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 Abstract 

 
In a linear regression model, the estimation of regression parameters by ordinary least squares 
method is affected by some anomalous points in the data set. Thus, detection of these 
abnormal points is one of the essential steps in regression analysis. There are many classical 
single deletion diagnostic measures which may fail to detect strange points due to masking 
effect. Local influence is an alternative method to evaluate the influence of local departures 
from assumptions in a proposed model. The main objective of this paper is to obtain the best 
resistant regression method which is robust to outliers in both the response and the 
explanatory variables. To achieve this objective, the weight vectors of the most commonly 
used robust regression techniques, such as the M- and the Generalized M-regressions are 
studied.  A new measure based on the normal curvatures of the likelihood displacement is also 
proposed for comparing different robust regression methods. A medical data set is reanalyzed 
to underline that the use of only one alternative detection method or robust regression approach 
may not be sufficient to detect all influential points or to conclude the best robust method. A 
Monte Carlo simulation study is performed to confirm the results.  
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1   Introduction 
 
     Many quantitative models are utilized to diagnose and evaluate the response to a therapy 
in medical studies. Of them regression analysis is an important statistical tool that is 
routinely applied in most applied sciences. To ease the model formulation and computation, 
some desired assumptions such as normality of the response variable are made on the 
regression structure. Out of many possible regression techniques for fitting the model, the 
ordinary least squares (OLS) method has been traditionally adopted due to the ease of 
computation. However, there is presently a widespread awareness of the dangers posed by 
the occurrence of outliers in the OLS estimates (Rousseuw and  Leroy, 2003). Outliers occur 
very frequently in real data, and they often go unnoticed because currently much data are 
processed by computers without careful monitoring. An OLS analysis can be totally spoiled 
not only by outliers in the response variable but also by outliers in the explanatory variables. 
Such influential points do not always show up in the usual OLS residual plots thus they 
remain hidden to the users. 
    Two useful procedures can be employed to protect against outliers in the ܺ- or the ܻ-
direction. These are the regression diagnostics (Cook , 1977; Cook , 1979 and Belsley et al., 
1980) and the robust regression (Huber ,1973; Huber , 2003; Rousseeuw ,1984; Rousseeuw. 
and Yohai ,1984 and Andersen, 2008). Both of these have the same approach but, they 
proceed in the opposite direction. In regression diagnostics context, at first a regression 
model is fitted to the data set and then potential outliers are investigated. Subsequently, a 
model with the clean data (the data set without outliers) will be refitted. On the other hand, 
the procedures of robust regression follow two stages whereby in the first stage a model 
which is appropriate for the majority of the data is fitted, and then those observations with 
large robust residuals are detected as outliers. 
 
The local influence can be considered as a practical procedure for assessing the validity of a 
fitted model. This is carried out by omitting or down weighing suspicious outliers through 
using influence graph to confirm whether they are outliers or influential points. Cook’s local 
influence approach (see Cook, 1986) based on normal curvature is an important diagnostic 
tool for assessing local influence of minor perturbations to a statistical model. Assessing the 
influence of local perturbation of a statistical model has been an active area of statistical 
research in the past twenty years. The first measure which will be used in this paper is 
Cook’s measure (Cook, 1977) which is based on a scaled distance of the ܻ and ෠ܻሺ௜ሻ, ݊ ൈ 1 
vectors of fitted values based on full data and the data without ݅-th case, respectively. The 
Cook’s ܦ௜ Measure (hereafter, CDM) is used to detect cases that should be carefully 
investigated for gross error. The Normal Curvature Measure is defined by Cook (1986) 
(hereafter NCM) by extending the CDM measure.  By this measure, instead of deleting the i-
th individual, one can see the effect of that individual by giving it different weights. Another 
practical measure for detecting the influential measure has been defined by Hadi (1992). The 
Hadi’s measure (hereafter HM) investigates the prediction of errors and presence of the 
outliers in ܺ-direction. A similar in expression measure to HM, L-Measure, has been  
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introduced by Rancel and Sierra (2000) (hereafter, LM). Poon and Poon(2002)  also define 
the standardized arc-length measure, P-Measure, for perturbing the weight of i-th case 
(hereafter PM). The last reviewed measure, S-Measure, is Pena’s measure (2005) which 
determines the effect of deletion of each observation on the forecast (hereafter SM). We are 
going to compare the performance of these measures on detecting the influential points of a 
real data set.  
      Robust methods have been defined to deal with the influential points in regression 
analysis. One of the oldest robust approaches which predates OLS by 50 years is L1-norm 
(Armstrong and Kung, 1978).  Least median of squares (LMS) and Least Trimmed Squares 
(LTS) are introduced by Rousseeuw (1983 and 1984).  M-estimators are suggested by Huber 
(1973). Generalized M-estimators are introduced by Schweppe (which is given in Hill, 1977) 
and Coakley and Hettmansperger (1993) (their algorithms are available in Wilcox, 2005) 
and MM-estimators are presented by Yohai (1987). In this paper, we will propose a new 
measure, for assessing different robust regressions methods. This measure is based on 
normal curvature of the likelihood displacement. 
       The performance of our proposed measure and all robust regression methods will be 
examined on a simulation study and will be applied to a real data set. A modified method of 
Coakley and Hettmansperger ‘s (GM-estimators ) will be also presented and applied. 
       This paper is organized as follows.  In Section 2 we will discuss the local influence 
approach of Cook (1986) and a general overview of the above mentioned diagnostic 
methods of influential points will be presented. In Section 3 we will review the different 
types of robust regression methods and their properties such as breakdown point, efficiency 
and bounded influence (the comprehensive definition of these properties can be found in 
Andersen, 2008 ). Interstitial lung disease (ILD) data set, taken from Narula et al.(1999)  
(who only used a ࡸ૚-norm regression to analyze the data and they did not use any detection 
method to find the influential points) will be reexamined more carefully for detecting 
influential points and will be reanalyzed in Section 4. A Monte Carlo simulation study will 
be employed in Section 5 to confirm the results of numerical example, and to evaluate the 
performance of our introduced measure and our modified GM-regression method. The 
conclusion of the study will be given in the last Section. 
 
 
2   Local Influence and Diagnostic Methods 

 
Influence emerges from the interaction between the model and the bad elements of the data 
for which valid conclusion from a fitted model cannot be drawn. By definition, local 
influence is the minor perturbations of a model. Hence, assessment of local influence is 
necessary for the best fit of a model. Several diagnostics have been developed for assessing 
the local influence for the perturbations of case-weights, explanatory variables and for 
assessing effect of specific perturbations on the parameter estimates. In this section at first 
we review the local influence and then reexamine some of the detection methods.   
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2.1    Local Influence 
     The method of local influence was introduced by Cook (1986) and modified by Billor and 
Loynes (1993) as a general tool for assessing the influence of local departures from the 
assumptions underlying the statistical models. Consider the following standard linear 
regression model: 
ݕ                                                          ൌ ߚܺ ൅ ߳                                                                  (1) 
where ݕ is a ݊ ൈ 1 vector of dependent or response variable, ܺ is a ݊ ൈ ݌ሺ ݌ ൌ ݇ ൅ 1ሻ 
design matrix (the number of independent variables predicting y is equal to k),  ߚ is a ݌ ൈ 1 
vector of unknown parameters and ߳ is the ݊ ൈ 1 vector of error with distributionN[0, ߪଶIn ]. 
Chatterjee and Hadi (1986) gave an excellent review of several measures assessing influence 
of observations in regression modeling. Cook (1986) considered a generalized version of 
Cook’s Distance Measure (CDM): 

௜ܦ                                                       ൌ ฮ௒෠ି௒෠ሺ೔ሻฮమ

௣ఙమ ൌ ௛೔೔
ሺଵି௛೔೔ሻ

௥೔
మ

௣
                                                (2) 

where ෠ܻ , ෠ܻሺ௜ሻ are the n ൈ1 vectors of fitted values based on the full data and the data without 
the i-th case, respectively, and p is the dimension of ߚ. He introduced the use of: 

ሻݓ௜ሺܦ                                                          ൌ ฮ௒෠ି௒෠ሺೢሻฮమ

௣ఙమ  

where, ෠ܻሺ௪ሻ is the vector of fitted values obtained when the i-th case has weight w and the 
remaining cases have weight 1. This idea has been extended to general models. This 
extension is partially motivated by the following relationship between ܦ௜ሺݓሻ and the log-
likelihood ܮሺߚሻ  for model (1), 

ሻݓ௜ሺܦ݌                                         ൌ ฮ௒ି௒෠ሺೢሻฮమିԡ௒ି ௒෡ ԡమ

ఙమ ൌ 2ሾܮ൫ߚመ൯ െ  መௐ൯ሿ                       (3)ߚ൫ܮ
where ߚመ መௐߚ=   when ݓ ൌ 1 and ߚመௐ is the maximum likelihood estimator of ߚ when the i-th 
case has weight ݓ. The form of this relationship is a consequence of the statistical structure 
assumed for the errors in model (1). 
In general, consider ܮሺߠሻ as log likelihood corresponding to the postulated model where ߠ is 
a ݌ ൈ 1 vector of unknown parameters. Perturbations into the model may be defined through 
the ݍ ൈ 1 vector ݓ restricting to some open subset ߗ of ܴ௤. The log-likelihood for the 
unperturbed and perturbed models are denoted by ܮሺߠሻ and ܮሺݓ|ߠሻ, respectively. Then the 
likelihood displacement ܦܮሺݓሻ  is defined by: 
ሻݓሺܦܮ                                                     ൌ 2ሾܮ൫ߠ෠൯ െ  ෠ௐ൯ሿ                                             (4)ߠ൫ܮ
where ߠ෠ and ߠ෠௪ are the maximum likelihood estimators of ߠ under the unperturbed and 
perturbed models, respectively. The vector of the values w and ܦܮሺݓሻ forms the surface of 
interest as w varies over certain space. The direction of maximum curvature of the likelihood 
displacement surface in the postulated model (where w = w0) indicates the greatest local 
sensitivity against perturbations. The direction of maximum curvature is used as the main 
diagnostic tool in the local influence method. 
An obvious way to see if perturbations of the model influence key results of the analysis is 
to compare the results derived from the original and perturbed models using an influence 
graph which is a geometric surface formed by the values of the ሺݍ ൅ 1ሻ ൈ 1 vector;  
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ሻݓሺߙ ൌ ሺݓ,  which is some open subset of ܴ௤. To ߗ varies through ݓ ሻሻԢ whereݓሺܦܮ
characterize the behavior of an influence graph around ݓ଴ in ߗ, geometric normal curvature 
is used. Some direction ݈௤ൈଵ א ܴ௤ ሺԡ݈ԡ ൌ 1ሻ is chosen to see the normal curvature ܥ௟ at 
 :௟ will reduce toܥ ଴ in the direction of ݈. The expression forݓ
௟ܥ                                                      ൌ 2ห்݈∆்ሺܮ"ሻିଵ∆ ݈ห                                                       (5) 
where ∆ is a ݌ ൈ  :matrix with elements ݍ
                                                    ∆௜௝ൌ பమLሺ஘|୵ሻ

ப஘౟ ப୵ౠ
|ሼ஘ୀ஘෡,୵ୀ୵బሽ 

and - L'' is the observed information matrix for the postulated model (w ൌ w଴). 
        Let make (5) desirable for our purpose. Consider w denote the n ൈ 1 vector of case-
weights for the regression model (1) and ߪଶ is known. The relevant part of the log-
likelihood for the perturbed model is: 
ሻݓ|ߚሺܮ                                                ൌ െ ଵ

ଶ஢మ ∑ w୧ሺy୧ െ x୧
Tβሻଶ୬

୧ୀଵ                                        (6) 
where ݓ௜ and ݕ௜ are the i-th components of ݓ and ܻ, respectively, and x୧

T is the i-th row of 
X. Differentiating (6) with respect to β and w, and evaluating at ߚመ  and ݓ଴ ൌ 1, we find; 
                                                      ∆ൌ  ଶߪ /ሻݎሺܦ்ܺ
where ݎ ൌ ሺݎ௜ሻ is the n ൈ 1 vector of ordinary residuals when ݓ ൌ  1 and D(r) = diag(ݎଵ,. . ., 
෡ ߚ௡). Since  ݈ "ሺݎ ሻ ൌ െ XTX ⁄ଶߪ   , normal curvature can be defined as:  
௟ܥ                                                    ൌ  ଶ                                                   (7)ߪ/ሻ݈ݎሺܦܪሻݎሺܦ2்݈
where H is the hat matrix and ԡ݈ԡ ൌ 1. Moreover, ܥ௠௔௫ ൌ  ௟ in the direction ofܥ௟ݔܽ݉
݈௠௔௫where ݈௠௔௫ is the eigenvector corresponding to maximum eigenvalue of ܦሺݎሻܦܪሺݎሻ 
matrix.  
 
2.2   Diagnostics Measures 
 
It is important to point out that, in real situation, many data sets for which one often makes 
normal assumption, has heavy-tailed distribution which may arise as a result of outliers. 
Consequently, the outliers will have an unduly effect on the regression results (see Pearson, 
1931 and Box, 1953). There are three different groups of strange points that may occur and 
need further attentions because their presence will have a great influence on the OLS 
estimates. The first group is regression outliers which sometimes are called the group of vertical 
outliers (Rousseeuw and van Zomeren, 1990). These outliers stand apart from the general 
pattern for the bulk of the data. Specifically, they are observations which are discrepant in terms 
of their y values. Regression outliers are characterized by relatively large residuals. It is 
essential to explain the leverage concept here. The farther the observation is from the mean 
of X (either in a positive or negative direction), the greater is its leverage. There are two 
types of leverage points which play different roles in regression, good leverage points and 
bad leverage points. Leverage points are referred as good or bad depending on whether they 
are reasonably consistent with the true regression line.  If they are consistent with the true 
regression line then they are referred as good leverage points, otherwise they are bad 
leverage points. These leverage points are also regression outliers and fall on the second  



1372                                                            A. Bagheri, H. Midi, M. Ganjali and S. Eftekhari 
 
 
group of strange points. Finally, the last group of strange points are the good leverage points 
which are not regression outliers. Points in this group can reduce the standard errors of the 
OLS estimates.  On the other hand, a bad leverage point can result in a poor fit to the bulk of 
the data. Additionally, observations which have unduly influence on the regression results 
are identified as influential observations. Thus, vertical outliers and bad leverage points are 
influential observations which should be carefully investigated in regression analysis. 
      Diagnostic measures are certain quantities computed for the purpose of revealing 
influential observations. Much work has been accomplished on different methods to detect 
these unusual points beginning with the key methods of Cook and Weisberg (1982).  
      In view of the fact that the structure of the local influence concept is quite useful for 
identifying influential subset, and providing a further justification for local influence 
analysis, some of the established diagnostics methods based on the local influence will be 
reviewed.  
      A practical measure, NCM, is the curvature for the influence graph obtained by 
modifying the weight attached to a single case, suppose the i-th, this is: 
௜ܥ                                                        ൌ ௜ݎ2

ଶ݄௜௜ ଶߪ ൌ⁄ 2ܲሺ1 െ ݄௜௜ሻଶܦ௜                                                   
where ܦ௜ is defined in (2). 
     Another method is a new measure which shows that the local influence analysis of 
perturbations of the variance is similar to the usual regression diagnostic based on the CDM 
for detecting influential subset. Hadi (1992) proposed HM for detecting influential subset of 
observations which is resistant to masking and swamping effects. HM is based on the simple 
fact that potentially influential observations are outliers in the ܺ-space, the ܻ-space, or both, 
which yields HM to be: 
௜ܯܪ                                                   

ଶ ൌ ௣
ሺଵି௛೔೔ሻ

ௗ೔
మ

ሺଵିௗ೔
మሻ

൅ ௛೔೔
ሺଵି௛೔೔ሻ       ݅ ൌ 1, … , ݊                    (8) 

where ݀௜
ଶ ൌ ௜ݎ

ଶ ⁄ݎᇱݎ , is the square of the i-th normalized residual and ݄௜௜ is the i-th diagonal 
element of the hat matrix. HM is the sum of two components with different interpretation. A 
large value of the first term on the right hand side of (8) can be resulted in a poor fit or large 
prediction error while a large value of the second term indicates the presence of high 
leverage point. Hadi (1992) introduced a robust cutoff point for HM as ݉݁݀݅ܽ݊൫ܯܪ௜

ଶ൯ ൅
C ൈ madሺܯܪ௜

ଶሻ where: 
ሻܯܪሺ݀ܽܯ                                            ൌ ௠௘ௗ௜௔௡หுெ೔

మି௠௘ௗ௜௔௡൫ுெ೔
మ൯ห

଴.଺଻ସହ 
݅ ݎ݋݂              ൌ 1, … , ݊ 

where ܥ can be taken as constant values of 2 or 3. 
      Rancel and Sierra (2000) introduced a quasi likelihood displacement to consider the 
influence of the high-leverage observations in likelihood displacement. The quasi likelihood 
displacement defined as: 

௜ሻݓሺ௜ሻሺܦܮ                       ൌ 2ሾܮ൫ߠ෠൯ െ ௜൯ݓ|෠ௐ೔ߠሺ௜ሻ൫ܮ ൅ ሾݎܽݒ൫ ෠ܻ௜൯ െ ൫ݎܽݒ ෠ܻ௪೔൯]. 
 where ܮሺ௜ሻ൫ߠ෠ௐ೔൯ is the log-likelihood displacement under the perturbed model when the i-th 
observation is deleted. So that, the slope of the maximum increment direction of ܦܮሺ௜ሻሺݓ௜ሻ 
which has an expression similar to HM indicates an existing relation between local and 
deletion diagnostic. This can be defined as LM which is: 
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                                         ݈௜ሺ௜ሻ ൌ 1 െ ݎᇱݎ ቂ ௣

ሺଵି௛೔೔ሻ
ௗ೔

మ

ሺଵିௗ೔
మሻ

൅ ௛೔೔
ሺଵି௛೔೔ሻమቃ .                                     (9) 

Another measure to characterize the behavior of the influence graph of the likelihood 
displacement over the entire perturbation range is PM which was developed by Poon and 
Poon (2002). They developed a relation between the normal curvature of basis ݎ௜ and all 
influential eigenvectors at 0ݓ under some assumptions, and concluded that this measure 
which is called the standardized arc-length is an effective measure for assessing local 
influence. This measure can be defined for perturbing the weight of the i-th case as: 

                                              ௜ܲ ൌ ׬ ට1 ൅ ସ
ఙర

௧మ௥೔ర௛೔೔
మ

ሺଵି௧௛೔೔ሻల   ଵ
଴  (10)                                               .ݐ݀

 Formula (10) implies that ௜ܲ  ൐  1; and ௜ܲ  ൌ  1 if and only if the leverage ݄௜௜ or the residual 
 .௜ is equal to zeroݎ
      Pena (2005) has introduced a new statistics which present how sensitive the forecast of 
the i-th observation is to the deletion of each observation in the sample. In contrast with 
CDM which measures the influence of an observation through deleting the observation from 
the sample and computes the changes in the vector of forecast, SM measures the changes of 
the forecast of one observation after deleting each of the sample points one by one. So, SM 
is defined for the i-th observation as: 

                                              ௜ܵ ൌ ଵ
௣௦మ௛೔೔

∑ ௛ೕ೔
మ௥ೕ

మ

ሺଵି௛ೕೕሻమ
௡
௝ୀଵ                                                           (11) 

where ݏଶ ൌ ݎᇱݎ ሺ݊ െ ⁄ሻ݌  and ௝݄௜  ‘s are the off diagonal elements of hat matrix. The most 
important difference between this measure and CDM is that the distribution of SM for large 
sample sizes with many explanatory variables will be approximately normal. However, this 
measure will not be useful in situations that the outliers in ܻ-direction has low leverages. 
Hence, it will be very efficient when the data set contains high leverage outliers or bad 
leverage points.  
 
 
3  Robust Regression Methods 
 
Utilizing the Ordinary Least Squares (OLS) method, the estimator of ߚ are found by 
minimizing the sum of squared residuals, ݉݅݊ఉ෡ ∑ ௜ݎ

ଶ௡
௜ୀଵ  where ݎ௜ ൌ ௜ݕ െ  ො௜. This gives theݕ

OLS estimator for ߚ as: 
መߚ                                                         ൌ ሺܺᇱܺሻିଵܺԢܻ. 
The OLS estimate is optimal when the error distribution is assumed to be normal (Hampel, 
1974 and Mosteller and Tukey, 1977).  In the presence of influential observations, robust 
regression is a suitable alternative to the OLS. Robust procedures have been the focus of 
many studies recently, all of which triggered by the ideas of Hampel (1974). These methods 
are mainly aimed to provide stable results in the presence of outliers. One of the first robust 
methods is called L1-norm, least absolute values (LAV) or minimum sum of absolute errors 
(MSAE) regression estimator. This estimator obtains a higher efficiency than OLS through 
minimizing the sum of the absolute errors (min∑ ௜|௡ݎ|

௜ୀଵ ሻ introduced by Armstrong and Kung  
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(1978). The combination of the low breakdown point (1/n) and non-sensitivity to outliers in 
ܺ-direction (see Mosteller and Tukey, 1977) makes LAV less attractive than most of the 
other existing robust regression methods. Rousseeuw (1983 and 1984) introduced two other 
robust methods: least median of squares (LMS) and Least Trimmed Squares (LTS). LMS 
attempts to minimize The median of  ݎ௜

ଶ. LMS estimator has deficiencies, which limit its 
use, such as a relative efficiency of 37% (see Rousseeuw and Croux, 1993) and low 
convergence rate for its influence function (Rousseeuw, 1983). Despite these limitations, 
LMS estimators can highly influence the calculation of the much more efficient MM-
estimators by providing initial estimates of the residuals which will be explained later. The 
other method, LTS minimizes the sum of the trimmed squared residuals, ݉݅݊ ∑ ሺݎଶ

ሺ௜ሻ
௛
௜ୀଵ ) 

where ݄ ൌ ሾ݊ሺ1 െ ሻߙ ൅ 1ሿ is the number of the observations including in the calculation of 
the estimator, and ߙ is the proportion of trimming. Using ݄ ൌ ൫݊

2ൗ ൯ ൅ 1 ensures a high 
breakdown point for the estimator. Both the LMS and the LTS methods have high 
breakdown as 50%.  However, they produce unbounded influence estimators (Rousseeuw, 
1983 and 1984). Moreover, the highly resistant LTS estimator suffers badly in terms of 
relative efficiency at about 8% (see Stromberg et.al., 2000). Although, the LTS has low 
efficiency, it has an important role in the calculation of some other robust estimators such as 
the GM-estimators. 
Huber (1973) suggested M-estimators of ߚ as another robust estimator. These obtained by 
solving: 
                                                            ∑ ߰ሺ௬೔ି௫೔

ᇲఉ෡ 
௦

௡
௜ୀଵ ሻݔ௜ ൌ 0                                             (12) 

where ߰-function may be a monotonic ߰-function such as Huber’s ߰-function which is 
defined as: 

                                                      ߰ሺݐሻ ൌ ൜ݐ| ݂݅                   ݐ| ൏ ܾ
|ݐ| ݂݅      ሻݐሺ݊݃ݏܾ ൒ ܾൠ .        

The M-estimators are the simplest high efficient robust estimators having both computa-
tionally and theoretically desirable asymptotic properties. It is worth to mention that the M-
estimators are not robust in the ܺ-direction and have low break down point (1/n) (Simpson, 
1995). Schweppe introduced a class of robust methods which is called the Generalized M-
estimators (GM-estimators) (see Hill, 1977).  Simpson (1995) made an extensive comparison 
between different types of GM-estimators. The major aim of these methods is to down weight 
those high leverage points which have large residuals or bad leverage points. Simpson (1995) 
has reported that these estimators have high efficiency and bounded influence properties 
which achieved a moderate break down point equal to 1/݌. The GM-estimator is the 
solutions of the normal equations: 
                                                         ∑ ௜߰ሺ௬೔ି௫೔ߨ

ᇲఉ෡ 
௦గ೔

௡
௜ୀଵ ሻݔ௜ ൌ 0                                             (13) 

where, ߨ௜’s are defined to down weight high leverage points with high residuals and S is a 
robust scale estimate. Different methods may be used to solve (13).  The most common 
method is the one-step or fully Iteratively Reweighted Least Squares (IRLS).  At 
convergence, the GM-estimator may be written as: 
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෡ீெߚ                                                      ൌ ሺܺᇱܹܺሻିଵ  ܺᇱܹ(14)                                                ݕ 
where in this case  the diagonal elements of W are the weights wi  defined as: 
௜ݓ                                                         ൌ టሾሺ௬೔ି௫೔

ᇲఉ෡ಸಾ ሻ గ೔௦ൗ ሿ
ሺ௬೔ି௫೔

ᇲఉ෡ಸಾ ሻ గ೔௦ൗ
                                                  (15) 

GM-estimators may have high breakdown point if we obtain appropriate initial estimators. 
Birch (1980) pointed out that a good starting value is always important in an iterative 
scheme. Two of the main existing GM-estimators which are called GM1 and GM6 
according to Wilcox (2005) will be discussed in this paper. The first one, GM1, is due to 
Schweppe introduced in Handshin et al. (1975). This estimator has defined the ߨ-weight 
function which contains a square root function of the diagonal elements of the hat matrix; 
ܪ ൌ ܺሺ்ܺܺሻିଵ்ܺ. The initial estimator was obtained from the least squares method and 
߬̂ ൌ 1.48 ሾ݉݁݀݅ܽ݊ ݐݏ݁݃ݎ݈ܽ ݄݁ݐ ݂݋ሺ݊ െ  ௜|ሿ is recommended as the scaleݎ| ݄݁ݐ ݂݋ሻ݌
estimator. The final estimate is obtained using fully iterated reweighted least squares where 
the weight function comes from the following equation: 

௜ݓ                                                           ൌ ඥଵି௛೔೔
௘೔

߰ ൬ ௘೔

ඥଵି௛೔೔
൰                                              (16) 

where ݁௜ ൌ ௜ݎ ߬̂⁄  and ߰ is the Huber function with tuning constant equal to  2ඥሺ݌ ൅ 1ሻ/݊ . 
In fact, this GM-estimator has bounded influence while its finite-sample break down point is 
only 2/n. Hence, it can handle one outlier, but two outliers might destroy it. The first GM-
estimator (GM6) with high asymptotic efficiency for the normal model, high breakdown 
nearly equal to 50% and bounded influence was proposed by Coakley and Hettmansperger 
(1993). To overcome the limitation of Schweppe’s method in using OLS as initial estimator, 
Coakley and Hettmansperger (1993) postulated another method, GM6. The method consists 
of the high breakdown LTS estimator as initial estimator and LMS scale estimate as 
߬̂ ൌ 1.4826ሺ1 ൅ 5/ሺ݊ െ  ௜ is residual of LTS method. A one stepݎ ௜| whereݎ|݊ܽ݅݀݁ܯሻሻ݌
Newton Raphson has been used as convergence approach. More formally, letting ߚመ଴ be the 
LTS estimator, this estimator can be derived from: 
መ௖௛ߚ                                                 ൌ መ଴ߚ ൅ ሺݔᇱݔܤሻିଵݔᇱܹ߰ሺݎ௜ ሺݓ௜߬̂ሻ⁄ ߬̂ሻ                            (17) 
where ݓ ൌ ݀݅ܽ݃ሺݓ௜ሻ and ݓ௜ ൌ min ሼ1, ሾݔ଴.ଽହ,௣

ଶ ௜ܦܴ
ଶ⁄ ሿሽ where 

ଶܦܴ                                                 ൌ ሺݔ െ ݉௫ሻሖିܥଵሺݔ െ ݉௫ሻ                                           (18) 
and the quantities ݉௫ and ܥ are the minimum-volume ellipsoid (MVE) estimators of 
location and scale (Rousseeuw and van Zomeren ,1990). Moreover, ߰ᇱሺݔሻ is the derivative 
of Huber’s ߰ and ܤ ൌ ݀݅ܽ݃ ߰ᇱሺݎ௜ ߬̂⁄  ௜ሻሻ. They suggested using the tuning constant equal toݓ
1.345 in Huber’s ߰- function.  
       We made a slight modification on GM6, by utilizing the S-estimator instead of the LTS 
estimator which has more asymptotic efficiency (Andersen, 2008 and Campbell et al., 1998)  
as initial estimator. Thus the ࣎ො for S-estimator residuals will be defined and the same 
convergence method of one step Newton Raphson will be employed with the same weight 
function as what is used in (18). We will present the merit of this new modified robust 
method by real data set and simulation study.  
     One of the most practical robust methods is the MM-estimators which was first proposed 
by Yohai (1987). These estimators combine high breakdown value estimators (50%) and M– 
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estimators which have high efficiency (approximately 95% relative to OLS under the Gauss-
Markov assumptions). The MM-estimators in the name refers to the fact that more than one 
M-estimation procedure is used to calculate the final estimates. For more information about 
the procedure which is employed in this estimator, one can refer to Yohai (1987) and 
Andersen (2008). 
     To compare the mentioned robust regression methods, a new indicator based on the 
distance of robust weight vectors to normal curvature of the likelihood displacement 
direction can be defined. Two simple distance measures that can be used in this situation are 
the angle and chord distance. The chord distance is defined as the length of the chord 
between two vectors of unit length which is the same for normalized and original vectors. 
Moreover, for normalized vectors the chord and Euclidian distances are the same (Causton, 
2003 and Timm, 2002). Eigenvector ݈௠௔௫ associated with ܥ௠௔௫ indicates how to perturb the 
postulated model to obtain the greatest change in likelihood displacement. This is the most 
important diagnostics which comes from this approach (Cook, 1986). The larger the 
absolute value of the i-th element of ݈௠௔௫, the more influential the i-th observation. The 
most important aim of any robust method is to down weight the influential points. Hence, 
the vector ݑ ൌ ௜ݑ ௜ with componentsݑ ൌ ௜ݓ ԡݓԡ⁄  of any robust method can be used to 
determine the influential points according to that specific robust method. Any method which 
has given less weight to the i-th influential point will have smaller value of corresponding 
 ௜ can be computed by theݑ ௜. Hence, distance of two normalized vectors of ݈௠௔௫ andݑ
Euclidean distance between these two normalized vectors (Timm, 2002). We define Distance 
to Maximum Normal Curvature Direction (DMNCD) as an Euclidean distance: 

ܦܥܰܯܦ ൌ ඥ∑ ሺݑ௜ െ ݈୫ୟ୶ ௜ሻଶ௡
௜                                           (19) 

where ݑ௜ is the i-th component of ݑ . Consequently, any of the robust methods with larger 
DMNCD will make more perturbation in parameter estimation. Larger DMNCD value 
suggests that the robust estimates are further from the OLS estimates and this may not be 
desirable.  Hence, DMNCD will let researcher know how far one is from OLS method. 
 
 
4 Application to a Published Clinical Trial 

 
Narula et al. (1999) used ILD data set which designed to verify the association between 
objective indicators of lung damage and severity of functional impairment in Interstitial 
Lung Disease (ILD) patients where ILD refers to a diffuse inflammatory process that occurs 
predominantly within the interstitial spaces and supporting structures of a lung. In these 
data, specimens were obtained by retrospective review of the medical and pathological 
records and biopsies of 24 patients with ILD whom were selected from the file cases of open 
chest lung biopsies of Surgical Pathology Service of the teaching hospital of Faculdade de 
Medicina da Universidade de Sao Paulo. For this set of patients, the pulmonary function 
measurements were gathered within 30 days before the biopsy. This data set consists 14 
explanatory variables (see appendix of Narula et al. (1999) for the data set and the 
description of all explanatory variables) while response variable is FVC (forced vital  
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capacity). The model and all the regression coefficients with all explanatory variables were 
not significant at the 5% level which may have been the result of multicollinearity. To select 
a significant model, a stepwise least squares regression (see Draper and Smith, 1998 and 
Montgomery and Peck, 1982) has been employed. The resulting significant model contains 
AGE (in years), EPIT (epithelial cells), that is area fraction of epithelial cells/10000 μm2 of 
alveolar tissue), CELL (cellular infiltration, which is total cellularity/10000 μm2 of alveolar 
tissue) and HONEY (honeycombing, which is a score of zero to four honeycombing). This 
data set has two outliers (observations 11 and 15) and one high leverage point according to 
Narula et al. (1999). It is noticeable that Narula et al. (1999) didn’t mention which case is 
the leverage point. 
Statistical Package S-PLUS (Version 8) is used in all different stages of analyzing this data 
set. Robust estimators can be obtained from Robust library of this package while, GM-
estimators are not yet available However, easy-to-use S-PLUS functions are supplied by 
Wilcox (2005); as an example bmreg (for Schewppe’s GM-estimator) and chreg functions 
(for Coakley and Hettmansperger, 1993).  
Index plot of OLS standardized residuals and hat matrix are presented in Figure 1. The OLS 
standardized residuals diagnoses two outlier cases 11 and 15. Moreover, hat matrix can 
detect cases 3 and 23 as leverage points. While these two high leverage points doesn’t have 
large residuals and it seems that they are good leverage points. 

 
Figure 1. Index plot of OLS standardized residuals and hat matrix 
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Index plot of local influence measures; CDM, HM, LM, PM, NCM and SM are illustrated in 
figure 2. It is worth to mention that the cutoff point of CDM is set to be 4 ሺ݊ െ ݌ െ 1ሻ⁄  
(Anderson, 2008) while a robust non-parametric cutoff point of ݊ܽ݅݀݁ܯ ሺߠ௜ሻ ൅  ௜ሻߠሺ݀ܽܯ3
can be defined for all the other measures in order to make these measures more comparable. 
      According to the Figure 2, the CDM can recognize the case 15 as influential point while 
two other influential points of 11 and 23 are somehow far away from the other observations 
in the data set whilst the NCM could identify only outlier cases of 11 and 15. Both HM and 
LM can identify 4 influential cases 3, 11, 15and 23 thus these points needs more 
consideration.  Moreover PM is able to diagnose three cases 11, 
15 and 23 similar to the claim of Narula et. al. (1999). More importantly, SM couldn’t find 
any influential points due to its sensitivity to large high leverage with large residuals (Pena, 
2005). Consequently, according to these classical influential diagnostics measures, this data 
set contains four influential observations. Since all these diagnostics are affected by outliers, 
thus, robust diagnostics should be applied in this data set. 

 
Figure 2. Index plot of Cook Distance (CDM), Hadi’s diagnostics Measure (HM) and four 
diagnostics measures of li(i) (quasi likelihood displacement measure, LM), pi (standardized 

arc-length  measure, PM), Ci (normal curvature measure, NCM) and Si measure (SM) 
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To explore more about the outliers in this data set, the robust diagnostic methods should be 
considered. For example, Rousseeuw and van Zomeren (1990) proposed an influence plot of the 
robust residuals against robust distances which detects multiple outliers more accurately than the 
traditional methods (see also Cook and Hawkins, 1990, Ruppert and Simpson,1990 and 
Kempthorne and Mendel,1990 for debate about this topic). Robust residuals which come from 
the highly resistant LMS or LTS regressions are often employed. The absolute robust residuals 
which are more than 2.5 will be considered as vertical outliers. One of the vital diagnostics 
methods of high leverage points is robust Mahalanobis distance which is introduced in 
equation (18). The points with ܴܦଶ more than ݔሺ଴.ଽହ,௣ሻ

ଶ  may consider as high leverage points 
଴.ଽହ,ସݔ)

ଶ ൌ 9.49  for our application). Rousseeuw and van Zomeren’s regression diagnostic plot 
for ILD data is shown in Figure 3. Plotted against the square root of robust Mahalanobis 
distance based on MVE is the standardized residuals from a LTS regression (Willcox, 2005). 
Robust distance indicates that cases 3, 4, 22 and 23 are good high leverage points. 
Moreover, the robust residuals suggest that two cases (11 and 15) are outliers.   
    To investigate the effect of these two outliers in the parameter estimates of the model, 
these estimates for the whole data set and without outliers 11 and 15 are presented in Table 
I. For data without outliers, the AGE effect decreases after deleting these two outliers from 
the data set (p-value increases from 0.018 to 0.028). 
 

 
 

Figure 3. Plot of standardized Robust Residuals (from LTS fit) against Robust Mahalanobis 
Distance based on MVE for ILD data set 
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In view of the fact that this data set has two outliers, utilizing robust methods for estimating 
the parameter of the fitted model is necessary. Thus, different robust methods such as L1-
norm, LTS, LMS, MM, GM6 and modified GM6 have been fitted to this data set. Since in 
this data set, the sample size, n, is small, the Asymptotic Standard Errors (ASEs) which has 
been defined by Draper and Smith, 1998 are not reliable (see Huber, 2004). Thus 
bootstrapping is an alternative way to obtain the standard errors for robust regression 
estimators. There are two different bootstrapping ways which are random-X and fixed-X 
bootstrapping (for more details, one can refer to Anderson, 2008). Since the explanatory 
variables are assumed to be fixed in this data set, fixed-X bootstrapping has been used and 
the results are presented in table II. The coefficient estimation and fixed-X bootstrapping 
standard error of the residuals for all of the selected robust regression techniques are listed in 
Table II. Each of these methods has made some changes in the coefficients through down 
weighting some of the influential points. It is interesting to note AGE and EPIT are 
insignificant according to LMS parameter estimates. Furthermore, AGE is not significant by 
 ଵ-norm, LMS and LTS. Thus these three robust methods are going so far from the resultsܮ
of OLS estimates and also OLS without outliers which is not desirable. However, AGE is 
significant (on 5% level) for the other robust methods. Hence, L1- norm, LMS and LTS 
estimators will be omitted in our further analysis. 

Table I. Parameter estimates (standard errors) of resulting significant model for 
 ILD data set with and without outliers 

Method INTERCEPT AGE EPIT CELL HONEY 

OLS with all observations 46.654 
(11.280) 

0.614 
(0.236) 

-0.061 
(0.017) 

107.733 
(37.919) 

-10.639 
(1.936) 

OLS without outliers 11 and 15 
 

54.841 
(8.196) 

 

0.438 
(0.182) 

 

-0.064 
(0.012) 

 

112.576 
(27.294) 

 

-10.485 
(1.459) 

 
 

Table II. Parameter estimates and bootstrap standard deviations of  
different robust methods for ILD data set 

                                    Robust Methods 

Parameter L1-norm LTS LMS M 
Par. Est. Boot.SE Par. Est. Boot.SE Par. Est. Boot.SE Par. Est. Boot.SE 

INTERCEPT 56.555 9.803 60.735 11.607 24.651 21.0161 53.301 9.965 
AGE 0.423 0.279 0.294 0.231 0.634 0.361 0.500 0.209 
EPIT -0.069 0.016 -0.065 0.020 -0.044 0.040 -0.065 0.015 
CELL 116.673 35.907 124.266 42.510 181.415 90.040 110.468 33.715 
HONEY -10.392 1.670 -10.887 1.897 -9.794 3.759 -10.885 1.602 
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                                     Robust Methods(continued ) 

Parameter MM GM1 GM6 Modified GM6 
Par. Est. Boot.SE Par. Est. Boot.SE Par. Est. Boot.SE Par. Est. Boot.SE 

INTERCEPT 51.681 12.746 54.845 9.504 52.650 10.927 52.268 12.742 
AGE 0.619 0.227 0.446 0.199 0.485 0.230 0.478 0.232 
EPIT -0.067 0.022 -0.066 0.015 -0.062 0.020 -0.062 0.025 
CELL 101.491 48.972 112.809 33.484 111.747 50.093 113.980 50.322 
HONEY 
 

-11.547 
 

1.838 
 

-10.293 
 

1.635 
 

-10.676 
 

2.072 
 

-10.576 
 

1.817 
 

 
To explore more about the robust method which outperforms the others, the use of DMNCD 
may be an alternative approach. This is calculated from equation (19). The values of this 
statistics are given in Table III for different robust methods. As already been mentioned, this 
data set doesn’t consist of any high leverage points with considerably large residuals.  The 
results of Table III reveal that the MM-estimators have the largest DMNCD value compared 
to the other robust methods and one may wrongly conclude that GM-estimators do not 
perform better than MM-estimators and specially M-estimator. However, GM-estimators 
may consider all high leverage points and outliers by down weighting them without going 
far from the null model (having weight for all individuals equal to one) and so, for this data 
set, the use of GM6 or modified GM6 is suggested. 
 

Table III. Distance to Maximum Normal Curvature Direction (DMNCD) for  
        different robust regression methods for ILD data set 

 

Robust Methods DMNCD 

M-estimator 1.124 
MM-estimator 1.247 

GM1 1.119 
GM6 1.054 

Modified GM6 1.067 
 
     

 5  Simulation Study 
 

    A Monte Carlo simulation study is carried out to confirm the result of the numerical 
example. Consider a linear regression model ݕ ൌ 1 ൅ 2 ൈ ଵܺ െ 1 ൈ ܺଶ ൅  where  ߝ

௜ܺ~ܰሺ0,1ሻ  ݂ݎ݋ ݅ ൌ 1,2 and ߝ comes from a standard normal, i.e  N(0,1) and two heavy  
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tailed distribution, the  Standard skew-normal distribution when shape parameter is equal to 
4 ( SN(4), see Azzalini, 1985)  and T-distribution with 3 degrees of freedom. The moderate 
sample size n=100 with 10000 replications has been used. The range of contamination is 
fixed to be 10 % of sample size in both ଵܺ-and ܻ-direction. The contamination has been 
obtained by substituting the clean data with 2 times the maximum value of the generated 
data from the standard normal distribution. 
Table IV consists of DMNCD of different robust methods. The same pattern as the analysis 
of our data set can be seen in the Table IV. Since the M-estimators are not robust to high 
leverage points, we are not going to discuss them, here. The GM6 and the modified GM6 
have less DMNCD than those of MM and GM1. Thus, as it mentioned, the GM6, and the 
modified GM6 estimator doesn’t go so far from the OLS estimates while they take into 
consideration the effects of outliers and high leverage points. 
    To see the efficiency of our new proposed method comparing to the other robust methods, 
the Mean Square Error (ܧܵܯ) for the estimation of parameters by different robust regression 
methods are computed. The ܧܵܯ of the estimator ߚመ  of parameter ߚ is defined as: 

ఉ෡ܧܵܯ ൌ
∑ ሺ ߚ െ መ௠ߚ

௜ୀଵ ሻଶ

݉  
where m is the number of simulation replications and ߚ is the true value of the simulated 
model. Table V exhibits the ܧܵܯ of the three parameter estimates where 10% contamination 
exists in ଵܺ-and  ܻ-directions. According to this table, comparing the M-estimator, MM-
estimators, GM1 and GM6 gives the conclusion that M-estimators give the largest MSE for 
estimating ߚଵ which makes these estimators unacceptable in our situations. The MM-
estimator, the GM6 and the modified GM6 have acceptable MSEs for estimation of the 
parameters in all three different error distributions, normal and heavy-tailed distributions. 
Whereas, GM1 cannot be trusted when data generating process has heavy tail or is skewed.  
The simulation results reveal that the GM6 and the modified GM6 are reasonably and gives 
MSEs close to each other. 
 

Table IV. Distance to Maximum Normal Curvature Direction (DMNCD) 
of different robust methods when 10% contamination exists in ଵܺ- and  ܻ- direction 

 
 

 
 
 
 
 
 
 

 
 
 
 

Robust methods N(0,1) T(3) SN(4) 
DMNCD DMNCD DMNCD 

M 1.000 1.073 1.091 
MM 1.198 1.216 1.189 
GM1 1.181 1.220 1.235 
GM6 1.020 1.095 1.166 
Modified GM6 1.022 1.106 1.168 
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Table V. Mean Square Error (MSE) for estimation of the parameter in different robust 
regression methods where 10% contamination exists in ଵܺ- and  ܻ- direction 

 
 

  
Coefficient Estimation 
 
 

Error Distribution 
N(0,1) 

M MM GM1 GM6 Modified GM6 
 ଴ 0.062 0.016 0.045 0.011 0.019ߚ
 ଵ 0.426 0.06 0.295 0.068 0.086ߚ
 ଶ 0.045 0.06 0.043 0.015 0.03ߚ

Coefficient Estimation  T(3) 
M MM GM1 GM6 Modified GM6 

 ଴ 0.299 0.058 0.142 0.055 0.047ߚ
 ଵ 2.157 0.157 0.694 0.352 0.169ߚ
 ଶ 0.068 0.087 0.043 0.034 0.041ߚ

Coefficient Estimation SN(4) 
M MM GM1 GM6 Modified GM6 

 ଴ 0.830 0.457 0.718 0.601 0.507ߚ
 ଵ 0.428 0.021 0.336 0.008 0.020ߚ
 ଶߚ

 
0.010 

 
0.005 

 
0.007 

 
0.003 

 
0.005 

 
 
 
6 Concluding Remarks 

 
Least squares estimation is the predominant technique for regression analysis in most of different 
fields such as medical studies due to its universal acceptance, elegant statistical properties, and 
computational simplicity. Unfortunately, the statistical properties that make least squares so powerful 
depend on several assumptions that are often violated using real data. The normally distributed 
errors assumption, which enables tests of regressor significance, is invalid if only a single outlying 
observation occurs in the data. Not only is detection of these influential points important but also 
utilizing  regression methods which are less sensitive to these points is more important in 
regression analysis. Among different diagnostics of influential points such as local influence 
(which is a method to evaluate the influence of local departures from assumptions in the 
model) and robust based measures, robust diagnostics methods are more powerful to detect 
outliers accurately. Moreover, robust regression methods are more resistant to outliers than the 
method of least squares. The GM-estimators are robust estimators which guard against 
leverage points which are the outliers in the ܺ-direction, as well as the outliers in the ܻ-
direction. Several proposed GM-estimation methods exists in the literature. In this study, two of 
the most common methods of Schweppe (GM1) and Coakley and Hettmansperger (GM6) 
were compared. A modified version of the GM6 was also proposed. Normal curvature of  
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likelihood displacement is a very important concept which provides a general approach to 
study the problem of influence in this paper. To compare the robust regression methods, 
Distance to Maximum Normal Curvature Direction (DMNCD) was also introduced. The 
results of the conducted simulation indicate that our modified GM-estimator has the 
minimum DMNCD through down weighting outliers especially high leverage points. To 
verify our results, a clinical trial data set and a simulation study were performed.  The results 
of the real data agree reasonably well with the results of the simulation study that the 
performance of the GM6 and modified GM6 are equally good, robust in both x and y 
directions and outperform other robust estimators.  Hence, the modified GM6 should 
provide a robust alternative to the well known GM6 estimator. 
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