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Abstract

In this work, we study the existence and the uniqueness and the regularity of the
solution of a problem governed by a nonlinear equation intervening in relativistic
guantum mechanics perturbed by an amortizement factor
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1. Notations

Let Q is an open bounded domain of IR", = =Qx [0, T[, where T is a finite
positive real number. For each real functions fand g, we pose:

(f,g)zjgf(x)g(x)dx,and || = (f,f). We denote by || the norm of the
functionfin L°(Q), 1< p<oo.

2. Position of the Problem

Let € J0,+ o[ , suppose that f is given in L(Z).
Our problem is: Find u such that: u e L™(0,T;H:(Q) N L"(Q)) (2.2)
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and aat_u e L”(0,T; L*(Q)) (2.2)
And u is solution of the following problem (P)
2
a—SJnf:a—u—Au+|u|“u: f in X (2.3)
ot ot
P U= 0 on I'x]o,T[ (2.4)
u(x,0) =uy(x); X=X, Xypeeers X,,) €Q (2.5)
%U(X,O):ul(x); X = (Xgy X peeeey X, ) € Q (2.6)

The equation (2.3) models a phenomenon that occurs in relativistic quantum

mechanics perturbed by 52—5:; & > 0 called amortizement factor for this

phenomenon.
We will use the two following lemmas and the following corollary showed in [3].

Lemma 2.1-. Letbe f € L"0,T; X) and % e L?0,T; X) where X is a Banach
space and 1< p<oo.Then f: [O,T] — X is continious almost every where.

Lemma2.2. Letbe @ aboundedopenof IR} xIR and g, ,g two functions
of L

i <C and g, — g almost every where in
¢.Then g, — gin L*(Q) weakly.

Corollary 2.1. There exists a sequence {w, }; € H¢(Q) n LP(Q) such that for
any m>0, the vectors w,,w,,......,w,, are linearly independent and any the

subspace spanned by this vectors is dense in H () N L°(Q)
Theorem 2.1.- Let be given f,u,,u, such that:

f el?(2) (2.7)
Uy e HA(Q)NL(Q) p=a+2 (2.8)
u, € L*(Q) (2.9)

Then the problem (P) admits a solution.

Proof.- The proof of this theoerm 2.1, is done in three steps.
Step 1.- Approximation.-
ou 8v

and a(u,v) = Za

8
T ot X, 8xj

We use the base introduced into the above corollary, and we define an
approximate solution u,, =u,,(t) of the problem (P) under the form :

We pose u'= 6_u’
ot

u, ()= Zgim (t)w, such that for j=1,2,...,m, we obtain:

i=1
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(ur, @, w; )+ e(us, @ w; )+ alu, @©.w; )+ (o, O v O )= (FRw,)  (@2.10)
with :

Up(0) =Upy  Ugp = D @imW; > Uy in Hy(Q) N LP(Q) when m >0 (2.11)
i=1

Up(0)=Uy, Uy =D W, > U, in () when m — o0 (2.12)
i=1

This is a nonlinear ordinary differential system. If one takes into account
conditions (2.11) and (2.12), this system admits a solution on [O,tm], where

t. <T . The following priori estimates will show that t =T

Step 2 Priori estimates
By multiplying (2.10) by g, (t) and sum over j, we obtain:

(0,00, (0)+ 2 (€0, ) + e, O + [ @ u @0, 0) = (£ 0.0, )

According to o = p—2 (see (2.8)), the above expression can be written as:

%%[Hu;n(t)ui +a(u, (t),u, () +%(jg|um(x,t)|pdx)}+guu;n(t)uj =(f(t),u, (1) (2.13)

We pose ||v||2 =a(v,v) this is a norm in HJ () equivalent to the usual norm

inH'(Q) [1]. Along this work the norms without index are those defined in
H4 () by the above definition. From (2.13), we deduce that :

10 . 1 1 1 ,
2 O o O [+ S]] < 5l + lnl )+ o O + 2o (@] 00
t .
+[[f @), [un(e)],do (2.14)

From (2.11) and (2.12), we deduce that: There exists a constante C > 0 such that:

1 1

Sl o) o0 <c
This implies that:
17 1 1
E[ u, (t)|2 +[u,, (t)"z)} + E"um (t)”Ep(Q) <C+ E-E If (G)”; do +

Since f is given in L*(Z), we deduce that: There exists a constante K > 0such

u, @, do

1-2¢ J';

2
that: £| f (0')| < K. From the above inequality, we deduce that: There is a
<K,

Un @+ Jun O], o, <
Therefore t,, =T , moreover when m — oo, u_ remains in a bounded of
L”(0,T;H(Q) N L"(Q)) and u,, in abounded of L*(0,T;L*(Q))

Step 3 Taking the limit

constante K, > 0 independent to m such that:
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According to the Danford Pettis theorem cf. [5], L™ (0,T; H,(©) N L"(Q))
respectively L* (0, T; L?(QQ)) is the dual space of L'(0,T;H (Q)+L*(Q))

respectively L'(0,T;L?(Q)) where (£+1 =1j
P q

Consequently one can extract from {um} the subsequence {u #} such that:

u, > uinL”(0,T;Hy(Q) N L (L)) weak star (2.18)
and u, - u dans L"(0,T;L*(Q)) weak star

According to (1.23), we deduce that {u,, } is bounded in L?(0,T;H}(€2)) and {um}
is bounded in L*(0,T;L*(Q)) then {u,, } remains in a bounded of H'(Z).

However from the Rellich Kondrachoff compcteness theorem see [2], the
injection of H'(Z) in L*(Z) is compact. We can then suppose that u, —>uin

L*(Z) strongly and almost everywhere (2.19)
Since the application v — v|“v maps L? () on L*(Q) where (%+%=1},
then|u,|“u,, remains in a bounded domain of L*(0,T;L%(€2)), thus there exists

we L”(0,T;L%(Q) suchthat |u,|“u, — w weak star (2.20)

It remains to show thatw = |u|“ u':
But this results from(2.19) and (2.20) and the lemma 2.2 with 6 =X ;

gﬂ =‘uﬂ‘auﬂ , q:a+2

, Where [% +% = 1] and from (2.18), we deduce that:

g, > u=gand g, >winL'(); 1<q<ow weakly and from this we

a+l

obtainw = g =|u|“u . According to the lemma 2.2, we can now take the limit in
(2.10) that we use for m = x. Let j is a fixed natural number such that 2z > j then:

(), w, )+ &), (0, w, )+ alu, (), w, )+ (juﬂ ®)[ u, ®).w, ): (fow,) (@21

According to (2.18), we obtain a(u,,,w;) — a(u,w;) in L"(0,T) weak star and

M
(u,,w;) = (u’,w;) in L*(0,T) weak star.

then (u

u?

wj):%(u'#,wj)e(u",wj) in D'(0,T) and according (2.20), we have

(juﬂ‘au#,wj)—)Quru,wj) in L”(0,T) weak star
One deduces from (2.21) that :

d? d a
F(‘LWJ )+ 5&(“""’1 )+ alu,w, )+ QU| U, W ): (f.w,)
According to the properties of the density of the base w,,w,,.....,w,,, see the

corollary 2.1, we deduce that:
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dt22 (u, v)+g%(u v)+a(u,v)+ Qu| u, v) (f,v) YWeHI(Q)NL(Q)

then u satisfies (2.3) ,(2.1) and (2.2). It remains to check (2.5) and(2.6).
According to (2.11) , (2.12) and the lemma 2.2, we have u ,(0) — u(0) in L*(Q)

weakly, butaccording to (2.11) u,(0) =u,, — U, in H:(Q) N LP(Q) then (2.5)
is checked. Using the lemma 2.1, we obtain: (u;,wj)—> (u",wj) in L”(0,T)

weak star. So using the lemma 2.1 with X = IR, we will have
(u'#(O),Wj)—> (u',w )‘t » (u (0),w. ) from (2.12) we deduce that :

u (0),w; )= lu,,w, ),ona (u(0),w, )=u,w, ) Vj then —(0)=u,
6O, ) on @)= ) 1 ten 2

3. Uniqueness

Theorem 3.1. Using the hypothesis of the theorem 2.1 with the condition:

a<

if n#2 (« isany finite real number if n=2) (3.1)

Then the problem (P) admits an unic solution.
Proof.-
Let uand v are two solutions of the problem (P), then w=u —v checks :

W +aw —Aw =V v —|u["u (3.2)
w(0)=0; w(0)=0
we L”(0,T:H(Q) N L° ()
w e L7(0,T;L*(QQ)

by multiplying the two members of (3.2) by w and integrating overQ, it
becames :

S @[ + ol [+ ewol; = [ (v -l ubiax @3
According to the Holder inequality, the above expression is majored by :
1 1 1
(|

+ HMQHJ Jw)], w (t)” where q +o+o=l
from (3.1), we deduce that an < g . According to the prologation theorem of

Sobolev [2], we get H /() = L(Q) with §+%+%:1, n>2. Then:
IQ Qv|“v—|u|“u)/v'dx‘ < c( ‘ n) w(t)| Hw (t)”2 (3.4)
Since u,v e L”(0,T;H; () we obtain finaly:

w0 + el | < 2w @, + 222 ]

J'||W( )|| doc  Then w=0
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4 Regularity

Theorem 4.1.- Let us return to the hypothesis of the theorem 2.1, that we use
with the following complementary conditions:
of

— el 4.1
s (%) (4.1)
Uy € Ho(Q) M H*(Q) (4.2)
u, € H (Q) (4.3)
a< 5 (e is afinite real number if n=2) (4.4)
Then the problem (P) admits an unic solution u checking
uel”(0,T;H;(Q)NH?*(Q)) (4.5)
g—l: e L”(0,T;H;(Q)) (4.6)
2
Zt—g e L”(0,T; L2(Q)) (4.7)
Proof.-
Existence

We will use the base defined in the corollary 2.1 and that introduced int the stepl
of the proof of the theorem 2.1, but in this case this base is defined in

He(Q)NH?*Q) .

We suppose that u,, — U, in Hy(Q)"H?*(Q) and u,, > u, in H ()  (4.8)
And we use the same methode as that used in proff of the theorem 2.1
Uuniqueness.-

We use the same technic as that used in the proof of the theorem3.1
It becames: There is a constante ¢ > 0 such that

d ' .
constante M > 0 such that: %E[HW (t)Hz + ||w(t)||2} < M|w(t)] |w (t)”2

Since |w(t)] Hw (t)H2 < ||W(t)||2 + Hw (t)Hz and by applying the Gronwal Lemma [5]
and [6], we deduce w=0.
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