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Abstract

In this paper, a so-called Nearest-Nodes Finite Element Method
(NN-FEM) is proposed for the analysis of a 3D solid continuum. In
the method, finite elements are mainly used for numerical integration.
For each integration point, a set of element nodes that are the nearest
to the point are selected for constructing shape functions, some of them
are from neighbouring elements. NN-FEM is an extension of the con-
ventional Finite Element Method, which provides a more flexible way
in constructing shape functions. Numerical tests demonstrated that the
proposed NN-FEM has a competitive convergence rate compared with
the conventional FEM and the meshless method.
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1 Introduction

The Finite Element Method (FEM), since its appearance around the middle of
last century [1, 2, 3], has been a great success and the prevalent numerical tool
for solving scientific and engineering problems. The FEM has a lots of merits
compared with other numerical methods. Compared with the newly emerged
meshless or meshfree methods, one big advantage of the FEM is that it does
not need extra time to construct shape functions, as the shape functions for
a specific element type are pre-defined. Therefore, the FEM is computation-
ally more efficient. The dilemma is that finite element meshes consisting of
only simplexes (triangle or tetrahedron) are easy to generate, but low order
elements based on simplexes have a slow convergence. On the other hand,
higher order elements with edge or interior nodes have a faster convergence,
but the corresponding meshes are hard to handle, especially if mesh adaptation
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is involved. Element distortion has been another major obstacle for solving
challenging problems such as metal forging. Aiming at resolving the above
issues of the conventional FEM, a new category of methods, collectively called
meshless or meshfree methods, e. g. [4, 5] and the references therein, have
been developed in recent years. One advantage of meshless methods is their
flexibility in constructing shape functions. Nevertheless, it is in the price of
non-trivial extra computational time spent in looking for neighbor nodes. The
amount of extra computational time is even not bounded within a linear order
of total nodal number.

In this paper, a so-called Nearest-Nodes Finite Element Method is pro-
posed with an attempt to combine the advantages from both the conventional
FEM and meshless methods. In the method, finite elements are mainly used
for numerical integration. For each integration point, a set of element nodes
that are the nearest to the point are selected for constructing shape functions,
some of them are from neighbouring elements. The structure of the paper is
outlined in the following. In Section 2, governing equations and variational
formulation for a 3D solid continuum are briefly reviewed; A general strategy
for constructing shape functions in the proposed NN-FEM is described in Sec-
tion 3; Results of numerical investigations are reported in Section 4, followed
by concluding remarks in Section 5.

2 Governing Equations and Variational For-

mulation for 3D Solid Continuum

Consider a body of elastic solid continuum that occupies a 3D domain Ω
bounded by a closed surface Γ. The equilibrium of the body under static
body force and surface traction is governed by

∇ · σ + b = 0 in Ω (1)

and satisfies the following boundary conditions

σ · n = σ̂ on Γσ

u = û on Γu
(2)

In Eqs. (1) and (2), σ is the stress tensor; b the body force; n the outward
normal of boundary Γσ; σ̂ is the surface traction and û is the prescribed
displacement.

Or, equivalently, the equilibrium equations in Eq. (1) and the boundary
conditions in Eq. (2) can be formulated as a variational statement, i. e., the
principle of minimum potential energy,

δE = 0 (3)
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where E is the total energy stored in the continuum body, which in turn
includes the strain energy (Π) and the external potential energy (V ),

E = Π − V =
1

2

∫
Ω

σ : ε dΩ −
∫

Ω

uT b dΩ −
∫

Γσ

uT σ̂ dΓ (4)

In the expression, ε is the strain tensor; operator ’:’ indicates a scalar product
of two tensors. The stress and the strain tensor are related by the material
tensor, D, via

σ = Dε (5)

Now let {Ωi (i = 1, 2, · · · , N)} be a partition of Ω, representing N finite
elements; Ωi is the i-th element; Ωi ∩ Ωj = ∅ (if i �= j) and Ω = ∪N

i=1Ωi. The
total energy is calculated by summing up contributions from all the elements,

E =
1

2

N∑
i=1

∫
Ωi

σ : ε dΩi −
N∑

i=1

∫
Ωi

uT b dΩi −
N∑

i=1

∫
Γσ

uT σ̂ dΓi (6)

The third integration on the right side of Eq. (6) is conducted only for those
elements that have an element face or element edge classified on boundary Γσ.

By introducing shape functions φk(x) (i = 1, 2, · · · , n), the displacements
can be approximated as

u ≈
n∑

k=1

φk(x)ūk (7)

with element nodal displacements ūk (i = 1, 2, · · · , n). Correspondingly, the
stresses, the strains and the total energy can be expressed by nodal displace-
ments. By applying the principle of minimum potential energy, the finite
element equations can be obtained.

3 Strategy for Constructing Shape Functions

Unlike in the conventional FEM, where shape functions are constructed once
for a whole element by using nodes belonging to that element, a different
strategy is adopted in the proposed NN-FEM. Shape functions are constructed
for each quadrature point, using a set of nodes that are the nearest to the
quadrature point. Some of those nodes may not belong to the element where
the concerned quadrature point is located. A typical scenario is illustrated in
Fig.1 by using a 2D mesh. Where, element stiffness matrix for the element
with a ’x’, which is an integration or quadrature point, is being calculated.
For the quadrature point denoted, a number of nearest nodes, marked as solid
circles in the figure, are selected for constructing shape functions. Among
those nodes, not all the nodes belong to the shaded element. The number of
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Figure 1: Nearest-Nodes FEM

the selected nodes is determined by the desired order of the resulting shape
functions.

For quadrature points in the same element, different nodes may be used
in constructing their shape functions, therefore, the procedure of assembling
global stiffness matrix is slightly different. In the classical FEM, the assembly
is actually done in two steps. First, contributions from all quadrature points
over an element are put together into an element stiffness matrix; and then
the element stiffness matrix is assembled into the global stiffness matrix. In
the NN-FEM, contributions from numerical quadrature points are directly put
into the global stiffness matrix.

After selecting n nodes that are the nearest to a quadrature point, any
technique used in meshless methods for constructing shape functions can be
adopted in NN-FEM. Here, a polynomial interpolation method [6, 7, 8] is used
for its simplicity.

Consider the approximation of a generic function f(x). With the n nearest
nodes, the function value at x can be approximated as

f̃(x) =

n∑
i=1

aipi(x) = pT (x) · a (8)

where p(x) = {p1(x), p2(x), · · · , pn(x)} is a base vector consisting of mono-
mials; a = {a1, a2, · · · , an} is a coefficient vector. The monomials included
in the base vector should satisfy the completeness and symmetry requirement
[9].
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The coefficient vector a is determined by enforcing the approximation in
Equation (8) at the n selected nodes, i. e.

pT (xi) · a = fi (i = 1, 2, · · · , n) (9)

The above equations can be collected in a matrix form

Pa = f̄ (10)

where f̄ = {f1, f2, · · · , fn} is a vector consisting of function values at the n
nodes. P is the Vandermonde matrix with dimensions n × n. The expressions
of entries in matrix P depend on problem dimension and polynomial order.
For example, for a three-dimensional two-order polynomial, matrix P has the
following form

P =

⎡
⎢⎢⎣

1 x1 y1 z1 x2
1 y2

1 z2
1 x1y1 y1z1 z1x1

1 x2 y2 z2 x2
2 y2

2 z2
2 x2y2 y2z2 z2x2

· · · · · · · · · · · ·
1 x10 y10 z10 x2

10 y2
10 z2

10 x10y10 y10z10 z10x10

⎤
⎥⎥⎦ (11)

If it is assumed that P is non-singular and its inverse exists, the coefficient
vector a is determined by

a = P−1f̄ (12)

and the approximation is now expressed as

f̃(x) = φT (x)f̄ (13)

where
φT (x) = pT (x)P−1 (14)

are shape functions or local polynomials.
Approximate first-derivatives at point x are calculated as

∂f̃

∂α
= φT

,αf̄ , (α = x, y, z) (15)

with

φ,α =
∂pT (x)

∂α
P−1, (α = x, y, z) (16)

Any higher order derivatives can be calculated in a similar way, as long as
sufficient high order monomials are included in the base vector in Eq. (8).
To guarantee that the Vandermonde matrix P is non-singular, in filling P
matrix with nearest nodes, the so-called non-singularity criterion is applied.
The criterion is based on the following theorem.

Theorem 1 (Rank in terms of determinants)[10]
An m × n matrix A = [ajk] has rank r (r ≥ 1) if and only if A has an r × r
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submatrix with nonzero determinant, whereas the determinant of every square
submatrix with r + 1 or more rows that A has (or does not have!) is zero. In
particular, if A is square of n × n, it has rank n if and only if det(A) �= 0.

Based on Theorem 1, for constructing a d-dimensional local polynomial, the
non-singularity criterion is stated as: in filling P matrix with nearest nodes,
for each added new row, say, now the i-th row is added, i > d, the determinant
of master submatrix, M i

P , is examined, i. e.

if
∣∣det(M i

P )
∣∣ { ≥ δ, i-th row is kept.

< δ, i-th row is discarded.
(17)

where δ is a small positive real number, δ = 10−10 ∼ 10−20.

4 Numerical Investigation

In this section, numerical investigations on the proposed NN-FEM are re-
ported. A cantilever beam under an end shear force shown in Fig. 2(a) was
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Figure 2: A cantilever beam (a) physical model; (b) a mesh

analyzed. The beam has the following geometric and material parameters:
length L=6, width b = 1, height h = 1, elasticity modulus E=1000.0, Poisson’s
ratio ν=0. The parameters have consistent units. The beam cross-section at
the right end is loaded with a uniformly distributed shear force. Convergence
was studied by increasing mesh density. One representative mesh is displayed
in Fig. 2(b).

With ν = 0., three-dimensional solutions should be close to the beam so-
lutions. The obtained displacements of the beam cross-section center at the
loaded end are normalized by the analytical beam solution and plotted in
Fig. 3. A deformed configuration of the beam and the corresponding effective
stress distribution are given in Fig. 4. For comparison purpose, results from
the FEM and from the Element-Free Galerkin (EFG) method [11] are also
displayed. The FEM results were produced by commercial software ANSYS
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Figure 3: h-Convergence. (BO—Base order)
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Figure 4: (a) Deformed configuration; (b) Effective stress distribution

using SOLID187. SOLID187 is a second order tetrahedral element with ten
nodes. For the EFG method, the radius of a circular domain of influence was
so determined that approximately 10 nodes are covered by the domain of influ-
ence, and a complete set of second order monomials were included in the base.
A fair base was tried for the comparison, that is, for all the compared meth-
ods they have the same order of shape functions, a similar number of element
nodes, etc. From the obtained results, it can be observed that compared with
the FEM and EFG method, the proposed NN-FEM with a second order base
has a competitive convergence rate. For the EFG method, a weight function
is usually used in the construction of shape functions. Therefore, if a second-
order base is used, the resulting shape functions will have an order higher than
two [11]. This is why the EFG method has a slightly higher convergence rate.
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It was also found from the investigation that although by increasing the order
of local polynomials, NN-FEM can have a gain in convergence rate, but the
bandwidth of global stiffness matrix also becomes larger. Therefore more stor-
age and memory are demanded and more solution time is needed. Based on
a comprehensive consideration of balance between convergence rate, computa-
tional time and memory consumption, second-order local polynomials would
be the most efficient for NN-FEM.

5 Concluding Remarks

A 3D Nearest-Nodes Finite Element Method (NN-FEM) is proposed for the
analysis of solid continuum. In the method, finite elements are mainly used for
numerical integration. For each integration point, a set of element nodes that
are the nearest to the point are selected for constructing shape functions, some
of them are from neighbouring elements. Numerical tests demonstrated that
with a similar number of elements and element nodes, the proposed NN-FEM
has a competitive convergence rate compared with the conventional FEM and
the meshless method. NN-FEM has several very attractive features. First,
higher-order shape functions can be constructed using simplex meshes. The
quality of shape functions are solely determined by the locations of element
nodes. The order of shape functions can be arbitrarily high, as long as enough
element nodes are available. Therefore, p-version of adaptation can be easily
implemented in NN-FEM.
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