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Abstract 

This paper investigates the applicability of a displacement-based, Finite Element (FE) 
implementation of a time-domain, split-field Perfectly Matched Layer (PML) 
formulation to numerical modeling of elastic, Pressure, Shear-Vertical (P-SV) wave 
propagation and scattering in infinite plates for the purpose of crack characterization. 
Results obtained using the proposed model satisfy reciprocity and closely agrees with 
available analytical and semi-analytical solutions. Results obtained through FE-PML 
modeling of forward scattering by cracks confirm previous experimental findings and 
can potentially help optimizing experimental parameters. 
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1     Introduction 

        Plates and plate-like members are widely utilized in civil infrastructures. They 
may develop cracks as a result of overloading or environmental adversities. Guided 
elastic waves can be used to characterize these cracks to decide if a replacement or a 
repair is needed. Mathematical modeling of the interaction of guided elastic waves 
with a crack is an integral part of such characterization. Due to inherent irregularity of 
a crack, a numerical method is usually required to solve the governing equations of 
wave propagation. Available numerical methods include the finite difference method  
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(FDM), finite element method (FEM), boundary element method (BEM), etc. Among 
them, the finite element method is the most popular one, due to its amenability to 
implementation and its adaptability to complex geometry. 
 
A plate’s thickness is usually much smaller that the other two dimensions. Therefore, 
in studying wave propagation in plates, it is reasonable to assume that a plate is 
infinite in the two dimensions other than its thickness. This assumption is convenient 
for constructing analytical solutions; however, it is inconvenient for finite element 
implementation. An easy but computationally expensive solution to this dilemma is to 
shift numerical reflections outside a desired time window by laterally extending the 
finite element mesh. However, an economical alternative is to use absorbing boundary 
conditions or layers. An absorbing layer interfacing with the domain boundary that 
does not return any reflection at any frequency or angle of incidence was introduced 
by Berenger [1] in the context of computational electromagnetics to solve Maxwell’s 
equation, using a Finite Difference Time-Domain method (FDTD). This absorbing 
layer became well-known in the literature as the Perfectly Matched Layer (PML). 
 
Chew and Weedon [2] interpreted the PML as a complex coordinate stretching. This 
interpretation widely inspired researchers to apply the PML to other disciplines. 
Hastings et al. [3], for example, introduced the PML to elastic P-SV wave propagation 
in an infinite medium. They employed the FDTD method to formulate a PML for the 
stress-velocity equations in the form of compressional and shear potentials. Chew and 
Liu [4] showed the feasibility and stability of PML solutions for two-dimensional (2D) 
and three-dimensional (3D) stress-velocity, elastodynamic equations in isotropic 
elastic media. Liu [5] formulated PMLs for elastic wave propagation in polar and 
cylindrical coordinates. He introduced integral complex coordinate stretching to keep 
the number of unknowns in the formulation the same as that for Cartesian coordinates. 
Collino and Tsogka [6] applied the PML to a linear elastodynamic problem in 
anisotropic heterogeneous media using the FDTD. Becache et al. [7] used the PML 
with a fictitious-domain, mixed FEA instead of FDTD to overcome the inadequacy of 
the latter for irregular geometries. Komatitsch and Tromp [8] used wave-equation 
splitting to introduce a time-domain, spectral-element formulation of the PML 
boundary condition for the second-order, seismic wave equation. Their formulation is 
amenable to explicit time integration. Basu and Chopra [9, 10] have reported both 
steady-state and time-domain FE-PML formulations for 2D elastodynamic problems 
in an infinite layer resting on a semi-infinite elastic media. The time-domain 
formulation in [10] was obtained without field-splitting through transforming steady-
state equations by a special choice of coordinate stretching functions. The time 
integration in [10] was implicit and a system of equations was solved at each time 
step. Just recently, Basu [11] has extended his work in [10] to 3D and made it 
amenable to explicit time integration by lumping inertial matrices inside the PML. 
 
This paper explores the use of a split-field PML in FE modeling of elastic, P-SV wave 
propagation and scattering in infinite plates. An FE-PML model consists of a truncated 
plate surrounded by two PMLs on each side. Frequency-domain equations of the PML 
model are obtained from its counterpart in the infinite plate by complex coordinate 
stretching. Displacement wave field in the resulting frequency-domain equation is split  
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into four components in order to facilitate inverse transformation into time domain. A 
Galerkin method is, then, followed to cast the time-domain governing equations into 
finite element equations. A step-by-step scheme to march through discrete times inside 
the PML region is given. 
 
 
The motivation behind this work is to show: 1) accuracy and cost-effectiveness of an 
FE-PML model compared to a full FE idealization; 2) application of FE-PML 
modeling to parametric studies of elastic wave interaction with defects. Reciprocity 
check and  comparison with literature data establish the validity of FE-PML modeling. 
An FE-PML model consumes considerably lower CPU time than an equivalent full FE 
model, making it cost-effective. Numerical examples are presented to demonstrate 
potential uses of the FE-PML approach in numerical modeling of 2D elastic wave 
interaction with cracks and delaminations. 
 
 
 
2     Finite element model of perfectly matched layers  
 
         The subject of the current study is an infinitely-long plate having a uniform 
thickness, H , with and without a crack. The plate is described using a rectangular 
coordinate system. The origin is located on the bottom surface of the plate as shown in 
Fig. 1. The physical domain of the problem, ∞Ω , is a planar -x z cross-section. The 
plate is excited by a line load, p . A crack perpendicular to the -x z plane can be 
described by its tip coordinates, ( , )c cx z , its length, cl , and the counter-clockwise 
angle, α , that the crack makes with -axisx . Coordinates, ( , )x z , corresponding 
displacements, ( , )u w , and crack length, lc, are divided by plate’s thickness, H, to get 
their dimensionless counterparts ( , )x z , ( , )u w , and lc  . This implies a 
dimensionless thickness 1H = . Dimensionless elastic constants, ijc , stress, σ , line 
load, p , density, ρ , frequency, ω , time, t , shear-wave speed, sc are related to their 
dimensional counterparts by: 
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Figure 1: A schematic of an infinite, cracked plate subject to a line load 

 
The over-bar, denoting dimensionless quantities, will be omitted in subsequent 
equations for notational convenience. In this paper we seek the replacement of the 
infinite domain, ∞Ω , with a truncated domain, Ω and two PMLs, PΩ , at x l= ± , see 
Fig. 2. As a result of the above replacement, we obtained a combined computational 
domain, c PΩ = Ω ∪ Ω . Steady-state, P-SV wave motion of the infinite plate in Fig. 1, 
is governed by the following displacement-based equilibrium equation [13]: 
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Figure 2: A schematic of the FE-PML model of the infinite plate in Fig. 1 
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Computational representation of this infinite plate with an FE-PML model as shown in 
Fig. 2, requires the replacement of x by a stretched coordinate, x% , defined in terms of 
a real damping profile, ζ, and frequency, ω, as described in [9]: 
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Thus, frequency-domain equilibrium equation of the FE-PML model can be written as: 
2T

xx ,xx xz ,xz xz ,zx zz ,zz ω+ + + + = 0% % % %c v c v c v c v v                                                (4) 
Using the chain rule to expand the first three differential terms on the left hand side of 
Eq. (4) followed by the evaluation of ,xx %  and ,xxx % %  from Eq. (3) using the continuity of 
the damping profile, ζ,  results in 
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By splitting displacement wave-field [6], Eq. (5) can be written as 
{ },    1,..., 4T

1 2 3 4 i i iu w i= + + + = =v v v v v v                                    (6a) 

 [ ]2 ,xx ,xx 1jω ζ= +c v v                                                                              (6b) 

[ ]3 ,,x ,xx ,x 2 jω− = +c v vζ ζ                                                                      (6c) 

[ ]+ ,T
xz ,xz xz ,zx 3j jω ω ζ= +c v c v v                                                             (6d) 

2
zz ,zz 4ω= −c v v                                                                                          (6e) 

Inverse Fourier transformation of Equations (6b) through (6e) yields the following 
displacement-based governing equations in the time domain 

( ), :   2
1 xx xx 1 t 1= = ∂ +&& &&% %v c v v vζ                                                                 (7a) 

, ,  ,5 x xx x= −&&%v c vζ                                                                                     (7b) 

,5 2= &%v v                                                                                                     (7c) 

( )+ ,  T
xz ,xz xz ,zx 3 3 t 3ζ= = ∂ ∂ +& && &% % tc v c v v v v                                                   (7d) 

zz ,zz 4= &&c v v                                                                                                (7e) 
Note that Equation (6c), which has a third-order time derivative, is split now into 
Equations (7b) and (7c) that involves only second- and first-order time derivatives, 
respectively. In a standard finite element procedure, the entire problem domain is 
divided into a finite number, en , of non-overlapping elements,  ( 1... )e

i ei nΩ = . 
Approximations to the solutions of Eq. (7a, b, d, and e) are expressed over each 
element in terms of element nodal values and piecewise-continuous, linearly- 
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independent basis functions, ( 1... )j e
nN j n=  with e

nn being the number of nodes in an 
element. Following a Galerkin method in eliminating the integral of the weighted 
approximation residuals over the entire problem domain, where basis functions are 
used as weights, results in the following finite element form of Eq. (7) 
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 1 ,1 = −&&%Mq P K q                                                                                        (8b) 

2 ,5 = −&&%Mq K q                                                                                           (8c) 

,5 2= &%q q                                                                                                    (8d) 

3 .3 = −&&%Mq K q                                                                                            (8e) 

4 .4 = −&&Mq K q                                                                                            (8f) 

In Eq. (8a), nn is the number of global nodes in the finite element mesh. The mass 
matrix, M , stiffness matrices, ( 1...4)i i =K , and consistent load vector, P , are 
obtained by standard finite element assembly, denoted by Π , of the corresponding 
element-level matrices as follows: 
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Inside Ω , standard finite element equations corresponding to (2) can be integrated 
using a Newmark explicit scheme. Inside PΩ , Eqs. (8b, c, d, e, and f) can be 
integrated in the followings steps: 
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An over-dot indicates a time derivative (velocity). Integration time step is tΔ . 
Subscripts   and 1i i +  denote consecutive time steps. The FE-PML model was 
programmed into a FORTRAN 90 computer code. The code was executed on a Dell 
Precision M6300 for several example problems. Results are presented and discussed 
next. 
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3     Numerical implementation and validation 

        Accuracy and stability of FE modeling of elastic wave motion is dependent on 
element dimensions, xΔ  and yΔ . Several recommendations [e.g. 14] suggest a 
minimum of eight linear or four quadratic elements per shortest wave length in order 
to correctly capture a waveform. We will refer to this later as the eight-element rule. 
Moreover, stability of explicit time integration is critically dependent on time step, tΔ
. A stable time step is given in terms of element dimensions, xΔ  and yΔ , and 
pressure wave speed, pc , as follows [e.g. 15] 

( ) 1 22 21 1 1
p

t x y
c

−
Δ ≤ Δ + Δ                                                                       (11) 

Basu [11] has found a stable time step for an FE model to remain stable in an FE-PML 
model. The real damping profile in the PML region assumes the following form [9]: 
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                                                                                 (12) 

ζ0 is a real number and m is an integer exponent. A discussion of the effect of these 
parameters on PML performance is available in the literature [e.g. 9]. In all numerical 
examples throughout this paper, ζ  and m  are kept at 10 and 1, respectively.  
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(a)                                                                       (b) 

Figure 3: A modulated Gaussian signal (a) time history and (b) frequency spectrum 

In the following, numerical results are presented to verify reciprocity satisfaction of 
FE and FE-PML predictions and to establish their validity against available literature 
data. Time history responses are predicted at (5,1)  due to a loading at ( 5,1)−  in the 
form of a modulated Gaussian signal whose time history is given by:  

( ) ( ) ( )0
2

2 exp sin ,
22 c

t t
p t tω

σσ π
−⎡ ⎤

= −⎢ ⎥
⎣ ⎦

                                                 (13) 

In Eq. (13), σ is a parameter controlling the width of the pulse, t0 determines the time 
delay, and ωc is the center angular frequency. In this example, σ = 0.8, t0 = 3, ωc =  
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3.14 are chosen. Time history and frequency spectrum of a Gaussian signal 
corresponding to these values are shown in Fig. 3. 

Two sets of predictions were reported in the literature for this loading-observation 
scenario. The first was reported by Pan and Datta [16] for a 100 -thickmμ , nickel layer 
whose dimensional properties were given as 11 22 298.95 GPac c= = , 

12 129.53 GPa,c =  55 84.71 GPac = , and 38910 kg/mρ = . The second was reported by 
Liu and Achenbach [17] for an aluminum plate whose Poisson’s ratio is 1 3. Pan and 
Datta obtained their predictions analytically.  Liu and Achenbach employed a Strip-
Element Method (SEM) and corroborated their results with those of a Hybrid 
Numerical Method (HNM). Dimensionless frequency spectra of the nickel and 
aluminum plates are shown in Fig. 4, the two are nearly identical. 
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Figure 4: Frequency spectra for (a) the nickel layer and (b) aluminum plate (____ 
symmetric modes; ------- anti-symmetric modes) 

 

Frequency band upper limit of the exciting signal at 7ω = , see Fig. 3b, corresponds a 
maximum wavenumber 8k =  for both plates, see Fig. 4, i.e. a minimum wavelength 
( 2 )kλ π=  of about 0.8. Following the eight-element rule and Eq. (11), a uniform 
finite-element mesh of 0.1-by-0.1 elements and a time step of 0.03 are employed to 
obtain the results presented in this section. 

Reciprocity is verified for the FE ( 15)l = and FE-PML ( 5.1; 1.9)pl l= =  models by 
predicting vertical, top-surface displacement at (5,1)  due to a vertical point load at 
( 5,1)−  and vice versa. Two sets of such predictions for the nickel and aluminum plates 
are shown in Figs. 5 and 6. They are so indistinguishable that reciprocity is evidently 
satisfied.  
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                                    (a)                                                                     (b) 
Figure 5: Reciprocity check of (a) FE and (b) FE-PML predictions in the nickel layer 
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Figure 6: Reciprocity check of (a) FE and (b) FE-PML predictions in the aluminum 
plate 

 

Figure 7a shows horizontal top-surface displacement at (5,1)  in the nickel layer due to 
a horizontal load at ( 5,1)− . Both FE and FE-PML results are in good agreement with 
corresponding analytical predictions reported by Pan and Datta. Figure 7b depicts 
horizontal top-surface displacement at (5,1)  in the aluminum plate due to a horizontal 
load at ( 5,1)− . Similarly,  FE and FE-PML predictions are in decent agreement with 
its counterparts reported by Liu and Achenbach. The CPU times elapsed during the FE 
(3000 elements) and the FE-PML (1400 elements) runs were: 772 and 498.2 seconds, 
respectively, saving 35.5 % of CPU time using the latter. 
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Figure 7: Horizontal top-surface displacements at (5,1)  due to (a) a horizontal load at 
( 5,1)−  in the nickel layer and (b) a vertical load at ( 5,1)−  in the aluminum plate. 
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Figure 8: A Ricker wavelet (a) time history and (b) frequency spectrum for Example 1. 

 

4     Applications to crack characterization 

        The following numerical examples demonstrate some applications of the 
proposed FE-PML model to numerical modeling of elastic P-SV wave scattering in the 
context of 2D crack characterization. 

Example 1: A vertically cracked, 175-mm thick isotropic concrete slap is considered in 
this example. The vertical crack opens to the bottom surface of the slab. The crack tip 
lies at (0,0.5)cx = , i.e. 0.5cl = . Density and Poisson’s ratio of concrete are 

32500 kg/m and 0.15, respectively. The slab is excited by a Ricker wavelet in the 
form: 
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p t t t πα ατ α π ω τ
ω

⎛ ⎞
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Time history and Fourier transform of a Ricker wavelet corresponding to 2cω = is 
shown in Fig. 8. Figure 9a shows frequency spectra for the concrete slab in this 
example. At the maximum significant frequency present in the exciting impact 25ω , 
see Fig. 7b, the wavenumber is, approximately, 14. That corresponds to a wavelength 
of 0.45. Following the eight-element rule and Eq. (11), a uniform mesh 
( 0.05)x yΔ = Δ =  and a time step of 0.008 are employed in the current example. 
Convergence of the FE-PML predictions of vertical top-surface displacement at 
(0.12,1)  due to a point load at ( 0.12,1)− for this discretization values is confirmed by 
comparing the results for 0.05x yΔ = Δ =  and 0.04 , see Fig. 10b. 
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                                       (a)                                                                        (b) 

Figure 9: (a) Frequency spectra in the concrete slab; (b) vertical top-surface 
displacement at (0.12,1) due to a point load at ( 0.12,1)−  is nearly invariant to further 

mesh refinement. 

 

 

Predictions of displacement time histories in response to a vertical load are obtained 
by FEA with PMLs ( 1,  1)pl l= = and without PML ( 5)l = . Displacement time history 
responses at (0.2,1)ox =  to a vertical line load at ( 0.2,1)px = −  are shown in Fig. 8, 
with very good agreement between the FE and the FE-PML predictions. It took the FE 
(8000 elements) and the FE-PML (1600 elements) executions 807.79 and 333.84 
seconds of CPU time, respectively. That is a 58.7 %  saving in CPU time. Obviously, 
a relatively larger FE model dictated by excitation of high-frequency content and a 
smaller FE-PML model due to load-observation closeness resulted in a higher saving 
in CPU time. Thus, FE-PML can allow a comprehensive study of the effect of crack 
presence on response time histories and/or frequency spectra at a reasonable 
computational cost. 
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Figure 10:  (a) Horizontal and (b) vertical displacement time-histories at 0 (0.2,1)x =  
due to a line load at  ( 0.2,1)px = −  in the flawless concrete slab predicted by FE 

(dashed) and FE-PML (solid) 

 

 

Let us consider another loading-observation scenario. A vertical line load is applied to 
the bottom surface of the slab at 0.1px = − . Slab’s bottom surface, vertical 
displacement time history is predicted at 0.1ox =  by the FE-PML model for several 
values of crack length, cl . Predictions are shown in Fig. 11a. The effect of crack 
length on time of arrival, T , is evident. Figure 11b is a plot of arrival time, T , versus 
crack length, cl . The relationship between T  and cl  is tri-linear. Arrival time is 
insensitive to crack lengths less than or equal to 0.1. For crack lengths between  0.1  
and 0.7 , time of arrival increases with crack length at a constant rate. This rate 
increases at 0.7cl = . This proportionality between the time delay of the transmitted 
wave and a crack’s depth confirms what has been reported in literature [18]. 
 
 
Example 2: Let’s consider a delaminated, 6.35-mm thick, 0o (bottom)/90o (top) 
graphite-epoxy laminate. Its configuration and material properties are given in Table 
1. Results are obtained by FE with a PML ( 1.1, 0.9pl l= = ) and without a PML (

6l = ). From Fig. 12b and 13a, value of shortest wavelength was calculated to be 0.4. 
Following the eight-element rule and Eq. (11), a uniform 0.05-by-0.05  finite element 
mesh and time step of 0.005 are used in this example. Convergence for these 
discretization values is evident from Fig. 13b. 
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                                    (a)                                                                  (b) 
Figure 11: (a) Vertical displacement time histories at (0.1,0) due to a vertical line load 
at ( 0.1,0)−  for different values of crack length, cl ; (b) corresponding arrival time, T , 

plotted versus crack length, cl  
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Figure 12: A Ricker wavelet (a) time history and (b) frequency spectrum for Example 

3. 

 
 
Time histories of top-surface displacement at 0.75ox =  due to a line load at 

0.75px = −  were predicted by FE (4800 elements) and FE-PML (1760 elements) 
models consuming 4299.94 seconds and 1985.96 seconds of CPU time, respectively, 
with 53.8 % saving in CPU time by using the latter. Results are in very good 
agreement as shown in Fig. 14. The FE-PML model was used to conduct a study of the 
effect of load-observation separation distance, d, on arrival time, T, of bottom-surface 
vertical displacement response due to a vertical line load applied to the top surface of 
the laminate. Four load-observation configurations considered in this study are 
summarized in Table 2 and illustrated in Fig. 14. 
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Table 1: Material and configuration of the graphite-epoxy laminate in Example 3 
 
 

Lamina H ρ C11 c12 c22 c55 
Mm 103kg/m3 Gpa GPa GPa GPa 

0 o 3.175 1.578 160.72 6.43 13.91 7.07 
90o 3.175 1.578 13.91 6.91 13.91 3.49 

 
 

 

Figure 16a shows the time of arrival, T, versus crack length for the four 
configurations. It is evident that the closer the observation point is to the load, the 
more distinct the change in time of arrival becomes. It is noticeable also that each 
curve exhibits a hump at a different value of crack length, cl . Figure 16b shows 
variation in arrival time, T, with load-observation separation distance, d. As the 
separation distance increases, the time of arrival becomes insensitive to smaller crack 
lengths. This is a clear indication that a varying time of arrival, T, belongs, indeed, to a 
crack-tip diffracted wave not a transmitted one. Thus, for a fixed load-observation 
separation, there is a critical crack length below which the observation point is no 
longer inside the shadow zone of the crack. For configuration 1 and 2, these critical 
lengths are 0.8 and 0.4, respectively. 
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Figure 13: (a) Frequency spectra in the graphite-epoxy laminate; (b) vertical top-
surface displacement at (0.75,1) due to a point load at ( 0.75,1)−  is nearly invariant to 
further mesh refinement. 
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Figure 14: Time histories at 0.75ox =  of (a) horizontal and (b) vertical top-surface 
displacements predicted by FE (dashed line) and FE-PML (solid line) 

 

Table 2: Load-configuration Configurations 

Configuration 1 2 3 4 
Load (-0.75,1) (-0.50,1) (-0.25,1) (0,1) 

Observation (0.75,0) (0.50,0) (0.25,0) (0,0) 
D 1.5 1 .5 0 

 
 
 

d=1.5

1
d=1.0
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3 4

d=0.5  

 

Figure 15: Illustrations of the configurations in Table 2. 
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Figure 16: (a) Variations in arrival time, T, with load-observation separation distance, 
d, for several delamination lengths (b) Variations in arrival time, T, with delamination 

length for several load-observation configurations. 

 

5     Conclusions 

        This paper has successfully proven the applicability a combined, split-field PML 
and FE approach to numerical modeling of P-SV wave propagation and scattering in 
infinite plates. Results are in good agreement with available analytical and semi 
analytical solutions. The FE-PML offers an economical computational tool for 
analyzing elastic P-SV wave scattering problems in infinite plates. Saving in CPU 
times is application-dependent. For applications considered in this paper, these savings 
by the FE-PML model range between 29% and 87 % of the CPU time needed to run a 
corresponding FEA. Application of the proposed technique was used to study the 
correlation between the arrival time of crack-tip diffraction and crack depth or 
delamination length. Such studies are crucially helpful in setting experimental 
parameters or analyzing measured NDT data. 
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