
 
 

Applied Mathematical Sciences, Vol. 4, 2010, no. 35, 1711 – 1717 
 
 
 

On a Nonlinear Problem Intervening in Relativistic 
 

 Quantum Mechanics Perturbed by a Factor of  
 

Amortizement  
 

 
Mohamed Said Said 

 
Department of Mathematics and Informatics 

University of Kasdi Merbah Ouargla, 30000 Ouargla Algeria 
smedsaid@yahoo.com 

 
Abstract 

 
In this work, we study the existence and the uniqueness and the regularity of the 
solution of a problem governed by a nonlinear equation intervening in relativistic 
quantum mechanics perturbed by an amortizement factor 

 
 

Mathematics Subject: 35B40, 35B65
  
Keywords: nonlinear hyperbolic problem-  perturbed – amortizement 

 
 
1. Notations 
 
Let Ω  is an open bounded domain of nIR , ] [T,0×Ω=Σ , where T is a finite 
positive real number. For each  real functions  f and g, we pose: 
( ) ∫Ω= dxxgxfgf )()(, , and ),(2 fff = . We denote by 

p
f  the norm of the 

function f in ∞≤≤Ω pLp 1),( . 
 
 
2. Position of the Problem 
 
 Let ] [∞+∈ ,0α  , suppose that f is given in )(2 ΣL . 
Our problem is: Find u such that:  ))()(;,0( 1

0 Ω∩Ω∈ ∞ pLHTLu                 (2.1)                                  
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 and                    ))(;,0( 2 Ω∈
∂
∂ ∞ LTL

t
u                                                           (2.2) 

And u is solution of the following problem (P)  
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The equation (2.3) models  a phenomenon that occurs in relativistic quantum 

mechanics perturbed by  0; >
∂
∂ εε

t
u  called amortizement factor for this 

phenomenon. 
We will use the two following  lemmas and the following corollary showed in [3]. 

Lemma 2.1-.  Let be );,0 XTLf p∈  and );,0 XTL
t
f p∈
∂
∂  where X is a Banach 

space and ∞≤≤ p1 . Then [ ] XTf →,0:  is continious almost every where. 
Lemma 2.2.  Let be  θ  a bounded open of t

n
x IRIR ×   and μg  , g  two functions 

of ∞<< qLq 1);(θ  such that Cg pL
≤

)(θμ  and  gg →μ  almost every where in 

θ . Then gg →μ in )(ΩqL  weakly. 

Corollary 2.1.  There exists a sequence { } )()(1
01 Ω∩Ω∈∞ p

i LHw  such that for 
any ,0≥m  the vectors mwww ,......,, 21  are linearly independent and any the 
subspace spanned by this vectors is dense in )()(1

0 Ω∩Ω pLH  
Theorem 2.1.-  Let be given  10 ,, uuf  such that: 
                                           )(2 Σ∈ Lf                                                                 (2.7) 
                             2)()(1

00 +=Ω∩Ω∈ αpLHu p                                      (2.8) 
                                                )(2

1 Ω∈ Lu                                                  (2.9) 
Then the problem (P) admits a solution. 
 
Proof.- The proof of this theoerm 2.1, is done in three steps. 
Step 1.- Approximation.- 

We pose 2

2

",'
t
uu

t
uu

∂
∂

=
∂
∂

=  , and dx
x
v

x
uvua

n

i jj
∑
= ∂

∂
∂
∂

=
1

),(  

We use the base introduced into the above corollary, and we define an 
approximate solution )(tuu mm =  of the problem (P) under the form : 

i

m

i
imm wtgtu )()(

1
∑
=

=   such that for mj ,...,2,1= , we obtain:     
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( ) ( ) ( ) ( ) ( )jjmmjmjmjm wtfwtutuwtuawtuwtu ),(),()(),(),(),( '" =+++ ρε         (2.10) 
with : 

 0
1

00)0( uwuuu
m

i
iimmmm →== ∑

=

α  in )()(1
0 Ω∩Ω pLH  when ∞→m       (2.11) 

1
1

11
' )0( uwuuu

m

i
iimmmm →== ∑

=

β  in )(2 ΩL  when ∞→m                         (2.12) 

This is a nonlinear ordinary differential system. If one takes into account 
conditions (2.11) and (2.12), this system admits a solution on [ ]mt,0 , where 

Ttm ≤  . The following priori estimates will show that Ttm =  
Step 2  Priori estimates 
By multiplying (2.10)  by )(' tg jm  and sum over  j, we obtain: 

( ) ( ) ( ))(),()(),()()())(),(()(),( ''2

2

'''" tutftutututututuatutu mmmmmmmmm =+++ αε  

According to 2−= pα  (see (2.8)), the above expression can be written as: 

( ) ( ) )13.2()(),()(),(1))(),(()(
2
1 '2

2

'2

2

' tutftudxtxu
p

tutuatu
dt
d

mm
p

mmmm =+⎥
⎦

⎤
⎢
⎣

⎡
++ ∫Ω ε  

  We pose ),(2 vvav =  this is a norm in )(1
0 ΩH equivalent to the usual norm 

in )(1 ΩH  [1].  Along this work the norms without  index are those defined in 
)(1

0 ΩH  by the above definition. From (2.13), we deduce that : 

( )
)14.2()()(

)()0(1
2
1(1))()(

2
1

0 2

'
2

0

2

2

'2
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21
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'
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+

+++≤+⎥⎦
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⎡ +

t
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t
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pmmm
p

pmmm

duf
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uutu
p

tutu

σσσ

σσε

    
From (2.11) and (2.12), we deduce that: There exists a constante 0>C such that: 

( ) Cu
p

uu p

pmmm ≤++ )0(1
2
1 2

20
2

21  

This implies that: 

∫∫
−

++≤+⎥⎦
⎤

⎢⎣
⎡ +

Ω

t

m

tp

Lmmm dtudfCtu
p

tutu p
0

2

2

'

0

2

2)(

22' )(
2
21)(

2
1)(1))()(

2
1 σεσσ                                   

Since f is given in )(2 ΣL , we deduce that: There exists a constante 0>K such 

that: Kf
t

≤∫
2

0
)(σ . From the above inequality, we deduce that: There is a 

constante 03 >K  independent to m such that:  3)(

'' )()( Ktutu pLmm ≤+
Ω

                                       

Therefore Ttm = , moreover  when ∞→m , mu  remains in a bounded of  
))()(;,0( 1

0 Ω∩Ω∞ pLHTL  and '
mu  in a bounded of  ))(;,0( 2 Ω∞ LTL                

Step 3  Taking the limit 
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According to the Danford Pettis theorem cf. [5], ))()(;,0( 1

0 Ω∩Ω∞ pLHTL  
respectively ))(;,0( 2 Ω∞ LTL  is the dual space of  ))()(;,0( 11 Ω+Ω− qLHTL                 

respectively ))(;,0( 21 ΩLTL  where  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+ 111

qp
   

Consequently one can extract from { }mu   the subsequence { }μu  such that: 

 uu →μ  in ))()(;,0( 1
0 Ω∩Ω∞ pLHTL  weak star                                              (2.18) 

and '' uu →μ  dans ))(;,0( 2 Ω∞ LTL  weak star                                                  

According to (1.23), we deduce that { }mu  is bounded in ))(;,0( 1
0

2 ΩHTL  and { }'
mu  

is bounded in ))(;,0( 22 ΩLTL  then { }mu  remains in a bounded of  )(1 ΣH .  
However from the  Rellich Kondrachoff  compcteness theorem see [2],  the 
injection of )(1 ΣH  in )(2 ΣL  is compact. We can then suppose that uu →μ  in 

)(2 ΣL  strongly and almost everywhere                                                            (2.19) 

Since the application vvv α→  maps )(ΩpL  on )(ΩqL  where  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+ 111

qp
, 

then μ

α

μ uu  remains in a bounded domain of  ))(;,0( Ω∞ qLTL , thus there exists                       

))(;,0( Ω∈ ∞ qLTLw  such that  wuu →μ

α

μ  weak star                                  (2.20) 

 It remains to show that uuw α= : 
But this results from(2.19) and (2.20) and the lemma 2.2 with Σ=θ  ; 

μ

α

μμ uug =  ,   
1
2

+
+

=
α
αq , where ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+ 111

qp
 and from (2.18), we deduce that: 

guug =→ α
μ  and wg →μ  in ∞<< qLq 1);(θ   weakly  and from this we 

obtain uugw α== . According to the lemma 2.2, we can now take the limit in 
(2.10) that we use for μ=m . Let j is a fixed natural number such that j>μ  then:  

( ) ( ) ( ) ( ) ( )jjjjj wtfwtutuwtuawtuwtu ),(),()(),(),(),( '" =+++ μ

α

μμμμ ε          (2.21) 

According to (2.18), we obtain  ),(),( jj wuawua →μ  in ),0( TL∞  weak star  and 

),(),( ''
jj wuwu →μ  in ),0( TL∞  weak star. 

then  ),(),(),( "'"
jjj wuwu

dt
dwu →= μμ  in ),0(' TD  and according (2.20), we have 

( ) ( )jj wuuwuu ,, α
μ

α

μ →    in ),0( TL∞  weak star               
One deduces from (2.21) that : 

          ( ) ( ) ( ) ( ) ( )jjjjj wfwuuwuawu
dt
dwu

dt
d ,,,,,2

2

=+++ αε                

According to the properties of the density of the base mwww ,.....,, 21 , see the 
corollary 2.1,  we deduce that: 
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( ) ( ) ( ) ( ) ( ) )()(,,,,, 1
02

2

Ω∩Ω∈∀=+++ pLHvvfvuuvuavu
dt
dvu

dt
d αε   

then u satisfies  (2.3) ,(2.1) and (2.2). It remains to check (2.5) and(2.6). 
According to (2.11) , (2.12) and the lemma 2.2,  we have )0()0( uu →μ  in )(2 ΩL  

weakly,  but according to  (2.11) 00)0( uuu →= μμ  in )()(1
0 Ω∩Ω pLH  then (2.5) 

is checked. Using the lemma 2.1, we obtain: ( ) ( )jj wuwu ,, "" →μ   in ),0( TL∞  
weak star. So using the lemma 2.1 with IRX = , we will have 
( ) ( ) ( )jtjj wuwuwu ),0(,),0( '

0
'' =→

=μ ,  from (2.12)  we deduce that : 

( ) ( )jj wuwu ,),0( 1
' → , on a ( ) ( ) jwuwu jj ∀= ,),0( 1

'   then 1)0( u
t
u

=
∂
∂  

 
 
3. Uniqueness 
 
Theorem 3.1.  Using the hypothesis of the theorem 2.1 with the condition: 

2
2
−

≤
n

α   if 2≠n  (α  is any finite real number if 2=n )                              (3.1) 

Then the problem (P)  admits an unic solution. 
Proof.- 
Let u and v  are two solutions of the problem (P), then vuw −=  checks : 
                              uuvvwww ααε −=Δ−+ '"                                                 (3.2) 

                                   0)0(;0)0( ' == ww    
                                ))()(;,0( 1

0 Ω∩Ω∈ ∞ pLHTLw   
                                     ))(;,0( 2' Ω∈ ∞ LTLw  
by multiplying the two members of (3.2) by 'w  and integrating overΩ , it 
becames : 

                    ( ) dxwuuvvtwtwtw
dt
d '2

2

22

2

' )()()(
2
1

∫Ω −=+⎥⎦
⎤

⎢⎣
⎡ + ααε             (3.3) 

According to the Hölder inequality, the above expression is majored by : 

2

' )()( twtwvuc
qnn

⎟
⎠
⎞⎜

⎝
⎛ + αα   where 1

2
111
=++

nq
 

from (3.1), we deduce that qn ≤α . According to the prologation theorem of 

Sobolev [2], we get  )()(1
0 Ω⊂Ω qLH  with  1

2
111
=++

nq
, 2>n . Then:  

( )
2

'' )()( twtwvucdxwuuvv
nn
⎟
⎠
⎞⎜

⎝
⎛ +≤−∫Ω

αααα                                  (3.4) 

Since ))(;,0(, 1
0 Ω∈ ∞ HTLvu  we obtain finaly:                                                                     

σσ
ε

σ dw
c

w
c

twtw
t

∫
−

+≤⎥⎦
⎤

⎢⎣
⎡ +

0

222

2

'222

2

' )(
2

2
)(

2
)()(        Then  0=w  
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4 Regularity 
 
Theorem 4.1.-  Let us return to the hypothesis of the theorem 2.1, that we use 
with the following complementary conditions: 

                                            )(2 Σ∈
∂
∂ L

t
f                                                              (4.1) 

                                         )()( 21
00 Ω∩Ω∈ HHu                                        (4.2) 

 
                                                )(1

01 Ω∈Hu                                                 (4.3) 

                 
2

2
−

≤
n

α       (α  is a finite real number if 2=n )                           (4.4) 

Then the problem (P) admits an unic solution u checking 
                              
                                 ))()(;,0( 21

0 Ω∩Ω∈ ∞ HHTLu                                       (4.5) 

                                       ))(;,0( 1
0 Ω∈

∂
∂ ∞ HTL

t
u                                              (4.6) 

                                       ))(;,0( 2
2

2

Ω∈
∂
∂ ∞ LTL

t
u                                              (4.7) 

Proof.- 
Existence 
We will use the base defined in the corollary 2.1  and that introduced int the step1 
of the proof of the theorem 2.1, but in this case this base is defined in 

)()( 21
0 Ω∩Ω HH  . 

We suppose that 00 uu m →  in )()( 21
0 Ω∩Ω HH  and 11 uu m →  in )(1

0 ΩH        (4.8) 
And we use the same methode as that used in proff of the theorem 2.1 
Uuniqueness.- 
We use the same technic as that used in the proof of the  theorem3.1 
It becames:  There is a constante 0>c  such that 

constante M > 0 such that: 
2

'22

2

' )()()()(
2
1 twtwMtwtw

dt
d

≤⎥⎦
⎤

⎢⎣
⎡ +   

Since 
2

2

'2

2

' )()()()( twtwtwtw +≤  and by applying the Gronwal Lemma [5]  

and [6], we deduce 0=w . 
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