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Abstract 
 

The aim of this study is to clarify the discrepancy regarding the critical flow speed 
of straight pipes conveying fluids that appears to be present in the literature by 
using the Generalized Differential Quadrature method. It is well known that for a 
given “mass of the fluid” to the “mass of the pipe” ratio, straight pipes conveying 
fluid are unstable by a flutter mode via Hopf bifurcation for a certain value of the 
fluid speed, i.e. the critical flow speed. However, there seems to be lack of 
consensus if for a given mass ratio the system might lose stability for different 
values of the critical flow speed or only for a single speed value. 
In this paper an attempt to answer to this question is given by solving the 
governing equation following first the practical aspect related to the engineering 
problem and than by simply considering the mathematics of the problem. The 
Generalized differential quadrature method is used as a numerical technique to 
resolve this problem. The differential governing equation is transformed into a 
discrete system of algebraic equations. The stability of the system is thus reduced 
to an eigenvalue problem. The relationship between the eigenvalue branches and  
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the corresponding unstable flutter modes are shown via Argand diagram. The 
transfer of flutter-type instability from one eigenvalue branch to another is 
thoroughly investigated and discussed. The critical mass ratios, at which the 
transfer of the eigenvalue branches related to flutter take place, are determined. 
 
Keywords: GDQ method, stability, flutter, critical flow speed 
 
 
1. Introduction 
 
The great interest in the dynamic behaviour of a cantilever pipe conveying fluid is 
attributable to its non-conservative nature. Although it is quite a simple system 
that can be described with straightforward mathematical model, it has much in 
common with the dynamic behaviour of more sophisticated structures such for 
example an aeroplane wing. This is one of the reasons why this subject has 
inspired many researchers over the last 50 years.  
In general, it has been established that an initially straight pipe that conveys a 
fluid with a relatively low speed is stable. In other words, each disturbance 
applied to that pipe causes a vibration that decreases with time. It has been also 
found that for fluid speed values higher than a certain value (the critical flow 
velocity) even a small disturbance could result in a system vibration that increases 
with time. In latter circumstances, therefore, the system equilibrium state is 
referred as unstable. 

The critical flow speed for a straight pipe has been found to be dependent 
by many factors, such the ratio between the mass of the fluid and the mass of the 
pipe [1,2,4,5], the viscous properties of the pipe [16,19], the boundary conditions 
[8], the stiffness of the pipe foundation [7] among others. A comprehensive 
literature on the work done in this field is given in the definitive monograph by 
Paidoussis [14].  

In the majority of the studies it has been found that a straight cantilever 
pipe presents a non-monotonic critical flow speed, characterized by several jumps, 
for an increasing mass ratio between the fluid and the pipe from zero to one. 
However, there seems to be lack of consensus among researchers if for a given 
mass ratio the system might lose stability for different values of the critical flow 
speed or only for a single speed value [3]. 

In this study an attempt to answer to this question is given by solving the 
governing equation of the problem following first the practical aspect related to 
the engineering problem and than by considering the mathematics of the problem. 
In the first case the mass ratio is fixed, i.e. the mass of the fluid and the mass of 
pipe are established, and the speed of the fluid is increased from zero to the 
critical flow speed. In the second case, instead, for a fixed speed of the fluid the 
mass ratio is determined that corresponds to system’s instability. Obviously, while 
the first approach could be reasonably replicated experimentally, it seems to us 
quite complicated to perform an experiment in which the speed of the fluid is kept 
constant while its mass is changing. However, since the mathematics describing 
the stability of the system allows to look at the problem in both ways, different  
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critical flow speed curves have been proposed in the past, see e.g. Refs. [3] and 
[16]. In this study it will be shown that both approaches are mathematically 
feasible, but that only one has an engineering interpretation. 

The Generalized Differential Quadrature (GDQ) method is used to solve 
the governing differential equation in both cases. The first three authors 
demonstrated this approach to be powerful for solution of linear dynamic self-
adjoint boundary value problems [18,20-22], as well as non-self-adjoint boundary 
value problems [11]. 

The essence of this numerical method consists in replacement of partial or 
total derivatives of a smooth function by a weighted sum of function values at 
discrete points. The weighting coefficients are not related to any special physical 
problem and only depend on the assumed interpolating basis functions and on the 
spatial distribution of the discrete points [17]. 

In this study, first the non-dimensional differential governing equation is 
obtained by considering condition of equilibrium. Then, the application of the 
GDQ technique leads to a system of algebraic equations and the related 
characteristic equation in the fluid speed and mass ratio. Finally, the two analyses 
that have been described above are performed; in each case one of the unknowns 
is chosen as a parameter to solve the eigenvalue problem. 

Over the past decades many methods have been used to investigate the 
vibration of straight and curved pipes conveying fluids, both for linear and 
nonlinear vibrations [6,9,10,12,13,15,23]. However, to the authors’ best 
knowledge this study is one of very few papers [15,23] in which the GDQ method 
to is applied to investigate the critical flow speeds of pipes conveying fluids. 
 
 
2. Problem Formulation 
 
Consider a horizontal cantilever pipe of length L conveying a fluid. A Cartesian 
(x-y-z) coordinate system is adopted, with the z-axis along the geometrical axis of 
the pipe and the x and y-axis coincident with the principal axes of inertia of the 
pipe cross-section. The fluid is flowing from the fixed end to the free end with a 
steady flow velocity U. In the small deflection regime, if the diameter of the pipe 
is sufficiently smaller than the pipe length (slender pipe), the y-z plane behaviour 
is governed by the following equation [8]:  

4 2 2 2
2

f f f p4 2 22 ( ) 0

Corioliselastic centrifugal inertia

v v v vEI m U m U m m
z tz z t

∂ ∂ ∂ ∂
+ + + + =

∂ ∂∂ ∂ ∂14243123 14243 1442443
                 (1) 

where EI is the flexural rigidity of the pipe, fm  and pm  are the mass of the fluid 
and the pipe per unit length, and ( , )v v z t=  is the deflection of the pipe along the 
y-axis.  

In eq. (1) the first term is the elastic flexural restoring force. Since 
2 2/ 1/v z R∂ ∂ ≈ , where R is the local radius of curvature, the second term in eq. 

(1) corresponds to the centrifugal force of the fluid flowing with constant speed U  
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for a curved portion of the pipe. Similarly, the third term is recognized as being 
associated with the Coriolis acceleration, and the last term represents inertial 
effects of both pipe and fluid. The pipe is clamped at 0z =  and free at z L= .  

 
 

 

 
 

Fig. 1 - Cantilever pipe conveying fluid 
 

 
The boundary conditions read: 

(0, )(0, ) 0,     0    0v tv t at z
z

∂
= =    =

∂
                     (2) 

2 3

2 3

( , ) ( , )0,     0    v L t v L t at z L
z z

∂ ∂
= =    =

∂ ∂
              (3) 

We seek the solution in the form: 

( , ) ( ) tv z t V z eΩ=                (4) 

where ( )V z  represents the shape of the deformed configuration and Ω  the 
circular frequency of vibration of that particular deformed configuration. Eq. (1) 
takes the following form:  

           
4 2

2 2
f f f p4 2

( ) ( ) ( )2 ( ) ( ) 0d V z d V z dV zEI m U m U m m V z
dzdz dz

+ + Ω + + Ω =        (5) 

Introducing dimensionless axial coordinates /z Lξ =  and dividing each term of 
eq. (5) by the quantity 4/EI L , we get the following governing equation:  

2 3 44 2
2 2

4 2

2 ( )( ) ( ) ( ) ( ) 0f f f pm L m L m m Ld V d V dVU U V
EI EI d EId d

ξ ξ ξ ξ
ξξ ξ

+
+ + Ω + Ω =      (6) 

 

In terms of the following dimensionless parameters: 

y, v 

z U 

U 
mf

mp

1 
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2, ,f f p f

f p

m m m m
u UL L

EI EI m m
ω γ

+
=       = Ω       =

+
            (7) 

eq. (6) can be rewritten as:  

 
4 2

2 2
4 2

( ) ( ) ( )2 ( ) 0d V d V dVu u V
d d d

ξ ξ ξω γ ω ξ
ξ ξ ξ

+ + + =                 (8) 

while the boundary conditions eqs. (2) and (3) are expressed as:  

(0)(0) 0,     0    0dVV at
d

ξ
ξ

= =    =                          (9) 

3 2

3 2

(1) (1)0,     0    1d V d V at
d d

ξ
ξ ξ

= =    =                        (10) 

 
 
 
3. Approximate equation of motion 
 
3.1 GDQ method review  
 
The dimensionless differential governing equation of motion eq. (8) can be 
transformed into a system of algebraic equations by means of the Generalized 
Differential Quadrature (GDQ) method [17]. The essence of the GDQ method 
consists in approximating of the derivatives of the function ( )V ξ  by a weighted 
sum of function values ( )iV ξ at each sampling point of the discretized domain. 
The weighting coefficients are not related to a special problem and only depend 
on the derivative order and on the number and distribution (grid) of the sampling 
points along the domain. For example, at the iξ  point of the domain, the n-th 
order derivative is obtained as: 

( )

1

( ) ( ), 1, 2,...,
i

n N
n

ij jn
j

d V V i N
d ξ ξ

ξ β ξ
ξ ==

≅ =∑                          (11) 

where N  is the total number of the sampling points of the chosen grid distribution 
and ( )n

ijβ  are the weighting coefficients for the n-th order derivative at the i-th 
sampling point. The weighting coefficients can be determined once a grid points 
distribution has been chosen. Here, the Chebyshev-Gauss-Lobatto point 
distribution is assumed:  

 1 11 cos , 1,2,...,
2 1i

i i N
N

ξ π⎡ − ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
                        (12) 
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The weighting coefficients are calculated by means of Lagrange interpolating 
functions [17]. For the first derivative, the weighting coefficients are calculated 
as:  

 
(1)

(1)
(1)

( ) , , 1, 2,..., ,
( ) ( )

i
ij

i j j

i j N i jξβ
ξ ξ ξ

= = ≠
−
L

L
                      (13) 

 (1) (1)

1,
, , 1, 2,..., ,

N

ii ij
j j i

i j N i jβ β
= ≠

= − = =∑                            (14) 

while for higher order derivatives, one gets iteratively:  

 
( 1)

( ) ( 1) (1) , , 2,3,..., 1, , 1, 2,...,
n

ijn n
ij ii ij

i j

n i j n N i j N
β

β β β
ξ ξ

−
−

⎛ ⎞
= − ≠ = − =⎜ ⎟⎜ ⎟−⎝ ⎠

       (15) 

 ( ) ( )

1,
, , 2,3,..., 1, , 1, 2,...,

N
n n

ii ij
j j i

i j n N i j Nβ β
= ≠

= − = = − =∑               (16) 

where the first derivative of Lagrange interpolating polynomials at each point kξ  
in eq. (13) is defined as:  

 ( )(1)

1,

( ) , 1,...,
N

k k l
l l k

k Nξ ξ ξ
= ≠

= − =∏L                            (17) 

It is shown in the literature that with Lagrange interpolating polynomials in 
conjunction with the Chebyshev-Gauss-Lobatto sampling points of eq. (12) 
ensures convergence, so that increasing number of sampling points N leads to an 
error decrease. 
 
3.2  GDQ discretized governing equations  
 
The numerical operations illustrated above in section (3.1) enable one to re-write 
the governing equations in discrete form, transforming every space derivative of 
the dependent variable into the weighted sum of node values. Thus, the 
differential governing equation (8) is represented via GDQ technique at the points 

3, 4,..., 2i N= −  of the grid domain as follows: 

( ) ( ) ( )4 2 12 2

1 1 1

2 0
N N N

ij j ij j ij j i
j j j

V u V u V Vβ β ω γ β ω
= = =

+ + + =∑ ∑ ∑              (18) 

while the boundary conditions eqs. (9) and (10) are expressed at the first grid 
point 1i =  ( 0ξ = ) as:  

( )1
1 1

1

0,     0
N

j j
j

V Vβ
=

= =∑                                    (19) 

and at the last, i N=  grid point ( 1ξ = ), as:  
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( ) ( )2 3

1 1

0,     0
N N

Nj j Nj j
j j

V Vβ β
= =

= =∑ ∑                              (20) 

Note that, remarkably, any discrete equation needs to be formulated at the grid 
points 2i =  and 1i N= − , as proved by Shu [17]. We introduce the following 
notations:  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 4 4,     ,     , 3, 4,..., 2,   1, 2,...,ij ij ij ij ij ij i N j Nβ β β= = = = − =Β Β Β      (21) 
 

representing the ( )4N N− ×  matrices of the derivatives of the weighting 

coefficients; I  denotes the ( ) ( )4 4N N− × −  identity matrix. As a result, the 
4N −  field equations defined by eq. (18) can be re-written in the following matrix 

form:  
( ) ( ) ( )( )4 2 12 22 du uω γ ω+ + + =δ Iδ 0Β Β Β                             (22) 

In eq. (22) [ ]T
1 2 1N NV V V V−=δ L  is the 1N ×  vector of unknown 

displacements at the grid points, whereas the vector 
[ ]T

3 4 4 3d N NV V V V− −=δ L  collects only the ( )4 1N − ×  unknown 
displacements at the domain points. The four boundary conditions described in 
eqs. (19)-(20) are also written in the vector notation as:  

b =K δ 0                                                      (23) 

where the 4 N×  matrix bK  is defined as:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
11 12 1( 1) 1

3 3 3 3
1 2 ( 1) 1

2 2 2 2
1 2 ( 1)

1 0 0 0

N N
b

N N N N N

N N N N NN

β β β β

β β β β

β β β β

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

L

L

L

L

                                 (24) 

The discrete field (22) and boundary conditions (23) can be combined into the N  
algebraic equations in the N  unknowns nodal displacements as follows:  

( ) ( ) ( ) 24 2 12 2
b

du u ωω γ

⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

K 0
δ 0

IδΒ Β Β
                         (25) 

In order to calculate the natural frequencies of the structure, eq. (25) needs to be 
reorganized in the following form:  

( ) ( ) ( ) ( ) ( ) ( )
2 2

4 4 2 2 1 12bb bd b b

d ddb dd db dd db dd

u uω γ ω
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

+ + + =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

K K 0 0 0 0 δ δ0 0 0
δ δ0 I 0Β Β Β Β Β Β

             (26) 
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where the subscripts b and d refer to the system degrees of freedom at the 
boundaries and in the beam domain, respectively, and [ ]T

1 2 1b N NV V V V−=δ . 
Kinematic condensation of all the non-domain degrees of freedom leads to the 
following equation:  

( ) ( ) ( ) ( )( ) ( ) ( )( )( )4 4 2 2 1 11 2 1 1 22dd db bb bd dd db bb bd dd db bb bd du uω γ ω− − −− + − + − + =K K K K K K I δ 0Β Β Β Β Β Β

            (27) 

Finally, introducing the identity b bω ω− =I δ Iδ 0  the eq. (27) is transformed into 
a first order eigenvalue problem as follows:  

d

d dω

ω
ω

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
− =⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

0 I δI 0 0
δ0 I 0Κ Κ

                                 (28) 

where the notations have been utilized:  
( ) ( ) ( ) ( )( )

( ) ( )( )

4 4 2 21 2 1

1 1 12

d dd db bb bd dd db bb bd

dd db bb bd

u

uω γ

− −

−

− + −

−

K K K K K

K K K

= Β Β Β Β

= Β Β
       (29) 

The dynamics of the system is well understood for the case 0u > . For sufficiently 
small u  the dynamics is dominated by the Coriolis force, that is proportional to 
u ; the system is subjected to flow-induced damping and hence stable. For 
increasing values of u , however, the centrifugal force, that is proportional to 2u , 
which may also be viewed as a compressive force, might overcome the Coriolis 
damping effect, and the system can lose stability by a single-mode flutter via the 
Hopf bifurcation. The velocity of the fluid that denotes the boundary between the 
stable and unstable behaviours of the system is called the critical velocity, cru . 
The pipe system is thus unstable if the velocity of the fluid is faster than the 
critical velocity.  
The critical fluid velocity can thus be calculated as the velocity for which the 
system loses stability. Based on the assumed solution form ( , ) ( ) tv z t V z eΩ= , 
where ( )V z  is a bounded displacement function, the stability of the system can be 
determined, for example, by studying sign of the complex exponent 

Re ImiΩ = Ω + Ω  for increasing values of the fluid speed u . Specifically, if 
Re 0Ω < , the system is stable, whereas if Re 0Ω > , the system is unstable by 
flutter; at Re 0Ω =  the fluid is flowing at the critical flow speed. For the notation 
made in eq. (7), the sign of Ω  is corresponding to that of the dimensionless 
frequency of vibration parameter ω . Therefore cru  can be viewed as the critical 
fluid speed for which the real component of the system eigenfrequencies reaches 
zero value for a non-zero fluid speed. 
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In addition, the stability boundaries can also be obtained by looking for that 
particular system in terms of mass ratio crγ  that presents Re 0Ω =  for a given 
value of the fluid speed u . In the following both procedures are examined. 
 
 
 
4.  Solution for a fixed Mass Ratio γ  
 
Let us first consider the case when we interested with the dependence cr ( )u f γ= , 
i.e. where the mass of the pipe and the mass of the fluid are given. In other words, 
the parameter γ  is fixed as an input. A computer routine was developed to 
calculate the system eigenfrequencies for increasing values of the fluid speed. For 
a zero value of the fluid speed, 0u = , all the eigenfrequencies of eq. (28) are 
purely imaginary. They correspond to natural frequencies of vibration of the pipe 
filled with non-flowing fluid. For increasing fluid speed the real part of the 
eigenfrequencies of eq. (28) starts to decrease ( Re 0iω < ) until one of them 
reaches the zero value for a non null value of the fluid speed, corresponding to the 
critical velocity cru  (flutter).  
 
The behaviour of the system for increasing fluid speed can be visualized by means 
of the Argand diagram where the position of the eigenvalues is represented in the 
complex ω -plane by using the fluid speed u  as a parameter. In the Argand plot 
the free eigenfrequencies of vibration, corresponding to zero flow speed, are 
indicated with a black circles ( ). A small black arrow is used to indicate the 
direction of the eigenfrequencies path for increasing speed u  starting from the 
free vibration values. Finally, a black triangle is used to highlight the 
eigenfrequency branch that leads to flutter instability. 
 
In Fig. 2(a)-(b) the Argand diagrams are presented for dimensionless mass 
parameters 0.38γ =  and 0.40γ = , respectively. For 0.38γ = , Fig. 2(a), it can be 
seen that increasing the fluid speed the system become unstable when the real part 
of the second eigenfrequency reaches zero value for a critical flow speed 

cr 8.683u = . For 0.40γ = , as it can be seen from Fig. 2(b), the system becomes 
unstable because the real part of the third eigenfrequency reaches zero for 

cr 8.779u = .  
 
The system reaches flutter state vibrating as the system’s second mode in the first 
case ( 0.38γ = ) or as vibrating as a third mode in the second case ( 0.40γ = ). In 
between these two values of the mass ratio there must exist a value for which 
there is a change in the flutter dominating mode.  
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Fig. 2 - Argand diagrams for increasing values of the fluid speed u  and for several values 
of the mass ratio: (a) 0.38γ = , (b) 0.40γ = , (c) 0.52γ = , (d) 0.54γ = , (e) 

0.612γ =  and (f) 0.615γ = . 
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Fig. 3 - Critical flow speed versus the mass ratio parameter. Result obtained by sweeping 
over the fluid speed for a given value of the mass ratio parameter. The dominating mode 

of instability is highlighted. 
 
 
In Ref. [16] this value denoted as 23γ  was calculated as 23 0.386γ = . By 
increasing the mass ratio from 23γ  up to unity other two changes of the flutter 
dominating mode are found: between 0.52γ =  ( cr 9.445u = ) and 0.54γ =  
( cr 9.575u = ) the dominating mode change from the third mode to the second 
mode takes place. Moreover, between 0.612γ =  ( cr 10.082u = ) and 0.615γ =  
( cr 10.107u = ) the dominating flutter mode switches from the second mode to the 
first one. These critical mass ratios corresponding to a change in the dominating 
flutter modes were calculated in Ref. [16] as 32 0.530γ =  and 21 0.6145γ = , 
respectively. The Argand plots for 0.52γ = , 0.54γ = , 0.612γ =  and 0.615γ =  
are represented in Fig. 2(c)-(d)-(e) and (f), respectively. The plots in Fig. 2 
perfectly match the results obtained in Ref. [16] demonstrating both the accuracy 
and reliability of the proposed GDQ solution technique. 
At this point, an iterative computer routine was developed in order to evaluate the 
system critical flow velocity for increasing values of the fluid speed versus the 
mass ratio between zero to unity. The result is given in Fig. 3 where the relation 
between the dimensionless critical value cru  and the mass ratio γ  is presented 
along with the limits associated to the change in the dominating mode 
corresponding to flutter. Additionally, in Fig. 3 the critical fluid speed values for 
the six mass ratios that were examined in Fig. 2 via the Argand plane are 
indicated. 
Clearly, critical flow speeds for values of the mass ratio close either to zero or 
unity are meaningless since 0γ =  corresponds to a system where the fluid has  
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zero mass, whereas 1γ =  is associated with the system where the pipe has a zero 
mass. Thus, the results in Fig. 3 can be viewed reliable in some sub-ranges as, 
0.05 0.95γ≤ ≤  which corresponds to values of the mass of the pipe over the 
mass of the fluid between values p f19 / 0.0526m m≥ ≥ . 
In contrast of what was reported for years in several books and papers the stability 
map in Fig. 3 presents a monotonous behaviour with sudden jumps at some values 
of the mass ratio parameter. This discontinuous behaviour of the critical flow 
speed versus the mass ratio was recently reported by Elishakoff and Vittori [3]. 
However, in Ref. [3] these jumps appear for lower values of the mass ratio 
parameter compared to the ones obtained in this study. The reason of this 
discrepancy that will be explained later on in this study (Fig. 6(a) of section 4.2). 
The critical fluid speed jumps can also be examined by means of the Argand 
plane. In Fig. 4(a) the Argand plane for a mass ratio parameter 0.296γ =  
indicates that the system becomes unstable for zero value of the real part of the 
second eigenfrequency for a critical fluid speed cr 7.332u = . In Fig. 4(b) a close 
up on the second eigenfrequency of Fig. 4(a) in proximity of the zero value of the 
real axis is portrayed. In addition, in Fig. 4(b) the second eigenfrequency branch 
for other two values of the mass ratio is given. For 0.296γ =  it can be seen that 
the lower part of the curve reaches zero value of the real axis for critical fluid 
speed cr 7.332u = . For a value slightly bigger than the mass ratio 0.297γ = , the 
second eigenfrequency branch shifts a little to the left, reaches a zero value of the 
real axis for slightly increased path, and the critical fluid speed turns out to be 

cr 7.451u = .  
 

 
Fig. 4 - (a) Argand plane for a mass ratio parameter 0.296γ = . (b) Close up on the 
second branch close to the instability point for three different values of the mass 
ratio: 0.296γ =  ( � � � � � ), 0.297γ =  ( • • • • • ) and 0.298γ =  (××××× ). 
 
It can be seen that for a further increase of the mass ratio, 0.298γ = , the second 
branch shifts to the left sufficiently that it does not reach anymore the zero of the 
real axis in its lower part. For 0.298γ = , in fact, the second branch crosses the  
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zero value of the real axis on the Argand plane in its upper part with a much 
longer path corresponding to a critical flutter speed cr 8.245u = . It is so evident 
that between 0.297γ =  and 0.298γ =  a jump in the stability map takes place. 
A more detailed study reveals that the first three jumps in the stability map 
represented in Fig. 3 are characterized as follows: first jump occurs at 0.2972γ =  
( cr 7.5135u = ) and 0.2973γ =  ( cr 8.2347u = ), whereas the second jump takes 
place between 0.6953γ =  ( cr 11.1555u = ) and 0.6954γ =  ( cr 12.7336u = ). The 
third jump takes place between 0.9246γ =  ( cr 14.8486u = ) and 0.9247γ =  
( cr 17.3851u = ). 
 
 
5.  Solution for a fixed Flow Speed  u 
 
A stability curve can be obtained by solving eq. (28) as cr ( )g uγ = , i.e. searching 
for those values of γ  that lead to flutter for a given values of the fluid flowing 
speed. The stability map in this case is represented in Fig. 5.  
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Fig. 5 - Critical flow speed versus the mass ratio parameter. Result obtained by sweeping 

over the mass ratio for a given value of the dimensionless fluid speed. The dominating 
mode of instability is highlighted. 

 
The curve is continuous, in the sense that for each value of u  in input there is a 
correspondent value crγ  in output, and no jumps are present. Except for the very 
low 0.05γ ≤  and very high 0.95 γ≤  values of the mass ratio, where as stated 
before the solution is doubtful, this plot is in perfect agreement with the one given 
for example in Ryu et al. [16]. Clearly, the stability map in Fig. 5 include 
completely the stability map of Fig. 3, corresponding to solutions of the same  
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equation. The surprising outcome that sprouts by solving eq. (28) as cr ( )g uγ =  is 
that for a given system, i.e. for a fixed value of the mass ratio γ , in some ranges 
there can exist up to three critical fluid speeds. To observe this phenomena, see, 
for example, the three areas enclosed by a dashed square in Fig. 5. 
In Fig. 6(a) a close up on the stability map for cr0.29 0.30γ≤ ≤  mass parameter, 
corresponding to the first area on the left of Fig. 5 rounded by a dashed square, is 
given. In this plot the solution obtained by solving eq. (28) as cr ( )g uγ = , in a 
continuous curve. It is overlapped with the solution obtained as cr ( )u f γ= , 
indicated by a sequence of black circles. The first jump values for the cr ( )u f γ=  
solution are also highlighted in Fig. 6(a). 
The existence of more than one critical fluid speed for a given mass ratio can be 
also seen via a sort of the Argand plane by using γ  as parameter for a fixed fluid 
speed u .  
 
In Fig. 6(b)-(c) and (d) the evolution of the frequencies of vibration for increasing 
values of the mass ratio parameter are given for a constant fluid speed 7.0u = , 

7.75u =  and 8.3u = , respectively. 
 
Let us to recall that these three last plots are not associated with a particular 
system; instead one considers the system that is changing continuously for a fixed 
value of the fluid speed. For example, in Fig. 6(b), for fluid speed 7.0u = , the 
frequencies of vibration for a system with 0γ =  are indicated by a black dot. One 
of this frequencies has a negative real part. This is because for 7.0u =  and 0γ =  
the system is unstable flutter-wise since these u γ−  coordinates correspond to a 
point on the left side of the stability curve of Fig. 5. 
 
By increasing the mass ratio the frequencies of vibration change. In the plot, a 
grey scale of colours has been used to indicate the mass ratio as increasing. In 
particular, an increasing mass ratio corresponds to a darker colour. It can be seen 
that the instability branch reaches the zero of the real axis for cr 0.289γ =  
corresponding to the critical mass ratio for 7.0u = . In fact, for a slightly greater 
mass ratio all the vibration frequencies have a negative real part corresponding to 
system stability. 
 
A similar mathematical consideration can be done for the case of 7.75u =  in Fig. 
6(c). It can be seen there that the system has a critical mass ratio cr 0.2962γ = . 
Therefore, this mathematical result seems proving the existence of  a critical flow 
speed 7.75u =  for a system characterized by a mass ratio cr 0.2962γ = . 
 
 
 
 



 

Critical flow speeds of pipes                                                                                135 
 
 

 
 
Fig. 6 - (a) Close up on the cr0.29 0.30γ≤ ≤  mass parameter range: cr ( )g uγ =  
solution (         ) overlapped to the cr ( )u f γ=  solution ( o o o o o ). Frequencies of 
vibration for increasing values of the mass ratio parameter for a given constant fluid 
speed: (b) fluid speed 7.0u = , (c) 7.75u =  and (d) 8.3u = . 
 
 
In Ref. [20], the first jump was found for a critical mass ratio cr 0.2933γ ≈  
compared to the one found in this paper that has the value of cr 0.2972γ = . It 
appears that the authors of Ref. [3] while increasing the fluid speed looking for 
the solution (zero real part of the eigenfrequency) have not considered the 
smallest critical fluid speed. For example, in Ref. [20] the critical fluid speed for 

0.294γ =  is found to be cr 8.122150u =  while in this study the corresponding 
value is cr 7.2038u = . The two values are indicated in Fig. 6(a) with the capital 
letters A and B, respectively.  
The solution provided here was been carefully checked with the Argand diagram. 
A similar consideration holds for the others two jumps highlighted in Fig. 5 by 
dashed squares, for which the jump values in Ref. [3] were estimated at a lower 
mass ratio values. 
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6. Final Remarks 
 
In this study the stability of a cantilever pipe conveying fluid is studied by means 
of the GDQ method. We conclude that this method can be conveniently used to 
perform parametric studies of stability of various pipes conveying fluid.  
The paradoxical result of non-monotonic critical flow speed curve was 
investigated. The result is that by solving the stability problem as cr ( )u f γ= , i.e. 
looking for a critical flow speed for a given parameter γ , the stability curve 
presents a monotonic behaviour with jumps at particular values of the mass ratio. 
In contrast, by solving the problem as cr ( )g uγ = , i.e. searching for those critical 
mass ratio values for a given flow speed, the stability curve presents a well known 
non-monotonic behaviour in agreement with those presented in the literature 
during the years by many authors.  
 
In order to verify experimentally this result, for a fixed fluid speed u , for example 
at 7.75u = ,  the mass ratio γ  should be changed (by varying the mass of the fluid 
and/or the mass of the pipe) until an unstable behaviour is reached ( crγ ). It 
appears that it is practically more easily vary the mass of the fluid while keeping 
the pipe fixed. It is also worth noting that in the experimental procedure attention 
should be paid to the starting value for the mass ratio parameter γ . This values 
must be such to guarantee system stability (i.e. on the right side of the stability 
curve) for the assumed fluid speed. In our understanding, it is quite complicated to 
perform such an experiment for technical reasons, and up today no such an 
experiment is to be found in the literature. However, we trust that the definitive 
experiment of this kind will be performed by an inquisitive engineer(s) in order to 
provide the experimental side of the phenomena at hand.  
 
On the other hand, the experiment could be easily performed for a given system, 
i.e. once the pipe and the fluid are defined, increasing the fluid speed starting from 
a zero value until the flow speed reaches the critical flow speed cru  that leads to 
flutter. Once this speed is reached the system is unstable and a further increase of 
the fluid speed is meaningless. Experimentally, this seems to be the more logical 
although possibly not the only approach to trace the stability map for this 
problem. 
 
Therefore, realistically, at a given value of γ  only one critical flow speed can 
exist for the system, beyond of that the system is unstable for flutter, and the 
monotonic behaviour reported in Fig. 3 is the one representative of the physical 
aspect of the problem. 
 
It appears that the well consolidated result reported in the literature regarding the 
non-monotonous stability curve for the pipe conveying fluid, should require an 
experimental validation in order to be definitely accepted. 
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