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Abstract

Integro-differential equations are appeared in many engineering and
physic fields. We select fredholm integro-differential equation and basis
gained from trigonometric wavelet scaling function. In this procedure,
we use collocation method as a projection method to convert integral
equation to the system of linear equation. It seems that due to the
nature of trigonometric wavelet, the use of this wavelets, it makes little
error in contrast to the use of other wavelets. Finally some numerical
examples indicate the accuracy of this method.
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1 Introduction

Sometimes in the science and other branches of mathematics such as mathe-
matic modeling or ordinary differential equations, the result of the work leads
to the solution of integro-differential equation, the importance of this method
leads us to the solution of this equations. In the present study we attempt
to solve a large class of this equations. We consider the following integro-
differential equation of second kind:{

f (n) (x) = g (x) +
∫ 2π
0 k (x, t) f (t) dt

αi = f (n−i) (0) ; i = 1, 2, ..., n
(1)

Where k(x,t) and g(x) are known functions,and f(x) is an unknown function.In
this paper for solving this equation firstly,we define some scaling basis function
and use them to approximate the unknown function.Basis function in this work
are scaling function which will be defined in the next section.

2 Trigonometric Scaling and Wavelet Function

For� ∈N, the Dirichlet kernel D� ∈ T� and the conjugate Dirichlet kernel
D̃� ∈ T� are defined as

D�(X) =
1

2
+

�∑
K=1

Coskx =

{
sin(�+1/2)x
2 sin(x/2)

� + 1/2

x /∈ 2πZ

x ∈ 2πZ

and

D̃�(x) =
�∑

k=1

sin(kx) =

{
cos(x/2)−cos(�+1/2)x

2 sin(x/2)

0

x /∈ 2πZ

x ∈ 2πZ

Where T� denotes the linear space of trigonometric polynomial of degree �.The
inner product 〈., .〉 of two functions f and g in L2

2π is defined as usual,by 〈f, g〉 =
1
2π

∫ 2π
0 f(x)g(x)dx. For any j∈ N , consider the following two functions:

φ0
j,0 =

1

22j+1

2j+1−1∑
�=0

D�(x)

φ1
j,0(x) =

1

22j+1
(D̃2j+1−1(x) +

1

2
sin(2j+1x))

let xj,n = nπ
2j ,for n=0,1,. . . ,2j+1 − 1; define φ0

j,n = φ0
j,0(x− xj,n),and φ1

j,n(x) =
φ1

j,n(x−xj,n), for any j∈ N and n=0,1,. . . , 2j+1−1. The following interpolatory
properties hold for each k=0,1,. . . ,2j+1 − 1:

φ0
j,n(xj,k) = δk,n ,

(
φ0

j,n(xj,k)
)′

= 0 , φ1
j,n(xj,k) = 0 ,

(
φ1

j,n(xj,k)
)′

= δk,n
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Where

δk,n =

{
1
0

k = n
k �= n

Given j∈ N , the space Vj is defined by Vj = span
{
φ0

j,n, φ
1
j,n, n = 0, 1, ..., 2j+1 − 1

}
It is easy to see that the spaces Vj ,j=0,1,. . . ,J-1,form a sequence of nested sub-
spaces of L2

2π with:

L2
2π =

+∞⋃
j=−1

Vj ,
+∞⋂

j=−1

Vj = {0} , Vj ⊂ Vj+1

Where L2
2π is a set of square-integrable 2π- periodic functions and V−1 = {0}.

There for {Vj}+∞
j=−1 forms a hermite-type MRA of L2

2π. The wavelet spaces are

defined by Wj = span
{
ψ0

j,n, ψ
1
j,n, n = 0, 1, ..., 2j+1 − 1

}
,where:

ψ0
j,0 =

1

2j+1
cos(2j+1x) +

1

3 × 22j+1

2j+2−1∑
�=2j+1+1

(3 × 2j+1 − �) cos(�x)

ψ1
j,0 =

1

22j+3
sin(2j+2x) +

1

3 × 22j+1

2j+2−1∑
�=2j+1+1

sin(�x)

For any j∈ N and n=0,1,. . . ,2j+1 − 1, define ψ0
j,n(x) = ψ0

j,0(x − xj,n), and
ψ1

j,n(x) = ψ1
j,0(x − xj,n). It can be verified that Vj ⊕ Wj = Vj+1and L2

2π =
V0 ⊕ (⊕+∞

j=0Wj).

For J∈N , it is obtained basis set
{
φ0

J,n, φ
1
J,n, 0 ≤ k ≤ 2J+1 − 1

}
;for approxi-

mation space VJ ⊂ L2
2π.For any function f ∈ L2

2π, based on the dual func-
tion φ̃p(x) and ψ̃p(x) in [2],p=0,1. we define the orthogonal projection op-

erator Pj as Pjf(x) =
∑2j+1−1

k=0 f̃ 0
j,kφ

0
j,k(x) +

∑2j+1−1
k=0 f̃ 1

j,kφ
1
j,k(x),where Pjf ∈

Vj ,and f̃ p
j,k =

〈
f, φ̃p

j,k

〉
is the scaling coefficient,p=0,1.It follows that PJf(x) =∑2J+1−1

k=0 (f̃ 0
J,kφ

0
J,k(x)+f̃

1
J,kφ

1
J,k(x)) =

∑J−1
j=−1

∑2j+1−1
k=0 (f̂ 0

j,kψ
0
j,k(x)+f̂

1
j,kψ

1
j,k(x)),where

f̂ p
j,k =

〈
f, ψ̃p

j,k

〉
is the trigonometric wavelet coefficient of the function f(x) and

p=0,1.
Remark. Define the orthogonal complement projection Qj to satisfy Qj =

Pj+1 −Pj and Qjf =
∑2j+1−1

k=0 (f̂ 0
j,kψ

0
j,k(x) + f̂ 1

j,kψ
1
j,k(x)), thus, for any f(x)∈ L2

2π

and J∈ N , it follows that f −PJf(x) =
∑+∞

j=J(Pj+1 −Pj)f =
∑+∞

j=J(Qjf) , and
when J → +∞ we have PJf(x) → f(x).

3 Collocation Method

In this section we use the wavelet basis functions which are introduced in
the previous section to approximate the unknown function in the Eq (1). we
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consider f (n) (x) continuous, so we have:

f (n) (x) =
2J+1−1∑

k=0

cJ,kφ
0
J,k (x) +

2J+1−1∑
k=0

dJ,kφ
1
J,k (x) . (2)

with integration n times as
∫ x
0 from sides (2) and using the following formula

∫ x

0
...
∫ x

0︸ ︷︷ ︸
n

A (t) =
1

(n− 1)!

∫ x

0
(x− t)n−1A (t) dt

we have:

f (x) =
2J+1−1∑

k=0

cJ,k

∫ x

0

(x− t)n−1

(n− 1)!
φ0

J.k (t) dt+
2J+1−1∑

k=0

dJ,k

∫ x

0

(x− t)n−1

(n− 1)!
φ1

J.k (t) dt+

∑n−1
i=0

xi

i!
α(n−i).

by substituting f (t) , f (n) (x) in Eq(1) and some changes, we have:

2J+1−1∑
k=0

cJ,k

(
φ0

J,k (x) −
∫ 2π

0
k (x, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ0

J,k (r) dr

)
dt

)
+

2J+1−1∑
k=0

dJ,k

(
φ1

J,k (x) −
∫ 2π

0
k (x, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ1

J,k (r) dr

)
dt

)
=

g (x) +
n−1∑
i=0

α(n−i)

i!

∫ 2π

0
k (x, t) tidt

by regard to the above relation we can define residual function as

Rn(x) =
2J+1−1∑

k=0

cJ,k

(
φ0

J,k (x) −
∫ 2π

0
k (x, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ0

J,k (r) dr

)
dt

)
+

2J+1−1∑
k=0

dJ,k

(
φ1

J,k (x) −
∫ 2π

0
k (x, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ1

J,k (r) dr

)
dt

)
−

g (x) −
n−1∑
i=0

α(n−i)

i!

∫ 2π

0
k (x, t) tidt

Now for determining unknown coefficients cJ,k and dJ,k , we have some alterna-
tives. In this paper, we choose collocation method which is defined as follows
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In collocation method we select some collocation points then let residual equa-
tion in this point equal to zero. With choose collocation point as

xi = b+
i (b− a)

2J+2
=

iπ

2J+1
; i = 0, 1, ..., 2J+2 − 1

we have

Rn(x) =
2J+1−1∑

k=0

cJ,k

(
φ0

J,k (xi) −
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ0

J,k (r) dr

)
dt

)
+

2J+1−1∑
k=0

dJ,k

(
φ1

J,k (xi) −
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ1

J,k (r) dr

)
dt

)
−

g (xi) −
n−1∑
i=0

α(n−i)

i!

∫ 2π

0
k (xi, t) t

idt

{
k = 0, 1, ..., 2J+1 − 1
i = 0, 1, ..., 2J+2 − 1

Thus, we have system of linear equation AJX = bJ where AJ =

[
A1 A2

A3 A4

]
,

Ap = (ap
ik)2J+1×2J+1 , p=1,2,3,4. X =

[
cJ,k

dJ,k

]
.bJ =

[
b1

b2

]
.and:

a1
ik = φ0

J,k (xi)−
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ0

J,k (r) dr

)
dt;

{
i = 0, 1, ..., 2J+1 − 1
k = 0, 1, ..., 2J+1 − 1

a2
ik = φ1

J,k (xi)−
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ1

J,k (r) dr

)
dt;

{
i = 0, 1, ..., 2J+1 − 1
k = 2J+1, ..., 2J+2 − 1

a3
ik = φ0

J,k (xi)−
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ0

J,k (r) dr

)
dt;

{
i = 2J+1, ..., 2J+2 − 1
k = 0, 1, ..., 2J+1 − 1

a4
ik = φ1

J,k (xi)−
∫ 2π

0
k (xi, t)

(∫ t

0

(t− r)n−1

(n− 1)!
φ1

J,k (r) dr

)
dt;

{
i = 2J+1, ..., 2J+2 − 1
k = 2J+1, ..., 2J+2 − 1

b1i = g (xi) +
n−1∑
i=0

α(n−i)

i!

∫ 2π

0
k (xi, t) t

idt; i = 0, 1, ..., 2J+1 − 1

b2i = g (xi) +
n−1∑
i=0

α(n−i)

i!

∫ 2π

0
k (xi, t) t

idt; i = 2J+1, ..., 2J+2 − 1
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4 Numerical Example

In this section we present some numerical examples to illustrate the stated
method in this paper.
Example 1. In this example we solve equation{

f (1) (x) = xCosx+ Sinx− x+
∫ π

2
0 xf (t) dt

f(0) = 0
.

Where the exact solution is f(x)=xSinx , and results are shown in Fig 1 and 2.
Example 2. In this example we solve equation:

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

� numerical solution � exact solution

Figure 1: Result for J=1

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

� numerical solution � exact solution

Figure 2: Result for J=2

{
f (2) (x) = −Sinx+ x− ∫ π

2
0 xtf (t) dt

f(0) = 0, f (1) (0) = 1
.
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Where the exact solution is f(x)=Sinx, and Results are shown in Fig 3,4.

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

� numerical solution � exact solution

Figure 3: Result for J=1

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

� numerical solution � exact solution

Figure 4: Result for J=2

5 Conclusion

In this paper , we reduce the integral equation to a linear system of equation
using collocation method with trigonometric wavelet basis. figure(1),(2),(3),
and (4), show numerical solution convergence to exact solution.
This shows the efficiency trigonometric wavelet in the solution of integral equa-
tions. we can easily generalize this numerical method to the solution of other
equation like {

f (n) (x) = g (x) +
∫ 2π
0 k (x, t) f (m) (t) dt;n > m

αi = f (n−i) (0) ; i = 1, 2, ..., n
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