in table 1. 
 

It has been observed from figure1 that at room temperature, thick-walled 
circular cylinder made of isotropic material having thickness ratio ( ) 4/ =ab  
yields at the internal surface at high pressure as compared to cylinder made of 
transversely isotropic material. With the introduction of thermal effects and 
angular speed, cylinder made of isotropic/ transversely isotropic material yields at 
lower pressure. With the increase in angular speed and thermal effects much less 
pressure is required for initial yielding. From table 1, it has been observed that a 
thick-walled circular cylinder made of transversely isotropic material requires 
high percentage increase in pressure to become fully plastic from its initial 
yielding and this percentage increases with the increase in temperature and 
angular speed. It means that at room temperature, thick-walled cylinder made of 
isotropic material is to withstand a greater pressure to initiate yielding at the 
internal surface as compared to cylinder made of transversely isotropic material. 
With the introduction of thermal effects and angular speed they yield at a lower 
pressure, where as cylinder made of isotropic material requires less percentage 
increase in pressure to become fully plastic state from its initial yielding.  
In figures 2-3, elastic plastic transitional stresses for fully plastic state have been 
drawn with radii ratio ( )brR /= . For fully plastic state circumferential stress is 
maximum at external surface. Circumferential stress decreases with the increase 
in angular speed. It has been observed that for fully plastic state, radial and 
circumferential stresses are independent of thermal effects.  
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Table 1:  The pressure required for initial yielding and Fully-plastic state at 
different Temperatures ( )Y0β  and different angular speeds 
 

 
 
 
Fig. 1: Relationship between ( )Y0β  and iP  at different thickness and 
different angular speed 
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Fig. 2: Fully-plastic Stresses for a Thick-walled Cylinder under Internal 
Pressure at different temperatures and angular speed ( )02 =Ω  
                  ( ) 00 =Yβ              ( ) 5.00 =Yβ             ( ) 75.00 =Yβ  

 
 
 
 
Fig. 3: Fully-plastic Stresses for a Thick-walled Cylinder under Internal 
Pressure at different temperatures and angular speed ( )22 =Ω  
               ( ) 00 =Yβ                 ( ) 5.00 =Yβ              ( ) 75.00 =Yβ  
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