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Abstract

In the present paper, we consider the models for large dependent risk
portfolios, especially for credit risk models. Furthermore, the central
limit theorem and moderate deviations principle of models for large
risk portfolios are obtained by analyzing its mathematical structure.

Keywords: Dependence structures; Copulas; Central limit theorems; Mod-
erate deviations principle; Mixing distributions

1 Introduction

In an influential paper, Marshall and Olkin [7] introduced the multivariate
mixture models, which are a special family of copulas. Multivariate mixture
models depend on a latent factor Θ (the frailty parameter). This frailty param-
eter plays the role of common economic conditions (the so-called systematic
risks). Recently, Schönbucher [10] and McNeil et al. [8] have further studied
the models, and Maier and Wüthrich [11] obtained the large deviation and law
of large numbers for dependent risks by analyzing the mathematical structure
of the multivariate mixture models.

In [11], these stochastic behaviors were studied with the help of limiting
behaviors. In particular, they proved that if the latent parameter Θ has a
bounded support, then they obtained two different regimes of behavior, namely
there is a phase transition point: below this phase transition point they ob-
tained law of large numbers or central limit theorem behavior; above this phase
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transition point they obtained large deviation behavior. This means that, for
values of portfolio losses above the phase transition point, they observed an
exponential decay of the corresponding probabilities. The authors studied
multivariate mixture models,which obtained two different regimes: below the
phase transition point they model systematic risks that cause joint defaults
of several risks; above the phase transition point the risks behave like inde-
pendent random variables and they observed typical diversification effects for
independent risks.

The definition of a multivariate mixture model of the dependence structure
proceeds via Laplace transforms (see Marshall and Olkin [ 7,formula (2.6)]): let
F be the common marginal distribution function of Xi, i = 1, . . . , n, and MΘ

a univariate distribution with MΘ(0) = 0. Denote ψ by the Laplace transform
of MΘ. Then we assume that random vector X1, . . . , Xn has the following
distribution for (x1, · · · , xn) ∈ Rn:

G(x1, . . . , xn) =

∫ ∞

0

n∏
i=1

exp{−ψ−1(F (Xi))}θdMΘ(θ) (1)

For technical reasons we assume that the marginals Xi are non-negative, i.e.,
we can restrict ourselves to Xi > 0, i = 1, . . . , n.

In this paper, motivated by their works, we prove the central limit theorem
and moderate deviation for the aggregated risk portfolio by depending on the
choice of the distribution of Θ.

2 Central limit theorem

We introduce the following notation for the conditional mean and of the con-
ditional variance X1, given Θ:

A(Θ) = E[X1|Θ] =

∫ ∞

0

1 − exp{−Θ · ψ−1(F (x))}dx, (2)

B(Θ) = V ar[X1|Θ] = B1(Θ) − [A(Θ)]2

=: 2
∫∞
0
x(1 − exp{−Θ · ψ−1(F (x))})dx

− (∫∞
0

1 − exp{−Θ · ψ−1(F (x))}dx)2 . (3)

Theorem 2.1. Assume that the multivariate distribution of X1, . . . , Xn

(n ≥ 1) is given by (1) and that the marginal distribution F has a finite
second moment. Then, for all x ∈ R, we have

lim
n→∞

P

(∑n
i=1(Xi − A(Θ))√

nB(Θ)
≤ x

∣∣∣Θ
)

D−→ Φ(x), MΘ − a.s. (4)
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where Φ(·) denotes the distribution function of standard normal random vari-
able.

Proof We first prove that B(Θ) is finite, MΘ-a.s. The proof is based on
the ideas of Maiery and Wüthrich in [13]. For n = 1, observe that

G(x1) =

∫ ∞

0

exp{−ψ−1(F (x1))}θdMΘ(θ) = ψ{−ψ−1(F (x1))} = F (x1) (5)

which implies that, for X1 ∼ F (using our assumptions of finite second mo-
ments),

E[X2
1 ] =

∫ ∞

0

E[X2
1 |Θ = θ]dMΘ(θ) =

∫ ∞

0

B1(θ)dMΘ(θ) <∞ (6)

with, conditionally, given Θ = θ, X1 ∼ exp{−θ ·ψ−1(F (·))}. This immediately
shows that B1(Θ) is finiteMΘ-a.s., which yields that B(Θ) is also finiteMΘ-a.s.
by the expression (3)

From (1), we see that, conditionally, given Θ, the components ofX1, . . . , Xn

(n ≥ 1) are i.i.d. with mean A(Θ) and variance B(Θ). Henceforth, using the
central limit theorem, we obtain conditional distribution of X1, given Θ, for
n→ ∞:

P

(∑n
i=1(Xi − A(Θ))√

nB(Θ)
≤ x|Θ

)
D−→ Φ(x), MΘ − a.s. (7)

Corollary 2.2. Under the assumptions of Theorem 2.1, we have the fol-
lowing asymptotic estimate: for any x ∈ R,

P

(∑n
i=1Xi√
n

≤ x

)
≈
∫

Φ

(
x−√

nA(θ)√
B(θ)

)
dMΘ(θ).

Proof From Theorem 2.1, it is easy to check that for all sufficiently large
n, we have

P
(�n

i=1 Xi√
n

≤ x
)

= E
(
P
(�n

i=1 Xi√
n

≤ x
) ∣∣∣Θ)

= E

(
P

(
�n

i=1(Xi−A(Θ))√
nB(Θ)

≤
√

nx−nA(Θ)√
nB(Θ)

) ∣∣∣Θ)

≈ E

(
Φ

(
x−√

nA(θ)√
B(Θ)

) ∣∣∣Θ) =
∫

Φ

(
x−√

nA(θ)√
B(θ)

)
dMΘ(θ).

(8)
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3 Moderate deviations principle

In the last section we have proved the central limit theorem, which give a
asymptotic distribution when n is sufficiently large. Furthermore, in this sec-
tion, we will obtain the moderate deviations principle for the above model,
which show the exponential convergence rate of

∑n
i=1Xi/n. Assume that the

marginal of X1 satisfies the following exponential integrable condition: there
exists a positive constant δ > 0, such that

E exp {δ|X1|} <∞. (9)

In addition, we define the average default ratio as follows

Zn =
1√
nbn

n∑
i=1

(Xi −A(Θ)) (10)

where (bn) is the moderate deviation scale, i.e., it is a sequence of positive

numbers satisfying bn → ∞,
√

n
bn

→ ∞.

Theorem 3.1. Suppose that the condition (9) holds, then we have the mod-
erate deviations principle for Zn, i.e., for any r > 0,

lim
n→∞

1

b2n
logP (Zn ≥ r) = − r2

2E(B(Θ))
.

Proof For any λ ∈ R, let us consider the following logarithmic moment
generating function of Zn,

Λn(λ) := logE exp(λZn). (11)

By the Gärtner-Ellis Theorem (cf. [1]), in order to obtain the desired result,
it is enough to get the following claim

lim
n→∞

1

b2n
Λn(λb

2
n) =

λ2E(B(Θ))

2
. (12)

It is easy to see that

1
b2n

Λn(λb2n) = 1
b2n

logE exp
(

λbn√
n

∑n
i=1(Xi − A(Θ))

)
= 1

b2n
logE

{
E
[
exp

(
λbn√

n

∑n
i=1(Xi − A(Θ))

) ∣∣∣Θ]}
= 1

b2n
logE

{∏n
i=1E

[
exp

(
λbn√

n
(Xi − A(Θ))

) ∣∣∣Θ]}
= n

b2n
logE

{
E
[
exp

(
λbn√

n
(X1 − A(Θ))

) ∣∣∣Θ]} .
By the condition (9) and Taylor’s formula, we have

lim
n→∞

1

b2n
Λn(λb2n) =

λ2E(V ar(X1|Θ))

2
,

which is the claim (12).
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Corollary 3.2. Assume that the conditions in Theorem 3.1 hold, then with
I(r) defined as I(r) = r2

2E(B(Θ))
, we have for any closed F ⊂ R,

lim sup
n→∞

1

b2n
logP (Zn ∈ F ) ≤ − inf

r∈F
I(r)

and for any open G ⊂ R,

lim sup
n→∞

1

b2n
logP (Zn ∈ G) ≥ − inf

r∈G
I(r).
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[3] A. Juri and M. V. Wüthrich, Tail dependence from a distributional point
of view, Extremes, 6 (2004), 213-246.

[4] A.W. Marshall and I. Olkin, Families of multivariate distributions, Jour-
nal of the American Statistical Association, 83 (198) 834-841.

[5] D. Li, On default correlation: a copula function approach, Journal of
Fixed Income, 9(2001), 43-54.

[6] I. H. Dinwoodie and S. L. Zabell, Large deviations for exchangeable ran-
dom vectors, The Annals of Probability, 3 (1992), 1147-1166.

[7] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd
ed, Krieger, Malabar, 1987.

[8] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for
Dependent Risks, Wiley, New York, 2005.

[9] N. Whelan, Sampling from Archimedean copulas, Quantitative finance, 4
(2004), 339-352.
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