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Abstract 

A solute transport equation is analytically solved to predict the contaminant 
concentration distribution along and against transient groundwater flow in finite 
aquifer. The horizontal dispersion along and against transient groundwater flow in 
homogenous and finite aquifer is considered. Initially the aquifer is not supposed to 
be solute free, i.e., aquifer is not clean. The time-dependent input concentration is 
considered at the source of an aquifer and at the other end the concentration gradient  
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is supposed to be zero. The time-dependent forms of velocities are considered in 
which one form, sinusoidal form, represents the seasonal variation in a year in 
tropical regions. The Laplace Transform Technique (LTT) is used to obtain analytical 
solutions which are perhaps most useful for benchmarking numerical codes and 
solutions. 
 
Keywords: Aquifer, Solute transport, Contaminant concentration, Groundwater flow,  
Analytical solution.  
 
 

1. Introduction  

Rapid growth of urbanization, industrialization as well as agricultural 
activities is causing groundwater contamination worldwide, and especially in India. 
Increasing demand for water to meet environmental, domestic, industrial and 
agricultural needs has resulted in an unplanned abstraction and exploitation of natural 
groundwater resources. The utilization of fertilizers, pesticides, disposal of solid 
wastes, and untreated waste water on land has further deteriorated groundwater 
quality (USEPA 1989 1990; Anderson and Woessner 1992; Charbeneau 2000; 
Kebew 2001; Sharma and Ready 2004; Rausch et al. 2005; Thangarajan 2006) [35], 
[36], [2], [7], [17], [30], [24], [34]. A well-known water contamination problem 
results from mining due to pumping of mine water and its discharge into an existing 
drainage system. A huge quantity of water is used in the beneficiation and coal 
preparation plants, which, when discharged into streams, causes water contamination. 
For example, the Jharia coal field is one of the best examples for producing coal in 
Jharkhand and it is directly or indirectly affecting the surface water and subsurface 
water contamination.  

In India, many aquifers are being contaminated by a host of human activities, 
such as sewage disposal, refuse dumps, pesticide and chemical fertilizer 
contamination, industrial effluent discharges, and toxic waste disposal (Sharma and 
Ready 2004; Rausch et al. 2005; Thangarajan 2006) [30], [24], [34]. For managing 
groundwater resources and rehabilitation of contaminated aquifers, mathematical 
modeling is a powerful tool. Groundwater transport and its mathematical models 
were presented by Fried (1975), Javendal and Tsang (1984), and Bear and Verruijt 
(1987) [12], [16], [6]. The role of mathematical modeling in groundwater resource 
management was discussed by Rai (2004) [22]. Mathematical modeling of 
groundwater in mining areas has been discussed by numerous scientists, hydrologists 
and civil engineers in Advanced Training courses organized by Department of 
Hydrology, CMRI, Dhanbad, and Sponsored by Department of Science and 
Technology, New Delhi, and has been presented by Gupta et al. (2005) [14]. In the 
present work, the contaminant concentration distribution along/against transient 
groundwater flow in an aquifer is investigated. 
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 There is a wide variety of applications of dispersion in finite, semi-infinite 
and infinite porous media. Many examples of groundwater system and other flow 
domains are bounded by infinite regions. Analysis of flow against dispersion in 
porous media was presented by Al-Niami and Rushton (1977) [1]. The study of flow 
against dispersion in non-adsorbing porous media was presented by Marino                 
(1978) [21] in which the flows were opposite to dispersion. The flows were assumed 
to be one-dimensional in a horizontal direction and the average velocities were taken 
to be constant throughout the flow field. Concentrations varying as exponential 
functions of time were enforced at the source of the dispersion, while a condition in 
which the change in concentration is proportional to the flow was applied at the other 
boundary. Analytical solutions of one dimensional advective-dispersive-reactive 
solute transport equations under a variety of conditions were presented by Van 
Genuchten and Alves (1982) [33]. Unsteady flow against dispersion in finite porous 
media was also explored which was controlled by flow (with transient unidirectional 
velocity distribution) of a low concentration fluid towards a region of higher 
concentration (Kumar 1983) [18]. In field applications, upstream spreading of 
contaminant plumes may be controlled by the flow of fresh water in a direction 
opposite to the dispersive expansion direction of the plume. In the groundwater 
literature this type of control is identified as flow against dispersion or contrary flow. 
Aral and Tang (1992) [3] presented an analytic methods which are used to investigate 
contrary flow conditions for two-dimensional applications. In particular, special 
attention is given to the dispersive spread of the contaminant plume in the transverse 
direction under equilibrium flow against dispersion.  

Analytical solutions of the convective-dispersive equation with different 
initial and boundary conditions were developed by Lindstrom and Boersma (1989); 
Fry et al. (1993) [20], [13]. Analytical solution of one dimensional time-dependent 
transport equation was also presented (Basha and Habel 1993) [4]. One-dimensional 
virus transport in homogeneous porous media with a time dependent distribution 
coefficient was presented by Chrysikopoulos and Sim (1996) [8]. An analytical 
solution for solute transport with depth dependent transformation or sorption 
coefficient was developed by Flury et al. (1998) [11]. Analytical solution/numerical 
solutions with suitable initial and boundary conditions to predict the concentration 
distribution of pollutants along transient groundwater flow in semi-infinite aquifers in 
splitting time domain were studied by Kumar and Kumar (1998) [19]. The water-
table variation in response to time varying recharge was explored by Rai and Manglik  
(1999) [23]. Analytical solution for unsteady transport dispersion of non-conservative 
pollutant with time dependent periodic waste discharge concentration was presented 
by Shukla (2002) [31]. Analytical solutions to transient, unsaturated transport of 
water and contaminants through horizontal porous media were discussed by Sander 
Braddock (2005) [26]. Analytical solutions for sequentially coupled one-dimensional 
reactive transport problems were discussed by Srinivasan and Clement (2008) [32]. 
An analytical solution for the longitudinal dispersion with time dependent source 
concentration in a semi infinite aquifer was presented by Singh et al. (2008) [28].  
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Analytical solution for conservative solute transport in one-dimensional 
homogeneous porous formations with time dependent velocity was also derived by 
Singh et al. (2009) [29]. 

In most investigations, groundwater velocity has been considered steady. 
However, when the groundwater table rises and falls, the velocity of flow in the 
aquifer may be transient or unsteady. The objective of this study is to derive the 
spatio-temporal analytical solutions for contaminant concentration along and against 
transient groundwater flow in a finite aquifer and the aquifer is subject to time-
dependent source contamination. These results can be used to benchmark numerical 
models and perhaps significant for groundwater resource management. 
 

2. Solute Transport Mechanism 

 Advection (convection) is the movement of solute caused by groundwater 
flow. The bulk movement of water through the aquifer causes solute transport via 
advection.  Advection is the primary process by which solute moves in the 
groundwater system. Due to advection, non-reactive solute travel at an average rate 
equal to the seepage velocity of the fluid. Diffusion is also known as molecular 
diffusion refers to the movement of contaminants under a chemical concentration 
gradient (i.e. from an area of greater concentration toward an area of lower 
concentration). It can occur even when the fluid is not flowing or is flowing in the 
direction opposite to contaminant movement. Diffusion will cease only if there is no 
concentration gradient. Hydrodynamic dispersion occurs when two miscible fluids 
mixe each other and also any soluble matter is dissolved in a fluid. Dispersion is 
essentially macroscopic phenomenon caused by a combination of molecular diffusion 
and hydrodynamic mixing occurring with laminar flow through porous media. The 
pattern of point traces as its move downstream from its source tends to a normal 
distribution both longitudinal and transverse. Furthermore, the longitudinal 
component is larger than that of the transverse so that the major axis of mixing occurs 
in the direction of flow. Hydrodynamic dispersion is normally referred to as mixing 
of miscible fluid. It is a hydraulic mixing process by which waste concentration is 
attenuated while waste contaminants are being transported downstream. At the macro 
scale level, contaminant transport is defined by the average groundwater velocity. 
However, at the microscale level the actual velocity of water may vary from point to 
point and can be either lower or higher than the average velocity. This difference in 
micro scale level water velocities arises due to pore size, path length and friction in 
pores. Because of these differences in velocities mixing occurs along the flow path. 
This mixing is known as mechanical dispersion or hydrodynamic dispersion (Fried 
1975; Sharma and Reddy 2004) [12], [30]. The dispersion sources in uniform 
groundwater flow were reported by Hunt (1978) [15]. In general, the theory of 
dispersion in porous media was presented by Scheidegger (1961) [27]. 
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3. Mathematical Formulation 

Consider a homogeneous finite aquifer of length L.  The aquifer may have an 
initial natural concentration. The aquifer is subjected to contamination due to the 
time-dependent source concentration. The groundwater flow in the aquifer is transient 
where the velocity follows either a sinusoidal form or an exponentially decreasing 
form. The sinusoidal form of velocity may represent the seasonal variation in a year 
in tropical regions.  
In order to mathematically formulate the problem, let c(x, t) be the contaminant 
concentration in the aquifer [ML-3], u the groundwater velocity [LT-1], and D the 
dispersion coefficient [L2T-1] at any time t [T]. Then the problem can be 
mathematically formulated as follows:  

    
2

2

c c cD u
x x t
∂ ∂ ∂

− =
∂ ∂ ∂

                                                      (1) 

    ( ) ( )0u t u V t=       (2) 
where u0 is the initial groundwater velocity[LT-1] at distance x[L].  Here, two forms 
of ( )V t are considered such as ( ) 1 sinV t mt= − and ( ) ( )expV t mt= − , mt < 1, where 
m is the flow resistance coefficient [T-1]. However, linear and exponentially time 
dependent forms of seepage velocity for purposes of studying salinity problems were 
derived (Banks and Jerasate 1962) [5]. The dispersion coefficient varies 
approximately in direct proportion to the seepage velocity for various types of porous 
media (Ebach and White 1958) [10]. It has also been found that such a relationship 
established for steady flow is also approximately valid for transient or unsteady flow 
with sinusoidal varying seepage velocity (Rumer 1962) [25]. Let D au= , where a is 
the dispersivity [L] that depends upon the pore geometry. Using equation (2), one 
gets ( )0D D V t= . Here 0 0D au= is an initial dispersion coefficient. 
 

4. Initial and Boundary Conditions 

Let ci be the initial contaminant concentration in the aquifer [ML-3] describe the 
distribution of the concentration at all points of the flow domain at the beginning of 
investigation, i.e., at time t =0. It is assumed that initially, the aquifer is not clean. 
The time-dependent source concentration ( ){ }0 1 expc qt+ − at the origin of the aquifer 

(i.e., x=0) is considered where c0 is the solute concentration [ML-3] and q is the 
parameter like flow resistance coefficient[T-1] and let the concentration gradient at 
the other end of the aquifer (i.e. x=L) be zero. Here the concentration is prescribed for 
all points of the boundary for the entire period of investigation. The boundary  
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conditions describe the nature of interaction of the flow system with its surrounding. 
The initial and boundary conditions can be expressed as follows: 
   ( , )   ;    0 ,    0ic x t c x t= ≥ =                 (3) 

                                    ( ) ( ){ }0, 1 exp ; 0, 0c x t c qt x t= + − = >               (4a) 

            0;   0,      c t x L
x
∂

= ≥ =
∂

               (4b) 

 
 

5. Analytical Solution: Along the Flow   

Combining equations (1) and (2), we get: 

   
2

0 02

1
( )

c c cD u
x x V t t
∂ ∂ ∂

− =
∂ ∂ ∂

                                          (5)   

Introducing a new time variable (Crank 1975) [9] or transformation as 

      * ( )
0

t
T V t dt= ∫                                                          (6)  

equation (5) and the corresponding initial and boundary conditions given by 
equations (3)-(4) become    

2

0 02 *

c c cD u
x x T
∂ ∂ ∂

− =
∂ ∂ ∂

                                                (7) 

                                    * *( , ) ; 0, 0ic x T c T x= = ≥                   (8)                                   
                                     * * *

0( , ) (2 ); 0, 0c x T c qT x T= − = >              (9a)                                 

                               *0; 0,c T x Lx
∂ = ≥ =∂                  (9b) 

It may be convenient to present equations (7)-(9) in dimensionless form. For that the 
set of non-dimensional variables can be defined as: 

      
* 2

0 0
2

0 0 0

, , , ,D T u Lx c qLX C T U Q
L c L D D

= = = = =                        (10) 

Equation (7), along with initial and boundary conditions (8)-(9) in non-dimensional 
form, can be written as:               

      
2

2

C C CU
X X T
∂ ∂ ∂

− =
∂ ∂ ∂

                                                              (11) 

0( , ) / ; 0, 0iC X T c c X T= ≥ =                                     (12) 
            ( , ) 2  ;   0,    0C X T QT X T= − = >                      (13a)

  = 0; 1,  0C X T
X
∂

= ≥
∂

                       (13b) 

Using the transformation ( ) ( ) ( )2, , exp /2 /4C X T K X T UX U T= −              (14) 
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in equations (11)-(13) and applying the Laplace transform, one can get the solution of 
the boundary value problem as:  
 

( ){ }
{ } ( )

0 1 2 3

4 5 6 0 7

( , ) 2 / ( , ) ( , ) ( , )

               Q ( , ) ( , ) ( , ) / ( , )
i

i

K X p c c K X p K X p K X p

K X p K X p K X p c c K X p

= − − −

− − − +
          (15) 

where   

1 2

1( , )
/ 4

pXK X p e
p U

⎛ ⎞ −
= ⎜ ⎟−⎝ ⎠

               (15a) 

( ) ( )
2 2

1 2 2( , ) 1
/ 4 / 2

U X p X pK X p e e
p U p U

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞⎛ ⎞ − + − −= − −⎜ ⎟⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠
          (15b)        

( )
2

3 2

41( , ) 1
/ 4 / 2

X pUK X p e
p U p U

⎛ ⎞ − −⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

            (15c) 

2

4 2

1( , )
/ 4

pXK X p e
p U

⎛ ⎞ −
= ⎜ ⎟−⎝ ⎠

               (15d) 

( ) ( )
2

5 2

1 2 2( , ) 1
/ 4 / 2

U X p X pK X p e e
p U p U

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞⎛ ⎞ − + − −= − −⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠
          (15e)         

( )
22

6 2

41( , ) 1
/ 4 / 2

X pUK X p e
p U p U

⎛ ⎞ − −⎛ ⎞
= −⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

            (15f) 

7 2

1 2( , )
/ 4

UX
K X p e

p U

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

                (15g) 

where 

                       
0

( , ) ( , ) pTK X p K X T e dT
∞ −= ∫  

Taking inverse Laplace transform for (15), we get  
 

2
0

2

( , ) (2 , ) (2 , ) (4 , ) (2 , )
( , ) 2

(2 , ) 2 (4 , ) (4 , )

( , ) (2 , ) (2 , ) (4 , ) (2 , )
               

(2 , ) 2 (4 , ) (4 , )

  

i
F X T F X T F X T F X T UG X TcK X T

c UG X T UG X T U H X T

I X T I X T I X T I X T UJ X T
Q

UJ X T UJ X T U L X T

− + + − − − + +⎧ ⎫⎛ ⎞
= − ⎨ ⎬⎜ ⎟ − − + − − −⎝ ⎠⎩ ⎭

− + + − − − + +⎧ ⎫
− ⎨ ⎬

− − + − − −⎩ ⎭

0

2
             exp 4 2

ic U T UX
c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+ −

        

                (16) 
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2 21( , ) exp exp4 2 2 4 2 22 2 2

U T UX X U T U T UX X U TF X T erfc erfc
T T

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

= − − + + +   

                        (16a) 

( )

2 2

22

1( , ) exp exp4 4 2 22 2
1                1 exp 4 2 22 2

T X U T UX X U TG X T erfcT U T

U T UX X U TUX U T erfc
U T

π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= − + − −

− + + + +

                      (16b) 

( )2

2 2

2 222

2

2 1 exp2 2 4

1( , ) 1 2 exp2 4 2 22 2

exp 4 2 22

T UX U T XU T

U U T UX X U TH X T UX U T X UT erfc
U T

U T UX X U Terfc
T

π
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟⎪ ⎪ ⎝ ⎠⎩ ⎭ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎡ ⎤
− + + −⎢ ⎥
⎢ ⎥
⎢ ⎥

= + − + + + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥
+ − −⎢ ⎥
⎢ ⎥⎣ ⎦

                                       (16c) 

( )

( )

2

2

exp 4 2 221( , )
2

exp 4 2 22

U T UX X U TUT X erfc
T

I X T
U U T UX X U TUT X erfc

T

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠
⎨ ⎬

⎛ ⎞ ⎛ ⎞⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪

⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

− − −
=

+ + + +

                     (16d) 

 

( )

( )

3

2 2

22

2 222

2 1 exp2 2 4

1( , ) 1 exp 4 2 22 2

1 exp2 4 2 22

T UX U T XU T

U T UX X U TJ X T UX U T erfc
U T

U U T UX X U TU T X UT erfc
T

π
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎧ ⎫ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟⎪ ⎪ ⎝ ⎠⎩ ⎭ ⎝ ⎠

⎡ ⎤
+ + −⎢ ⎥

⎢ ⎥
⎢ ⎥

= + − − + − −⎢ ⎥
⎢ ⎥
⎢ ⎥
− − + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

            (16e) 

 

( )

( ) ( ) ( )

4

3
32

2 222

2 2

2

2 3 exp4 43

1( , ) 1 exp2 4 2 22

1 1 exp 4 2 22 6 2

U T U XU T X UT T

U T U T UX X U TL X T UX erfc
U T

U U U T UX X U TU T X UT X UT erfc
T

π
⎧ ⎫ ⎛ ⎞⎪ ⎪ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎪ ⎪⎩ ⎭ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬
⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎡
− + + + −⎢

⎢
⎢
⎢= − + − − −
⎢
⎢

⎧ ⎫⎢+ + − + + + + +⎨ ⎬⎢⎢ ⎩ ⎭⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

   (16f) 

 
Substituting the value of ( , )K X T  in equation (14), we get the desired solution as  
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0 2

2

2

( , ) (2 , ) (2 , )
( , ) 2 exp (4 , ) (2 , ) (2 , )2 4

2 (4 , ) (4 , )

( , ) (2 , ) (2 , )
                exp (4 , ) (22 4

i

F X T F X T F X T
c UX U TC X T F X T UG X T UG X T
c

UG X T U H X T

I X T I X T I X T
UX U TQ I X T UJ X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎧ ⎫− + + −
⎛ ⎞ ⎪ ⎪= − − − − + + − −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪+ − − −⎩ ⎭

− + + −
− − − − + +

2

, ) (2 , )
02 (4 , ) (4 , )

ciT UJ X T
c

UJ X T U L X T

⎧ ⎫
⎪ ⎪− − +⎨ ⎬
⎪ ⎪+ − − −⎩ ⎭

     

(17) 
 

6. Analytical Solution: Against the Flow 

The initial and boundary conditions of the same problem against transient 
groundwater flow in non-dimensional form can be written as:  
 

 
2

2

C C CU X TX
∂ ∂ ∂− =

∂ ∂∂
                                                                           (18) 

0( , ) / ; 0, 0iC X T c c X T= ≥ =                                                           (19) 

 = 0;   0,    0C X TX
∂ = ≥
∂

              (20a) 

( , ) 2  ;   1,    0C X T QT X T= − = >                                               (20b)  
 
Using the same transformation ( )2( , ) ( , ) exp /2 /4C X T K X T UX U T= −  in equations 
(18)-(20) and applying the Laplace transform, we get the solution of the boundary 
value problem as:  
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( )

0 1 2 3

4 5 6 0 7

( , ) 2 / exp /2 , , ,

               Qexp /2 , , , / ,
i

i

K X p c c U K X p K X p K X p

U K X p K X p K X p c c K X p

= − − − −

− − − − +
 (21) 

where   
 

( )
1

/ 4

11
( , ) 2

X p
K X p e

p U

− −
=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

                      (21a) 

( ) ( )
2 2

3 11( , ) 1
/ 4 / 2

X p X pUK X p e e
p U p U

⎛ ⎞ ⎧ ⎫− − − +⎛ ⎞ ⎪ ⎪= + −⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎪ ⎪⎩ ⎭⎝ ⎠
         (21b) 

( )
2

3 2

31( , ) 1
/ 4 / 2

X pUK X p e
p U p U

⎛ ⎞ − +⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

            (21c) 
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( )2

4 2

11( , )
/ 4

X p
K X p e

p U
− −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
              (21d) 

( ) ( )2

5 2

3 11( , ) 1
/ 4 / 2

X p X pUK X p e e
p U p U

⎛ ⎞⎧ ⎫− − − +⎛ ⎞ ⎪ ⎪= + −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎪ ⎪⎩ ⎭⎝ ⎠
       (21e) 

( )
22

6 2

31( , ) 1
/ 4 / 2

X pUK X p e
p U p U

⎛ ⎞ − +⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

            (21f) 

7 2

1 2( , )
/ 4

UX

K X p e
p U

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

               (21g) 

where ( , ) ( , )
0

pTK X p K X T e dT
∞ −= ∫  

 
Taking inverse Laplace transform of equations (21), we get  
 
 

2
0

(1 , ) (3 , ) (1 , ) (3 , )
( , ) 2 exp

2 (1 , ) (3 , ) 2 (3 , ) (3 , )

(1 , ) (3 , ) (1 , ) (3 , )
                exp

2 (1 , ) 2 (3 , )

i
F X T F X T F X T F X Tc UK X T

c UG X T UG X T UG X T U H X T

I X T I X T I X T I X TUQ
UJ X T UJ X T

+ − + + − − −⎧ ⎫⎛ ⎞ ⎛ ⎞= − − ⎨ ⎬⎜ ⎟ ⎜ ⎟ + + − − − + − +⎝ ⎠⎝ ⎠ ⎩ ⎭
+ − + + − − −⎛ ⎞− −⎜ ⎟ + + − +⎝ ⎠ 2

2

0

(3 , ) (3 , )

                exp
4 2

i

UJ X T U L X T

c U T UX
c

⎧ ⎫
⎨ ⎬

− − − +⎩ ⎭
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

                                            (22) 
 

2 21( , ) exp exp
2 4 2 2 4 2 22 2

U T UX X U T U T UX X U TF X T erfc erfc
T T

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪= − − + + +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
                (22a) 

( )

2 2

2
2

1( , ) exp exp
4 2 4 2 22

1            1 exp
2 4 2 22

T X U T UX X U TG X T erfc
T U T

U T UX X U TUX U T erfc
U T

π
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

+ − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

          (22b) 
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( )

2 2 2

2

2
22

2

2

1 1( , ) 1 exp exp
2 2 4 2 4 2

1                 1 2
2 2 22

                exp
4 2 22

               

T UX U T X U T UXH X T
U T U

X U T Uerfc UX U T X UT
UT

U T UX X U Terfc
T

π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎧ ⎫
+ + − − + + −⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎩ ⎭⎝ ⎠

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

          (22c) 

 

( )

( )

2

2

exp
4 2 221( , )

2
exp

4 2 22

U T UX X U TUT X erfc
T

I X T
U U T UX X U TUT X erfc

T

⎧ ⎫⎛ ⎞⎛ ⎞
− − −⎪ ⎪⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠= ⎨ ⎬

⎛ ⎞⎛ ⎞⎪ ⎪+ + + +⎜ ⎟⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

           (22d) 

 

( )

( )

2 2

2
2

3

2 2
22

2 1 exp
2 2 4

1( , ) 1 exp
2 4 2 22

1 exp
2 4 2 22

T UX U T XU
T

U T UX X U TJ X T UX U T erfc
U T

U U T UX X U TU T X UT erfc
T

π

⎡ ⎤⎛ ⎞ ⎛ ⎞
− + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥= − − + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎧ ⎫ ⎛ ⎞
+ − + + − − −⎢ ⎥⎜ ⎟⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎣ ⎦

     (22e) 

 

( )

( )( ) ( )

2 2
22

2 2

4

3 2
32

2 3 exp
3 4 4

1( , ) 1 exp
2 4 2 22

1 1 exp
2 6 4 2 22

U T U XU T X UT
T

U T U T UX X U TL X T UX erfc
U T

U U U T UX X U TU T X UT X UT erfc
T

π

⎡ ⎤⎧ ⎫ ⎛ ⎞
− − + + − −⎢ ⎥⎨ ⎬ ⎜ ⎟
⎢ ⎥⎩ ⎭ ⎝ ⎠
⎢ ⎥⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − − − + +⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎢ ⎥
⎢ ⎥⎛ ⎞⎧ ⎫ ⎛ ⎞⎢ ⎥+ − − − − − − −⎜ ⎟⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
         (22f) 

 
We now obtain the desired solution as: 
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( )

( )

2

0 2

2

(1 , ) (3 , ) (1 , )
1

( , ) 2 exp (3 , ) (1 , ) (3 , )
2 4

2 (3 , ) (3 , )

(1 , ) (3 , ) (1 , )
1

                exp (3 , )
2 4

i

F X T F X T F X T
U Xc U TC X T F X T UG X T UG X T

c
UG X T U H X T

I X T I X T I X T
U X U TQ I X T UJ

⎧ ⎫+ − + + −
−⎛ ⎞⎛ ⎞ ⎪ ⎪= − − − − + + − −⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎪ ⎪− + − +⎩ ⎭
+ − + + −

−⎛ ⎞
− − − − +⎜ ⎟

⎝ ⎠ 02

(1 , ) 2 (3 , )
(3 , ) (3 , )

icX T UJ X T
c

UJ X T U L X T

⎧ ⎫
⎪ ⎪+ − + +⎨ ⎬
⎪ ⎪− − − +⎩ ⎭

    (23) 

 
 
 

7. An Example Application and discussion 

Banks and Jerasati (1962) [25] derived linear and exponentially time 
dependent form of seepage velocity for purposes of studying the salinity problem. 
They considered unsteady flow in porous media and longitudinal disperson. In the 
present discussion the sinusoidally varying and exponentially decreasing forms of 
velocities are considered: 
 ( ) ( )0 1 sinu t u mt= −                                                  (24a) 
    ( ) ( )0 expu t u mt= − ,    mt < 1                                 (24b)  
where m(/day) is the flow resistance coefficient. In aquifers in tropical regions, 
groundwater velocity and water level may exhibit seasonally sinusoidal behavior (as 
noted by Kumar and Kumar (1998; Thangarajan (2006) [19], [34]. In tropical regions 
in India, groundwater velocity and water level are minimum during the peak of the 
summer season (the period of greatest pumping), which fall in the month of June, just 
before rainy season. Maximum values are observed during the peak of winter season 
around December, after the rainy season (the period of lowest pumping). In these 
regions, groundwater infiltration is from rainfall and rivers. Groundwater flow 
depends on aquifer properties, such as porosity, permeability, hydraulic conductivity, 
etc. For a homogeneous aquifer, its properties are spatially invariant. Graphs for both 
velocity forms are shown in the Figs. 1(a,b). 
 For both the expressions, the non-dimensional time variable T may be written as  

    { }0
2 (1 cos )DT mt mt

mL
= − −                                         (25a) 

    { }0
2 1 exp( )DT mt

mL
= − −                                             (25b) 

where mt = 2, 5, 8, 11, 14, 17,…, 38, 41 and 44 are chosen. For m = 0.0165 (/day), 
equation (24a) yield, t (days) =121, 303, 485, 667, 849, 1030,…, 2303, 2485, and 
2667, respectively. For these values of mt, the velocity u, is alternatively minimum 
and maximum. Hence it represents the groundwater level and velocity minimum  
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during the month of June and maximum during December just after six months 
(Approximately 182 days) in one year. The next data of t represents minimum and 
maximum records during June and December respectively in subsequent years as 
depicted in Fig. 1(a). Analytical solutions given by equations (17) and (23) are 
computed for the values of ci = 0.01, c0 = 1.0, u0 = 0.005 km/day, D0 =0.5 km2/day, q 
= 0.0001(/day), and L=100 km. The concentration values are depicted graphically in 
the presence of time dependent source of contaminant concentration at mt = 
26,29,32,35,38, and 41 which represents minimum and maximum records of 
groundwater level and velocity during June and December in 5th, 6th and 7th years,  
respectively. The contaminant concentration distribution behaviour along and against 
transient groundwater flow of sinusoidally varying velocity are shown in the Fig. 
(2a,b). It is observed that the contaminant concentration decreases at the source and 
emerges at a point near the origin. After emergence the tendency of the contaminant 
concentration is the same reaching towards the minimum or harmless concentration. 
But the values of the contaminant concentration decrease and increase with time just 
before and after the emergence, respectively. For example, before emergence the 5th 
year December concentration is less than 5th year June concentration, while after 
emergence the trend is just reverse. For the same set of inputs, except for m=0.0002 
(/day) as mt < 1(as in case of exponentially decreasing velocity), equation (17) and 
(23) are also computed for the exponentially decreasing form of velocity and shown 
in the Fig(3a,b).  

 

8. Conclusions 

A solute transport model is formulated with time dependent source 
concentration in homogeneous finite aquifer and analytical solution is obtained to 
predict contaminant concentration along and against transient groundwater flow in a 
homogeneous finite aquifer. Time dependent forms of velocities, i.e., sinusoidally 
varying and exponentially decreasing velocity are considered. Analytical solution of 
the problems may help model numerical solutions and codes. It may be used as a 
preliminary predictive tool in groundwater management. 
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Fig. 1(a) Sinusoidally varying velocity 
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Fig. 1(b) Exponentially decreasing velocity 
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Fig. 2(a) Contaminant concentration along unsteady groundwater flow of sinusoidally 

varying velocity 
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Fig. 2(b) Contaminant concentration against unsteady groundwater flow of 

sinusoidally varying velocity 
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Fig. 3(a) Contaminant concentration along unsteady groundwater flow of 

exponentially decreasing velocity 
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Fig. 3(b) Contaminant concentration against unsteady groundwater flow of 

exponentially decreasing velocity 
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