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Output-feedback Stabilization for Stochastic High-order

Nonlinear Systems with a Ratio of Odd Integers Power

LIU Liang1,2 DUAN Na1,2 XIE Xue-Jun1

Abstract This paper investigates the problem of output-feedback control for a class of stochastic high-order nonlinear systems with
a ratio of odd integers power. By extending the adding a power integrator technique, introducing a new rescaling transformation, and
choosing an appropriate Lyapunov function, an output-feedback controller is constructed to render the closed-loop system globally
asymptotically stable in probability and the output can be regulated to the origin almost surely. Furthermore, we address the
problem of inverse optimal stabilization in probability. A simulation example is provided to show the effectiveness of the design.
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Consider the following stochastic high-order nonlinear
systems described by

dη1 = ηr
2dt + ψψψ1(η1)

Tdωωω

dη2 = ηr
3dt + ψψψ2(η1, η2)

Tdωωω

...

dηn = υrdt + ψψψn(η1, · · · , ηn)Tdωωω

y = η1 (1)

where ηηη = (η1, · · · , ηn)T ∈ Rn, υ ∈ R, and y ∈ R are the
system state, input, and output, respectively. η2, · · · , ηn

are unmeasurable. r ∈ R∗ = {s ∈ R : s = q/p ≥ 1 for any
positive odd integers p, q}. ωωω is an m-dimensional standard
Wiener process defined on a probability space (Ω,F , P )
with Ω being a sample space, F being a filtration, and P
being a probability measure. The mappings ψψψi : Ri → Rm,
i = 1, · · · , n, are assumed to be at least C1 functions with
ψψψi(0, · · · , 0) = 0.

When r = 1, system (1) reduces to the well-known nor-
mal form, whose design of globally asymptotically stable
(GAS) output-feedback controller design was firstly given
by Deng and Krstić in [1]. Since then, by adopting differ-
ent approaches, much research work has been focused on
the output-feedback for more general stochastic nonlinear
systems under various structures or growth conditions, e.g,
[2−4] and references therein.

For the case of r being positive odd integer and r > 1,
similar to its deterministic counterpart in [5] and the re-
lated papers, some interesting features of (1) are that
the Jacobian linearization of the system is neither con-
trollable nor feedback linearizable, so the existing design
tools are hardly applicable to (1). Reference [6] firstly
considered this class of systems. Subsequently, [7−11] fur-
ther addressed the different control problems for more gen-
eral stochastic high-order nonlinear systems with different
structures. All the results are achieved under the assump-
tion that the power of stochastic nonlinear system is posi-
tive odd integer. While for more general systems in which
system′s power is only a ratio of odd integers (i.e., r ∈ R∗),
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to the best of authors′ knowledge, the problem of output-
feedback stabilization has not yet been considered.

In this paper, extending the adding a power integrator
technique, introducing a new rescaling transformation, and
choosing an appropriate Lyapunov function, we develop a
systematic design algorithm that achieves a smooth output-
feedback controller, which ensures that the equilibrium at
the origin of the closed-loop system is globally asymptot-
ically stable (GAS) in probability and the output can be
regulated to the origin almost surely. Based on the result,
we further address the problem of inverse optimal stabiliza-
tion in probability.

Notations. The following notations are to be used
throughout the paper. R+ denotes the set of all nonnega-
tive real numbers, and Rn denotes the real n-dimensional
space. x̄xxi = (x1, · · · , xi)

T, x̄xxn = xxx. For a given vector
or matrix X, XT denotes its transpose, tr{X} denotes its
trace when X is square, and |XXX| is the Euclidean norm
of a vector XXX. Ci denotes the set of all functions with
continuous i-th partial derivatives. K denotes the set of
all functions: R+ → R+, which are continuous, strictly
increasing and vanishing at zero; K∞ denotes the set of
all functions which are of class K and unbounded; KL de-
notes the set of all functions β(s, t): R+ × R+ → R+,
which are of K for each fixed t and decrease to zero as
t → ∞ for each fixed s. For a class K∞ function γ whose
derivative exists and is also a class K∞ function, `γ de-
notes the transform `γ(s)= s(γ̇)−1(s)−γ((γ̇)−1(s)), where

(γ̇)−1(s) stands for the inverse function of dγ(s)
ds

for any

variable s, LfffV (xxx) = ∂V
∂xxx

fff(xxx).

1 Mathematics preliminaries

Consider the following stochastic nonlinear system

dxxx = fff(xxx)dt + g(xxx)Tdωωω, xxx(000) = xxx0 ∈ Rn (2)

where xxx ∈ Rn is the state of the system and ωωω is an
m-dimensional standard Wiener process defined on the
complete probability space (Ω,F , P ). The Borel measur-
able functions fff : Rn → Rn and gT : Rn → Rn×m are
locally Lipschitz in xxx ∈ Rn.

The following conclusions will be used throughout the
paper.

Definition 1[12]. For any given V (xxx) ∈ C2 associated
with stochastic nonlinear system (2), the differential oper-
ator L is defined as

LV (xxx) =
∂V

∂xxx
fff(xxx) +

1

2
tr

{
g(xxx)

∂2V

∂xxx2
g(xxx)T

}
(3)



No. 6 LIU Liang et al.: Output-feedback Stabilization for Stochastic High-order · · · 859

Definition 2[12]. For the stochastic nonlinear system
(2) with fff(000) = 000 and g(000) = 0, the equilibrium xxx(t) = 000 of
(2) is GAS in probability if for any ε > 0, there exists a class
KL function β(·, ·) such that P

{|xxx(t)| < β(|xxx0|, t)
} ≥ 1− ε

for any t ≥ 0 and xxx0 ∈ Rn \ {000}.
Lemma 1[12]. Consider the stochastic nonlinear system

(2). If there exist a C2 function V (xxx), class K∞ functions
α1 and α2, constants c1 > 0, c2 ≥ 0, and a nonnegative
function W (xxx) such that α1(|xxx|) ≤ V (xxx) ≤ α2(|xxx|) and
LV ≤ −c1W (xxx) + c2, then

1) For (2), there exists an almost surely unique solution
on [0,∞);

2) When c2 = 0, fff(000) = 000, g(000) = 0, and W (xxx) =
α3(|xxx|), where α3(·) is a class K function, the equilibrium
xxx=000 is GAS in probability, and P {limt→∞ |xxx(t)| = 0}= 1.

Lemma 2[13]. For x ∈ R, y ∈ R, and p ≥ 1 is a
constant, we have |x + y|p ≤ 2p−1|xp + yp|, if p ∈ R∗, then
|x− y|p ≤ 2p−1|xp − yp|.

Lemma 3[14]. Let c, d be positive constants. For
any positive number γ > 0, then |x|c|y|d ≤ c

c+d
γ|x|c+d +

d
c+d

γ−
c
d |y|c+d.

Lemma 4[11]. If x1, · · · , xn, p are positive real numbers,
then (x1 + · · ·+ xn)p ≤ max{np−1, 1}(xp

1 + · · ·+ xp
n).

Lemma 5[13]. Let p ∈ R∗ and x, y be real-valued
functions. For a constant c > 0, one has |xp − yp| ≤
p|x− y|(xp−1 + yp−1) ≤ c|x− y||(x− y)p−1 + yp−1|.

Lemma 6. If x, y are any real numbers and p ∈ R∗,
then −(x− y)(xp − yp) ≤ − 1

2p−1 (x− y)p+1.
Proof. Since p ∈ R∗, from Lemma 2, one has

|x− y|p ≤ 2p−1|xp − yp| (4)

Multiplying inequality (4) on both sides by |x− y|, we ob-
tain

|x− y|p+1 ≤ 2p−1|x− y||xp − yp| (5)

We consider two cases.
1) When x− y > 0, (5) becomes (x− y)p+1 ≤ 2p−1(x−

y)|xp − yp|. It is easy to prove that for any x ∈ R, p ∈
R∗, f(x) = xp is a increasing function, hence xp ≥ yp,
from which (x− y)p+1 ≤ 2p−1(x− y)(xp − yp) holds.

2) By the symmetry property, it is similar to deduce
that the inequality (x− y)p+1 ≤ 2p−1(x− y)(xp − yp) also
holds for x − y < 0. Combining 1) with 2) leads to the
inequality. ¤

Consider the following stochastic nonlinear system

dxxx = f̂ff(xxx)dt + ĝ1(xxx)dωωω + ĝgg2(xxx)urdt, xxx0 ∈ Rn (6)

where xxx and ωωω have the same definitions as those in (2), f̂ff :
Rn → Rn, ĝ1 : Rn → Rn×m, and ĝgg2 : Rn → Rn are some
Borel measurable functions, and u is the input. We give
the result on the problem of inverse optimal stabilization
in probability.

Lemma 7[7]. Consider the control law

u = α(xxx) =

−
[
R(xxx)−1(Lĝgg2V )T

`γ(|(Lĝgg2V )R(xxx)−
1
2 |)

|(Lĝgg2V )R(xxx)−
1
2 |2

] 1
r

(7)

where V (xxx) is a Lyapunov function candidate, γ(·) is a
class K∞ function whose derivative exists and is also a class
K∞ function, and R(xxx) = R(xxx)T > 0 is a matrix-valued
function. If the control law (7) achieves GAS in probability

for (6) with respect to V (xxx), then the control law

u∗ = α∗(xxx) =

−
[

β

2
R(xxx)−1(Lĝgg2V )T

(γ̇)−1(|(Lĝgg2V )R(xxx)−
1
2 |)

|(Lĝgg2V )R(xxx)−
1
2 |

] 1
r

(8)

solves the problem of inverse optimal stabilization in prob-
ability for (6) by minimizing the cost function

J(u) = E

{∫ ∞

0

[
l(xxx) + β2γ

(
2

β
|R(xxx)

1
2 ur|

) ]
dτ

}
(9)

where l(xxx) = 2β[`γ(|(Lĝgg2V )R(xxx)−
1
2 |) − Lf̂ffV −

1
2
tr{ĝ1(xxx)T ∂2V (xxx)

∂xxx2 ĝ1(xxx)}] + β(β − 2)`γ(|(Lĝgg2V )R(xxx)−
1
2 |),

β ≥ 2.

2 Output-feedback controller design

The objective of this paper is to design an output-
feedback controller for system (1) such that the closed-loop
system is GAS in probability at the origin, the output can
be regulated to the origin almost surely, and the controller
is also optimal in probability.

In this paper, we need the following assumption.
Assumption 1. Given r defined in (1), there exists a

nonnegative constant a such that

|ψψψi(η1, · · · , ηi)| ≤ a(|η1|
1+r
2 + |η2|

1+r
2 + · · ·+ |ηi|

1+r
2 )

Remark 1. To obtain a linear smooth state-feedback
controller and use the certainty equivalence principle in [15]
to achieve an implementable controller, Assumption 1 is
necessary.

Before giving the design of controller, we first introduce
a new rescaling transformation

η1 = x1, ηi = N
1
r
+···+ 1

ri−1 xi, i = 2, · · · , n

υ = p0N
1
r
+···+ 1

rn u (10)

with which (1) can be expressed as

dx1 = Nxr
2dt + ϕϕϕ1(x1)

Tdωωω

dx2 = Nxr
3dt + ϕϕϕ2(x̄xx2)

Tdωωω

...

dxn = Npr
0u

rdt + ϕϕϕn(x̄xxn)Tdωωω

y = x1 (11)

where N ≥ 1 and p0 > 0 are rescaling factors to be assigned

later, ϕϕϕ1 = ψψψ1, ϕϕϕi = ψψψi

N
1
r

+···+ 1
ri−1

, i = 2, · · · , n. Using

N ≥ 1 and Assumption 1, it is easy to deduce that

|ϕϕϕ1| = |ψψψ1| ≤ a|η1|
1+r
2 = a|x1|

1+r
2

|ϕϕϕi| ≤ aN
1
2− 1

2ri−1
(
|x1|

1+r
2 + · · ·+ |xi|

1+r
2

)
(12)

where i = 2, · · · , n.
The design procedure of output-feedback controller can

be divided into two steps.

2.1 State-feedback design

In this subsection, under the assumption that all the
states are available for measurement, one will construct a
partial state-feedback linear controller.
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Step 1. Introduce ξ1 = x1 and construct the first Lya-
punov function V1(ξ1) = 1

4
p1ξ

4
1 , where p1 > 0 is a constant.

With the help of (3), (11), (12), and N ≥ 1, it can be veri-
fied that

LV1(ξ1) = Np1ξ
3
1xr

2 +
3

2
p1ξ

2
1tr{ϕϕϕ1(x1)ϕϕϕ1(x1)

T} ≤

N

(
p1ξ

3
1xr

2 +
3

2
a2p1ξ

3+r
1

)
(13)

Choosing the first smooth virtual controller

x∗2 = −b1ξ1, b1 =

(
c1,1

p1
+

3

2
a2

) 1
r

, c1,1 > 0 (14)

leads to

LV1(ξ1) ≤ N(−c1,1ξ
3+r
1 + p1ξ

3
1(xr

2 − x∗r
2 )) (15)

Step iii (iii = 222, · · · ,nnn). Suppose that at step i− 1, there
exist a set of virtual controllers x∗1, · · · , x∗i defined by

x∗1 = 0, ξ1 = x1 − x∗1 = x1

x∗k = −bk−1ξk−1, ξk = xk − x∗k = xk + bk−1ξk−1 (16)

such that the (i − 1)-th Lyapunov function Vi−1(ξ̄ξξi−1) =
1
4

∑i−1
j=1 pjξ

4
j satisfies

LVi−1(ξ̄ξξi−1) ≤
N

(
−∑i−1

j=1 ci−1,jξ
3+r
j + pi−1ξ

3
i−1(x

r
i − x∗r

i )
)

(17)

where k = 2, · · · , i, b1, · · · , bi−1 > 0 are designed parame-
ters and ci−1,j , pj , j = 1, · · · , i− 1, are positive constants.
We will prove that (17) still holds for Step i.

By (11) and (16), one has

dξi = N

(
xr

i+1 +

i−1∑

k=1

bi−1 · · · bkxr
k+1

)
dt +

(
ϕϕϕi(x̄xxi) +

i−1∑

k=1

bi−1 · · · bkϕϕϕk(x̄xxk)

)T

dωωω (18)

Consider the following Lyapunov function candidate

Vi(ξ̄ξξi) = Vi−1(ξ̄ξξi−1) +
1

4
piξ

4
i (19)

where pi > 0 is a constant. From (17) ∼ (19), it follows
that

LVi(ξ̄ξξi) ≤ N

(
−

i−1∑
j=1

ci−1,jξ
3+r
j + piξ

3
i xr

i+1 +

pi−1ξ
3
i−1(x

r
i − x∗r

i ) + piξ
3
i

i−1∑

k=1

bi−1 · · · bkxr
k+1 +

3

2
piξ

2
i

∣∣∣∣∣ϕϕϕi(x̄xxi) +

i−1∑

k=1

bi−1 · · · bkϕϕϕk(x̄xxk)

∣∣∣∣∣

2 )
(20)

Using (12), (16), and Lemmas 2 ∼ 5, one gets

pi−1ξ
3
i−1(x

r
i − x∗r

i ) ≤
(bi,i−1,1 + bi,i,1)ξ

3+r
i−1 + ρi,1ξ

3+r
i (21)

piξ
3
i

i−1∑
k=1

bi−1 · · · bkxr
k+1 ≤

bi,1,2ξ
3+r
1 + · · ·+ bi,i−1,2ξ

3+r
i−1 + ρi,2ξ

3+r
i (22)

3
2
piξ

2
i

∣∣∣∣ϕϕϕi(x̄xxi) +
i−1∑
k=1

bi−1 · · · bkϕϕϕk(x̄xxk)

∣∣∣∣
2

≤

bi,1,3ξ
3+r
1 + · · ·+ bi,i−1,3ξ

3+r
i−1 + ρi,3ξ

3+r
i (23)

where ρi,1, ρi,2, ρi,3, bi,i−1,1, bi,i,1, bi,1,2, · · · , bi,i−1,2, and
bi,1,3, · · · , bi,i−1,3 are positive constants. Choosing ci,1 =
ci−1,1 − bi,1,2 − bi,1,3 > 0, · · · ci,i−2 = ci−1,i−2 − bi,i−2,2 −
bi,i−2,3 > 0, ci,i−1 = ci−1,i−1 − bi,i−1,1 − bi,i,1 − bi,i−1,2 −
bi,i−1,3 > 0, and substituting (21) ∼ (23) into (20), one

has LVi(ξ̄ξξi) ≤ N(−∑i−1
j=1 ci,jξ

3+r
j + piξ

3
i (xr

i+1 − x∗r
i+1) +

piξ
3
i x∗r

i+1 +ρiξ
3+r
i ), where ρi = ρi,1 +ρi,2 +ρi,3 is a positive

real number, which together with the i-th smooth virtual
controller

x∗i+1 = −biξi, bi =

(
ci,i + ρi

pi

) 1
r

, ci,i > 0 (24)

lead to

LVi(ξ̄ξξi) ≤ N

(
−

i∑
j=1

ci,jξ
3+r
j + piξ

3
i (xr

i+1 − x∗r
i+1)

)
(25)

Step nnn. Consider the Lyapunov function candidate

Vn(ξ̄ξξn) = Vn−1(ξ̄ξξn−1) +
1

4
pnξ4

n (26)

where pn > 0 is an appropriate constant. By (11), (12),
(16), (25), and (26), one gets

LVn(ξ̄ξξn) ≤ N

(
−

n−1∑
j=1

cn,jξ
3+r
j + pnpr

0ξ
3
n(ur(x)− x∗r

n+1) +

pnpr
0ξ

3
nx∗r

n+1 + ρnξ3+r
n

)
(27)

where ρn, cn,j , j = 1, · · · , n − 1, are positive constants.

Choosing p0 = p
− 1

r
n and defining the n-th smooth virtual

control law

x∗n+1 = −bnξn, bn = (cn,n + ρn)
1
r , cn,n > 0 (28)

and by (27) and (28), one gets

LVn(ξ̄ξξn) ≤ N

(
−

n∑
j=1

cn,jξ
3+r
j + ξ3

n(ur − x∗r
n+1)

)
(29)

By (14), (16), (24), and (28), one gets the smooth state-
feedback control law

x∗n+1 = −bnξn = −(β1x1 + β2x2 + · · ·+ βnxn) (30)

where βi =
∏n

j=i bj , i = 1, · · · , n.

Remark 2. For general system (11), under the as-
sumption that x1, x2, · · · , xn are measurable, in the design
procedure of controller, we can only give the existence of
ρi,1, ρi,2, and ρi,3, i = 2, · · · , n, obtained by using Lem-
mas 2∼ 5 rather than their explicit definitions. While for
a practical example, by appropriately choosing design pa-
rameters, ρi,1, ρi,2, and ρi,3, i = 2, · · · , n, can be concretely
achieved; see Section 4 for details.
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2.2 Output-feedback design

Since (x2, · · · , xn) of (11) are unmeasurable, in this sub-
section, by constructing a reduced-order observer and us-
ing the certainty equivalence principle in [15], an output-
feedback controller is designed.

Introduce the unmeasurable variables

zi = xi − `i · · · `2x1, i = 2, · · · , n (31)

where the parameters `2, · · · , `n ≥ 1 are gain constants to
be determined later. From (31) and (11), it follows that

dz2 = N(xr
3 − `2x

r
2)dt + (ϕϕϕ2(x̄xx2)− `2ϕϕϕ1(x1))

Tdωωω

...

dzn−1 = N(xr
n − `n−1 · · · `2xr

2)dt +

(ϕϕϕn−1(x̄xxn−1)− `n−1 · · · `2ϕϕϕ1(x1))
Tdωωω

dzn = N(pr
0u

r − `n · · · `2xr
2)dt +

(ϕϕϕn(x̄xxn)− `n · · · `2ϕϕϕ1(x1))
Tdωωω (32)

In view of (32), one can construct the (n− 1)-dimensional
observer as follows

˙̂z2 = N(ẑ3 + `3`2x1)
r −N`2(ẑ2 + `2x1)

r

...
˙̂zn−1 = N(ẑn + `n · · · `2x1)

r −N`n−1 · · · `2(ẑ2 + `2x1)
r

˙̂zn = Npr
0u

r −N`n · · · `2(ẑ2 + `2x1)
r (33)

It is obvious that the reduced-order observer (33) is imple-
mentable, and the estimate x̂i of xi can be obtained by

x̂i = ẑi + `i · · · `2x1, i = 2, · · · , n (34)

Let ei = xi − x̂i = zi − ẑi, i = 2, · · · , n. By (32) and (33),
the error dynamics are given by

de2 = N((xr
3 − x̂r

3)− `2(x
r
2 − x̂r

2))dt +

(ϕϕϕ2(x̄xx2)− `2ϕϕϕ1(x1))
Tdωωω

...

den−1 = N((xr
n − x̂r

n)− `n−1 · · · `2(xr
2 − x̂r

2))dt +

(ϕϕϕn−1(x̄xxn−1)− `n−1 · · · `2ϕϕϕ1(x1))
Tdωωω

den = −N`n · · · `2(xr
2 − x̂r

2)dt +

(ϕϕϕn(x̄xxn)− `n · · · `2ϕϕϕ1(x1))
Tdωωω (35)

Using the certainty equivalence principle, from (30) one
achieves the implementable controller

u = −bnξ̂n = −(β1x1 + β2x̂2 + · · ·+ βnx̂n) (36)

To estimate ξ3
n(ur − x∗r

n+1) in (29), we first use Lemmas
3∼ 5 to develop the following estimation.

|ξ3
n(ur − x∗r

n+1)| ≤ ĉ|ξn|3
n∑

i=2

βi|ei|
(

n∑
i=2

er−1
i +

n∑
i=1

ξr−1
i

)
≤

n∑
i=1

ĉn,iξ
3+r
i +

n∑
i=2

ρ̂ie
3+r
i (37)

where ĉ, ρ̂i, i = 2, · · · , n, and 0 < ĉn,i < cn,i are constants
independent of `2, · · · , `n, N . Substituting (37) into (29),
one has

LVn(ξ̄ξξn) ≤ N

(
−

n∑
i=1

(cn,i − ĉn,i)ξ
3+r
i +

n∑
i=2

ρ̂ie
3+r
i

)
(38)

To determine the observer gains `2, · · · , `n, one considers
the change of coordinates:

ẽ2 = e2, ẽ3 = e3 − `3e2, · · · , ẽn = en − `nen−1 (39)

By (39) and Lemma 4, (38) can be represented as

LVn ≤ N

(
−

n∑
i=1

(cn,i − ĉn,i)ξ
3+r
i + ĉ2(`3, · · · , `n)ẽ3+r

2 +

· · ·+ ĉn−1(`n)ẽ3+r
n−1 + ĉnẽ3+r

n

)
(40)

where ĉ2(`3, · · · , `n), · · · , ĉn−1(`n) are positive real num-
bers independent of N , and ĉn > 0 is a known constant
independent of N and all the `is. By (35) and (39), thus

dẽ2 = N((xr
3 − x̂r

3)− `2(x
r
2 − x̂r

2))dt +

(ϕϕϕ2(x̄xx2)− `2ϕϕϕ1(x1))
Tdωωω

...

dẽn−1 = N((xr
n − x̂r

n)− `n−1(x
r
n−1 − x̂r

n−1))dt +

(ϕϕϕn−1(x̄xxn−1)− `n−1ϕϕϕn−2(x̄xxn−2))
Tdωωω

dẽn = −N`n(xr
n − x̂r

n)dt +

(ϕϕϕn(x̄xxn)− `nϕϕϕn−1(x̄xxn−1))
Tdωωω (41)

Considering the following Lyapunov function

Wn(ẽee) =
1

4
`

n∑
i=2

ẽ4
i (42)

where ` > 0 is a constant and ẽee = (ẽ2, · · · , ẽn), a direct
calculation leads to

LWn = N

(
−

n∑
i=2

``iẽ
3
i ((x̂i + ẽi)

r − x̂r
i ) +

n∑
i=3

`(xr
i − x̂r

i )ẽ
3
i−1 −

n∑
i=2

``iẽ
3
i (x

r
i − (x̂i + ẽi)

r) +

n∑
i=2

3`

2N
ẽ2

i |ϕϕϕi(x̄xxi)− `iϕϕϕi−1(x̄xxi−1)|2
)

(43)

We concentrate on each term on the right-hand side of (43).
By Lemma 6, one has

−``iẽ
3
i ((x̂i + ẽi)

r − x̂r
i ) ≤ − ``i

2r−1
ẽ3+r

i , i = 2, · · · , n (44)

Using (16) and (39), Lemmas 2∼ 4, and ei = xi − x̂i, for
i = 3, · · · , n, one obtains

∣∣∣` (xr
i − x̂r

i )ẽ
3
i−1

∣∣∣ ≤
`|ẽi−1|3(2r−1(2r−1 + 1)(|ξi|r + |bi−1ξi−1|r) +

(i− 1)r2r−1(`r
i · · · `r

3|ẽ2|r + · · ·+ `r
i |ẽi−1|r + |ẽi|r)) ≤

%1,i(ξ
3+r
i−1 + ξ3+r

i ) + c̃i,2(`3, · · · , `i)ẽ
3+r
2 + · · ·+

c̃i,i−2(`i−1, `i)ẽ
3+r
i−2 + c̃i,i−1(%1,i, `i)ẽ

3+r
i−1 + c̃i,iẽ

3+r
i (45)

where c̃i,2(`3, · · · , `i), · · · , c̃i,i−2(`i−1, `i), c̃i,i−1(%1,i, `i),
c̃i,i are positive real numbers independent of N , and %1,i >
0 is a constant independent of N and `is. Using (16), Lem-
mas 2∼ 5, and xi−x̂i−ẽi = ei−ẽi = `i · · · `3ẽ2+· · ·+`iẽi−1
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for i = 2, · · · , n, one has

| − ``iẽ
3
i (x

r
i − (x̂i + ẽi)

r)| ≤
r``i|ẽi|3(`i · · · `3|ẽ2|+ · · ·+ `i|ẽi−1|)|(ξi − bi−1ξi−1)

r−1 +

(ξi − bi−1ξi−1 − `i · · · `3ẽ2 − · · · − `iẽi−1)
r−1| ≤

d̃i(`
2
i · · · `3|ẽ2|+ · · ·+ `2i |ẽi−1|)(|ξi|2+r + |bi−1ξi−1|2+r +

(`i · · · `3)2+r|ẽ2|2+r + · · ·+ `2+r
i |ẽi−1|2+r + |ẽi|2+r) ≤

%2,i(ξ
3+r
i−1 + ξ3+r

i ) + ĉi,2(%2,i, `3, · · · , `i)ẽ
3+r
2 + · · ·+

ĉi,i−1(%2,i, `i)ẽ
3+r
i−1 + ĉi,iẽ

3+r
i (46)

where %2,i > 0, d̃i > 0 are constants independent of N and
`is, and ĉi,2(%2,i, `3, · · · , `i), · · · , ĉi,i−1(%2,i, `i), ĉi,i are
positive real numbers independent of N . Using (12), (16),
Lemmas 2∼ 4, and `i ≥ 1 for i = 2, · · · , n, one gets

3`

2N
ẽ2

i |ϕϕϕi − `iϕϕϕi−1|2 ≤
3ia2`

N
1

ri−1
ẽ2

i

(
(1 + `2i )|x1|1+r + · · ·+

(1 + `2i )|xi−1|1+r + |xi|1+r

)
≤

%3,i(ξ
3+r
1 +ξ3+r

2 +· · ·+ ξ3+r
i )+

d̂i(%3,i)`
3+r
i

N
3+r

2ri−1
ẽ3+r

i (47)

where %3,i > 0 and d̂i(%3,i) > 0 are positive constants inde-
pendent of N and `is. Substituting (44) ∼ (47) into (43),
a tedious but straightforward calculation leads to

LWn ≤ N

(
n∑

i=1

%4,iξ
3+r
i −

n∑
i=2

``i

2r−1
ẽ3+r

i +

(
c̃2(%1,3, %2,3, · · · , %2,n, `3, · · · , `n) +

d̂2(%3,2)`
3+r
2

N
3+r
2r

)
ẽ3+r
2 + · · ·+

(
c̃n−1(%1,n, %2,n, `n) +

d̂n−1(%3,n−1)`
3+r
n−1

N
3+r

2rn−2

)
ẽ3+r

n−1 +

(
c̃n +

d̂n(%3,n)`3+r
n

N
3+r

2rn−1

)
ẽ3+r

n

)
(48)

where c̃2(%1,3, %2,3,· · · ,%2,n, `3, · · · , `n), · · · , c̃n−1(%1,n, %2,n,
`n) are positive real numbers independent of N , 0 < %4,i <
cn,i − ĉn,i, and c̃n > 0 are known constants independent
of N and all the `is. Considering the following Lyapunov
function

Un(ξ̄ξξn, ẽee) = Vn(ξ̄ξξn) + Wn(ẽee) (49)

by (40) and (48), one has

LUn ≤ −N

(
n∑

i=1

%iξ
3+r
i +

(
``2

2r−1
− d̄2(%1,3, %2,3, · · · , %2,n,

`3, · · · , `n)− d̂2(%3,2)`
3+r
2

N
3+r
2r

)
ẽ3+r
2 + · · ·+

(
``n−1

2r−1
−

d̄n−1(%1,n, %2,n, `n)− d̂n−1(%3,n−1)`
3+r
n−1

N
3+r

2rn−2

)
ẽ3+r

n−1 +

(
``n

2r−1
− d̄n − d̂n(%3,n)`3+r

n

N
3+r

2rn−1

)
ẽ3+r

n

)
(50)

where d̄2(%1,3, %2,3,· · · ,%2,n, `3, · · · , `n), · · · , d̄n−1(%1,n, %2,n,
`n) are positive real numbers independent of N , and
d̄n > 0, %i = cn,i − ĉn,i − %4,i > 0 are known constants
independent of N and all the `is. If the gain parameters
`is and N are assigned one by one in the following

manner: `n ≥ max{1, 2r−1

`
(αn + 1 + d̄n)}, `n−1 ≥

max{1, 2r−1

`
(αn−1 + 1 + d̄n−1(%1,n, %2,n, `n))}, · · · , `2 ≥

max{1, 2r−1

`
(α2 + 1 + d̄2(%1,3, %2,3, · · · , %2,n, `3, · · · , `n))},

N ≥ max{1, d̂
2r

3+r
2 (%3,2)`

2r
2 , d̂

2r2
3+r
3 (%3,3)`

2r2

3 , · · · , d̂
2rn−1
3+r

n (%3,n)

`2rn−1

n }, then (50) obviously becomes

LUn ≤ −N

(
n∑

i=1

%iξ
3+r
i +

n∑
i=2

αiẽ
3+r
i

)
(51)

where αi > 0 (i = 2, · · · , n) are some constants.
Remark 3. The idea of the rescaling transformation (10)

and the observer (33) originates from [16], in which a simple
deterministic high-order nonlinear system was considered
from the viewpoint of reducing the control effort.

Remark 4. Indeed, since this paper is based on [11],
these two papers have some similarities, such as system
form, most of inequalities, Assumption 1, and conclusion.
However, some differences need to be emphasized: 1) This
paper studies stochastic high-order nonlinear system with
a ratio of odd integers power, which is much more general
than that in [11]; 2) All inequalities in [11] are only suit-
able for the case of r being positive odd integer, while for
r being any positive real number, these inequalities need
to be reproved; 3) Compared with [11], in the design pro-
cedure of controller, the operations of most of inequalities,
whose powers involve more operations between fraction and
integer, are much more complicated.

3 Controller analysis

We state the main results in this paper.
Theorem 1. If Assumption 1 holds for stochastic high-

order nonlinear system (1), under the output-feedback con-
troller (10), (33), (34), and (36), then

1) The closed-loop system (1), (10), (33), (34), and (36)
has an almost surely unique solution in [0,∞) for any initial
value η0;

2) The equilibrium at the origin of the closed-loop sys-
tem is GAS in probability;

3) The output y(t) can be regulated to the origin almost
surely;

4) The control law

u∗(x̂xx) = −ξ̂n

(
3 + r

6
βbr

n

) 1
r

, β ≥ 2 (52)

guarantees that the equilibrium at the origin of the closed-
loop system is GAS in probability and also minimizes the
cost functional

J(u)=E

{ ∫ ∞

0

[
l(x̂xx, ẽee) + Npnpr

0b
−3
n β2 r

3 + r

(
3 + r

3

)− 3
r

×
(

2

β

) 3+r
r

u3+r

]
dτ

}
(53)

where l(x̂xx, ẽee) is defined by Lemma 7, x̂xx = (x1, x̂2, · · · , x̂n)T.
Proof. By V1(ξ1) = 1

4
p1ξ

4
1 , (19), (26), (42),

(49), (51), and Lemma 1, 1) and 2) hold, and
P{limt→∞

(∑n
i=1 |ξi(t)|+

∑n
i=2 |ẽi(t)|

)
= 0} = 1, from

which and y(t) = ξ1(t), 3) also holds.
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


dẽ2

...
dẽn
dy
...

dx̂n−1
dx̂n




=




N(((ẽ3 + `3ẽ2 + x̂3)
r − x̂r

3)− `2((ẽ2 + x̂2)
r − x̂r

2))
...

−N`n((ẽn + `nẽn−1 + · · ·+ `n · · · `3ẽ2 + x̂n)r − x̂r
n)

N(x̂2 + ẽ2)
r

...
N(x̂r

n + `n−1 · · · `2((x̂2 + ẽ2)
r − x̂r

2))
N`n · · · `2((x̂2 + ẽ2)

r − x̂r
2)




dt +




(ϕϕϕ∗2(¯̂xxx2, ẽ2)− `2ϕϕϕ1(y))T

...
(ϕϕϕ∗n(¯̂xxxn, ¯̃eeen)− `nϕϕϕ∗n−1(

¯̂xxxn−1, ¯̃eeen−1)
T

ϕϕϕ1(y)T

...
`n−1 · · · `2ϕϕϕ1(y)T

`n · · · `2ϕϕϕ1(y)T




dωωω +

[
0, · · · , 0, Npr

0

]T
urdt = f̂ff(x̂xx, ¯̃eeen)dt + ĝ1(x̂xx, ¯̃eeen)dωωω + ĝgg2u

rdt (54)

Now, we prove conclusion 4). By (11), (35), (39), (41),
ei = xi − x̂i, and xi = x̂i + ẽi + `i · · · `3ẽ2 + · · · + `iẽi−1

for i = 2, · · · , n, one gets (54), where ¯̃eeei = (ẽ2, · · · , ẽi)
T,

¯̂xxxi = (x1, x̂2, · · · , x̂i)
T, ϕϕϕ∗i (¯̂xxxi, ¯̃eeei) is obtained by replacing x̄xxi

in ϕϕϕi(x̄xxi) with ¯̂xxxi and ¯̃eeei, i = 2, · · · , n. By ξ̂i = x̂i−x̂∗i , ĝgg2 =

[0, · · · , 0, Npr
0]

T, Un(¯̂xxxn, ¯̃eeen) = 1
4

∑n
i=1 piξ̂

4
i + 1

4
`
∑n

i=2 ẽ4
i ,

one obtains

Lĝgg2Un =
∂Un

∂x̂xx
ĝgg2 =

∂Un

∂x̂n
Npr

0 = Npr
0pnξ̂3

n (55)

Thus, (7) becomes

u = −
(
N−1p−1

n p−r
0 ξ̂−3

n `γ(|Npr
0pnξ̂3

nR(x̂xx)−
1
2 |)

) 1
r

(56)

where R(x̂xx) > 0 is a scalar-valued function. Choosing

γ(s) =
r

3 + r
s

3+r
r (57)

one gets (γ̇)−1(s) = s
r
3 , which one substitutes into the def-

inition of `γ(s) to obtain

`γ(s) = ss
r
3 − r

3 + r
s

3+r
3 =

3

3 + r
s

3+r
3 (58)

Choosing

R(x̂xx) =

(
3 + r

3
(Npn)−

r
3 p
− r2

3
0 br

n

)− 6
3+r

(59)

by (56) and (58), one has

u(x̂xx) = −
(

N−1p−1
n p−r

0 ξ̂−3
n

3

3 + r
(Npr

0pnξ̂3
n)

3+r
3 ×

3 + r

3
(Npn)−

r
3 p
− r2

3
0 br

n

) 1
r

= −bnξ̂n (60)

which has exactly the same form as (36). Since (60)
achieves GAS in probability, by (8), (55), (57), and (59),
one can get the inverse optimal controller (52). From (9),
(57) and (59), one gets (53). ¤

4 A simulation example

Consider the following system

dη1 = η
5
3
2 dt +

1

10
η

4
3
1 dω

dη2 = υ
5
3 dt +

1

10

(
η

4
3
1 + η2

)
sin η2dω

y = η1 (61)

where ψ1(η1) = 1
10

η
4
3
1 and ψ2(η1, η2) = 1

10
(η

4
3
1 + η2) sin η2.

Next, we need to prove the following inequality
∣∣∣∣

1

10
η2 sin η2

∣∣∣∣ ≤
1

10
η

4
3
2 (62)

When |η2| = 0, one has | 1
10

η2 sin η2| = 1
10

η
4
3
2 ; when

0 < |η2| < 1, one has
∣∣∣

1
10 sin η2

η2

∣∣∣ ≤ 1
10

≤ 1
10
|η2|− 2

3 , so

| 1
10

η2 sin η2| ≤ 1
10

η
4
3
2 ; when |η2| ≥ 1, one has | 1

10
η2 sin η2| ≤

1
10
|η2| ≤ 1

10
|η2| 43 .

From (62) and the definition of ψ1(η1) and ψ2(η1, η2), we
get a = 1/10 in Assumption 1. We apply the above design
procedure to (61). Introduce

η1 = x1, η2 = N
3
5 x2, υ = p0N

3
5+ 9

25 u (63)

define ξ1 = x1, ξ2 = x2 − x∗2 = x2 + b1ξ1, and choose
V2(ξ1, ξ2) = 1

4
p1ξ

4
1 + 1

4
p2ξ

4
2 . A direct calculation leads to

LV2 ≤ N(−(c1 − b2,1,1 − b2,2,1 − b2,1,2 − b2,1,3)ξ
14
3

1 +

p2p
5
3
0 ξ3

2u
5
3 + (ρ2,1 + ρ2,2 + ρ2,3)ξ

14
3

2 ) (64)

where N ≥ 1 , p0 > 0 are rescaling factors, and

p1 > 0, p2 > 0, x∗2 = −b1ξ1 = −( c1
p1

+ 3
200

)
3
5 x1,

ρ2,1 = 5
14

( 9
14d1

)
9
5 ( 5p1

3
)

14
5 + 3

14
( 11
14d2

)
11
3 ( 10p1

3
b

2
3
1 )

14
3 ,

ρ2,2 = 9
14

( 5
14d3

)
5
9 (2

2
3 p2b

8
3
1 )

14
9 + 2

2
3 b1p2, ρ2,3 =

3
7
( 4
7d4

)
4
3 (( 3·2

5
3

100
p2b

8
3
1 + 3

100
p2(1+b2

1))
7
3 + 3·2

5
3

100
p2). In simula-

tion, we choose c1 = 2, c2 = 1.75, b2,1,1 = 0.25, b2,2,1 = 1,

b2,1,3 = 0.2, b2,1,4 = 0.05, p1 = 0.1, p2 = 0.001, p0 = 1000
3
5 ,

and (64) becomes

LV2 ≤ N

(
−0.5ξ

14
3

1 − 1.75ξ
14
3

2 + ξ3
2(u

5
3 − x

∗ 5
3

3 )

)
(65)

where x∗3 = −b2ξ2 = −2
3
5 (x2 + b1x1) and b2 = 2

3
5 .

The reduced-order observer and the certainty equiva-
lence controller are, respectively, chosen as

˙̂z2 = Np
5
3
0 u

5
3 −N`2x̂

5
3
2

u = −b2(x̂2 + b1x1) = −2
3
5 (x̂2 + b1x1) (66)

With W2 = 1
4
`ẽ4

2, ` = 60, N = 25, `2 = 10, by (65), (66),
and the definition of x∗3, a tedious but straightforward cal-

culation leads to LU2 ≤ −25(0.04ξ
14
3

1 + 0.04ξ
14
3

2 + 7ẽ
14
3

2 ),
where U2(ξ1, ξ2, ẽ2) = V2(ξ1, ξ2) + W2(ẽ2).
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With the initial values η1(0) = 0.01, η2(0) = −0.5, and
ẑ2(0) = −0.2, Fig.1 gives the response of the closed-loop
system (61), (63), and (66), which demonstrates the effec-
tiveness of the output-feedback controller.

Fig. 1 The responses of closed-loop system (61), (63), and (66)

5 Concluding remarks

This paper deals with the output-feedback stabilization
problem for a class of stochastic high-order nonlinear sys-
tems with a ratio of odd integers power for the first time.
The designed smooth output-feedback controller ensures
that the equilibrium at the origin of the closed-loop sys-
tem is GAS in probability, the output can be regulated to
the origin. Furthermore, the problem of inverse optimal
stabilization in probability is also solved.

A remaining problem is that one needs to continually
choose ci,j , which will lead to more limitations in practical
applications. Our future work is to construct an effective
searching algorithm to choose these coefficients by com-
puter.
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