
2 Presentation: Improving Quality in Business Processes, Products
and Organizational Systems — Darren Dalcher and Luis
Fernández-Sanz

6 Preventative Software Quality Control: Using Human Checking
to Change Defective Human Practice — Tom Gilb and Lindsey
Brodie

14 The Software Process Improvement Hype Cycle — Miklós Biró
21 Quality Going for Gold — Derek Irving and Margaret Ross
26 Can Teamwork Management Help in Software Quality and Proc

ess Improvement? — Esperança Amengual-Alcover and Antònia
Mas-Picacho

34 Evidence-based Software Engineering and Systematic Literature
Reviews — Barbara Kitchenham, David Budgen, and O. Pearl
Brereton

42 Software Project Success: Moving Beyond Failure — Darren
Dalcher

51 Software Measurement for Better Project and Process Quality —
Christof Ebert

62 Methods for Testing Web Service Compositions — José García-
Fanjul, Marcos Palacios-Gutiérrez, Javier Tuya-González, and
Claudio de la Riva-Alvarez

67 A Quality Evaluation Model for Web2.0 e-Learning Systems —
Stephanos Mavromoustakos and Katerina Papanikolaou

75 From Mondo Digitale (AICA, Italy)
History of Computing
The Turing Test: History and Significance — Giuseppe O. Longo

89 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

 Vol. X, issue No. 5, October 2009

CEPIS NEWS

UPENET (UPGRADE European NETwork)

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editors: Fiona Fanning, Rafael Fernández Calvo

Editorial Board
Prof. Vasile Baltac, CEPIS President
Prof. Wolffried Stucky, CEPIS Former President
Hans A. Frederik, CEPIS Vice President
Prof. Nello Scarabottolo, CEPIS Honorary Treasurer
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Full Steam Ahead" / © CEPIS 2009
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2009 (for the monograph)
© CEPIS 2009 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (December 2009)

"Privacy and Identity Management"

(The full schedule of UPGRADE is available at our website)

Monograph: Experiences and Advances in Software
Quality
(published jointly with Novática*)
Guest Editors: Darren Dalcher and Luis Fernández-Sanz

62 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Keywords: BPEL, Dynamic Binding, Monitoring, Soft-
ware Testing, Web Service Compositions.

1 Introduction
Service Oriented Architectures (SOAs) have become,

in recent years, a common standard for building and de-
ploying software. In such architectures, software is divided
into decoupled services which are composed to build com-
plex applications. As with any new technology, SOAs have
a set of advantages such as the low coupling between the
services. This characteristic enables binding with third-party
provided services or even establish dynamic binding poli-
cies. However, the adoption of this new technology has also
raised concerns regarding the software development proc-
esses and, more precisely, software testing processes.
Canfora and Di Penta [1] and Zhang and Zhang [2] identi-
fied a number of unresolved challenges in the application
of traditional software testing technologies to services such
as:

 1. The need to remotely test web services, with its as-
sociated cost.

2. The impact that the limited information exposed
about a web service has on the design of test cases.

3. The ability to dynamically search and invoke web
services.

Since these challenges, among others, were identified,
research groups have worked on the definition of testing
technologies useful for Service Oriented Architectures.

This is a state of the art article on the testing methods
committed specifically to uncover faults in web service com-
positions, particularly focusing on the de-facto industrial
standard BPEL.

The article is organized as follows: Section 2 outlines
the background concepts regarding services, compositions
of services and software testing. The following three sec-
tions are dedicated to monitoring methods (Section 3), meth-
ods to test dynamic binding compositions (Section 4) and
functional testing (Section 5). A discussion is given in Sec-
tion 6 regarding common issues in research about software
testing for SOAs and lastly, in Section 7, conclusions are
presented.

2 Background
2.1 Service Oriented Architectures
A good definition of web service is given in the web

Methods for Testing Web Service Compositions

José García-Fanjul, Marcos Palacios-Gutiérrez, Javier Tuya-González, and Claudio de la Riva-Alvarez

The deployment of software as a service has the objective, in the short or medium term, that these services will be invoked
not just from one particular application, but also from other software or services. Consequently, using well-established
and automated testing methods is essential to firstly assure the quality of the deployed services and also to facilitate
regression testing. In this paper, we describe methods that have been recently proposed to test web service compositions,
particularly focusing on the de-facto industrial standard BPEL.

Authors

José García-Fanjul received the PhD degree in Computing from
the Computer Science Department of the University of Oviedo,
in Spain, where he is, currently, an associate professor. His
research interests focus on the field of Software Engineering
and, more specifically, software testing for Service Oriented
Architectures. <jgfanjul@uniovi.es>.

Marcos Palacios-Gutiérrez received the MS degree in
Computer Science from the University of Oviedo in 2008 where
he is, currently, a PhD candidate in computer science. His
research interests are in the field of software engineering,
especially in software testing and service-oriented architectures.
<palacios@lsi.uniovi.es>.

Javier Tuya-González received the PhD degree from the
University of Oviedo, in Spain, where he is, currently, an
associate professor in the Computer Science Department. His
research interests focus on the field of Software Engineering
and, more specifically, on Software Testing for Service Oriented
Architectures and database applications. He has published
several articles in international conferences and journals. He is
a member of a number of professional associations such as IEEE,
IEEE/CS, ACM, Association for Software Testing and
SISTEDES. Currently, he is a member of the ISO Workgroup
JTC1/SC7/WG26 - Software Testing, which elaborates the new
ISO/IEC 29119 standard. He also serves as coordinator of the
corresponding Spanish group AEN/CTN71/SC7/GT 26.
<tuya@uniovi.es>.

Claudio de la Riva-Álvarez received the PhD degree in
Computing from the Computer Science Department of the
University of Oviedo, in Spain, where he is, currently, an
associate professor. His research interests include Software
Testing, Verification and Validation. <claudio@uniovi.es>.

services glossary made public by the W3C consortium [3]:
A Web service is a software system designed to support

interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description
using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-
related standards.

UPGRADE Vol. X, No. 5, October 2009 63© CEPIS

Experiences and Advances in Software Quality

As it is said in the definition, most of the existing serv-
ices today are web services and thus they are invoked using
the HTTP (Hypertext Transfer Protocol) protocol. Further-
more, most of the services today have their interfaces de-
scribed in terms of the WSDL (Web Services Description
Language) standard and they exchange data in XML
(eXtensible Markup Language) format. Nevertheless, and
bearing in mind that there exists a great amount of deployed
services which are not web services (as they can be invoked,
for example, using a protocol other than HTTP) in this arti-
cle we tend to use the term "service" and not the more re-
strictive "web service".

Service providers may publish their characteristics in
brokers or registries that commonly use the UDDI (Univer-
sal Description, Discovery and Integration) standard. Such
brokers may be queried by applications that need to use a
certain functionality, and they will reply with a number of
suitable services. Applications will then select a service,
dynamically bind to it and invoke it. This software design is
called Service Oriented Architecture (SOA).

A composition of services is distributed software that
invokes an amount of services such that services may come
from different providers. A composition of services can be
executing different software each time it is executed, be-
cause it cannot be controlled if providers change the imple-
mentation of their services. Furthermore, in dynamic bind-
ing contexts, a composition of services may be executing
different services each time it is executed.

Compositions of services are classified conceptually, as
orchestrations or choreographies. Orchestrations require that
there is one service which invokes all the other services in
the composition. The de facto standard to implement orches-
trations of web services is BPEL (Business Process Execu-
tion Language) [4]. Service choreographies do not need a
central coordinator, and the coordination responsibility is
shared among all the participating services.

2.2 Software Testing
Testing is one of the fundamental processes for quality

control of software. One of the best definitions for software
testing comes from the IEEE standard Std610.12-1990 [5]:

The process of analyzing a software item to detect the
differences between existing and required conditions (that
is, bugs) and to evaluate the features of the software items.

It is commonly understood that testing implies that the
software under test should be executed (dynamic testing).
However, the above definition includes any analysis made
to a software item as a test, and therefore it also includes
static checking techniques, in which software is not executed
to find bugs.

The traditional approach to software testing required that
most of the tests should be executed before the software is
deployed in production environments. The point was that
quality control processes should be performed before the
product is released to customers. Nowadays, due to the emer-
gence of Service Oriented Architectures, this approach is

complemented with monitoring techniques - also called
online testing [6]. These techniques are oriented towards
continuous inspection of software behaviour in production
environments, and are often complemented with self-adap-
tation strategies, in case misbehaviour is detected.

3 Monitoring
One of the main characteristics of Service Oriented

Architectures is low coupling. Service providers may in-
troduce changes in the behaviour of their services in a
number of ways such as, for example, deploying a new ver-
sion of the service, or modifying computational resources
dedicated to the execution of services.

Thus, from the point of view of service clients, they
must define strategies to find out, in runtime, whether there
are misbehaviours in their service compositions due to
changes in the behaviour of the composed services. As
mentioned above, the testing techniques oriented towards
continuous monitoring of software behaviour in produc-
tion environments are monitoring techniques.

As with any process that must be executed in produc-
tion settings, monitoring techniques should be able to de-
tect faults by observing the execution of the composition
of services with a minimum interference in the behaviour
or workload of the composition. Monitoring techniques that
can be implemented with no change in the behaviour of the
composition or the services which are under test are often
called passive monitoring.

In this kind of technique, it is common to deploy probes
that inspect the messages (typically SOAP, - Simple Object
Access Protocol -) that services participating in the compo-
sition interchange. A fault is therefore detected when the
obtained messages do not comply with the specification of
the service composition. For example, Raimondi et al. [7]
propose deploying probes in service providers or clients.
The probes check whether Service Level Agreements
(SLAs) are met in terms of quality of service (QoS) proper-
ties. Their paper describes how to systematically obtain
probes from SLAs specified in the SLAng language.

A similar proposal [8] describes an architecture of probes
that monitor functional and non-functional behaviours in
service compositions. The difference between this and the
former proposal is that the specification of the expected
behaviour for the composition of services is made in an
augmented version of Finite State Machines.

In some situations, passive monitoring techniques can-
not be applied. Therefore, the composition or the services
must be modified to instrument their code and obtain infor-
mation about their behaviour when executed. These tech-
niques are called active monitoring. A relevant proposal in
active monitoring [9] describes how to deploy a tool to
monitor the execution of BPEL processes. The tester de-
fines rules that specify the expected behaviour of the com-
position, and these rules are inserted into the BPEL code as
comments. The BPEL engine is complemented with a plug-
in that is able to interpret such rules and decide whether the
observed behaviour conforms to the rules or not.

64 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

The papers described above use the probes to discover
faults as soon as the faulty software is executed. This is the
most common approach for monitoring compositions of
services, but some faults cannot be discovered using such
approaches. Offline monitoring techniques gather informa-
tion about the behaviour of compositions of services and
then offline process that data to establish whether there are
faults.

The most representative example is the article by Rozinat
and Van der Aalst [10]. In this article, they propose a method
to determine, using Petri Net based tools, whether the ex-
ecutions of a composition of services conform to a BPEL
specification of the composition.

4 Testing Dynamic Binding Compositions
A key feature in SOA architectures is their capability to

change the services that participate in a composition. Serv-
ice clients may decide, in runtime, which service will be
invoked among the suitable ones. This characteristic is called
"dynamic binding" and it is implemented using brokers (or
registries) of services. Service providers publish the fea-
tures of their services in the broker, and service clients query
the broker and decide which of the available services will
be invoked. Figure 1 illustrates this process.

Dynamic binding raises certain challenges from the point
of view of software testing. For example, brokers may wish
to decide whether the services they publish hold certain QoS
properties. Test suites may then be designed and success-
fully executed on candidate services as a precondition to be
referenced by the broker [12]. The broker may also periodi-
cally monitor to ensure that services are continuously com-
plying with the defined requirements in terms of QoS [13].

Both of the above mentioned papers propose to extend
the UDDI standard, as UDDI defines the functionality of
the broker as a passive registry. UDDI brokers just store the
necessary information to realize the dynamic binding, and

not semantic data related to the behaviour of the referenced
services.

Other proposals take advantage of the dynamic nature
of service invocations so that when a fault is detected in a
monitored composition of web services, the invoked serv-
ice may be changed for another one that successfully ex-
ecutes a test suite, and so it is assumed that it complies with
the specification. For example, Moser et al. [14] have de-
signed a tool to replace, in runtime, services which are com-
posed in a BPEL process. The replacement is performed
when the monitoring framework identifies that QoS crite-
ria do not hold. In another approach a framework is de-
scribed to decide which of the available services will be
selected to be bound in a composition, using genetic algo-
rithms to estimate the best solution in terms of QoS [15].

5 Functional Testing
There is an immense diversity of situations that may be

reproduced as a test with the intention of uncovering faults
in software functionality. In practice and in most of the
projects, the amount of different test situations may be con-
sidered infinite. Thus, functional test designers must select
test cases that, when executed, have a high probability of
finding faults and, also, can be fully designed and executed
within the available resources. Research in functional test-
ing and test case generation has, therefore, the objective of
finding good test suites for testing a given software, that
optimize the above described criteria.

Commonly, approaches to generate functional test cases
for software rely on techniques that make a specification of
the expected behaviour of the software under test, and test
cases are derived from the specification applying certain
algorithms. Specifically, in the field of functional testing
for compositions of services, model checking (a formal
method) has been used in several approaches [15][16]. In
the first of these papers, a model is obtained from the speci-
fication of the composition in BPEL, and an adequacy cri-
terion (transition coverage) is defined to systematically ob-
tain test cases applying a model checker. In the latter, the
composition is specified in OWL-S and no criteria are de-
fined to obtain the test cases: they are obtained from prop-
erties which are specified by hand.

Other approaches use different formalisms to obtain the
test cases. Mei et al. [17] describes a data-flow technique
to obtain test cases for BPEL processes relying on term-
rewriting tools. Another paper prescribes a control-flow
method and expounds how to generate tests, also for BPEL
processes, from a model of the flow of BPEL activities and
using a constraint solver [18]. Another technique, Petri Nets,
that is commonly used to generate test cases for software
testing, is applied to test compositions of web services in
which the desired behaviour is extracted from contracts [19].

The majority of the research conducted on functional
testing for SOAs is dedicated to the unit testing of a service
or, at most, a service that is executed in the scope of a com-
position of services. To isolate the service under test fromFigure 1: Service Brokering - adapted from Papazoglou et

al. [11].

UPGRADE Vol. X, No. 5, October 2009 65© CEPIS

Experiences and Advances in Software Quality

the rest of the composition, other services must be deployed
to work as stubs. The design and implementation of such
stub services may be automatically feasible if the behaviour
of the composition is specified [20]. Other frameworks and
tools for designing and executing unit tests for services are
described in the papers of Li et al. [21] and Mayer and Lübke
[22]. In both it is possible to unit test services that partici-
pate in a composition that is specified using BPEL. The work
of Mayer and Lübke was later implemented into a tool called
BPELUnit [23].

6 Discussion
For Service Oriented Architectures, there exist standards

that are commonly accepted to describe the interfaces of the
services. The growing enthusiasm for these standards in in-
dustrial settings is one of the key advantages of these
architectures. But up to now no consensus has been reached
with respect to standards to describe service behaviour,
which is not a new problem [24].

If the papers that are referenced in this article are re-
viewed, most of them use one technique or another to specify
behaviour of services or compositions of services, such as
BPEL, OWL-S or SLAng just to mention three. Some of
the researchers even propose new ad-hoc techniques to
specify behaviour. In the field of testing techniques, the lack
of commonly accepted standards to specify service behav-
iour leads to difficulties in establishing systematic strate-
gies for the execution of tests, adequacy criteria for select-
ing test cases or the definition of oracles to set the expected
behaviour of test cases. One of the fields in which the lack
of these standards is more visible is in the testing of dy-
namic binding compositions of services. The de facto stand-
ard for broker architecture (UDDI) is systematically com-
plemented in research papers, with semantic information that
allows registering or querying services applying different
criteria depending on the service behaviour.

New standards must be adopted to define functional and
non functional behaviour of services and compositions of
services. Nevertheless, it must be noted that the latter (non
functional) characteristics are the ones receiving more at-
tention in research works in the fields of monitoring and
dynamic binding.

This trend may be influenced by two concerns that final
users commonly state about SOAs. First of all, the need to
show that SOA solutions, like any other software, fulfill a
number of QoS requirements to warrant that it is usable,
before considering whether there are problems in the func-
tional requirements. On the other hand, several final users
feel that functional faults are easier to detect and correct
than QoS faults, so more resources are employed in avail-
ability or performance testing rather than in functional test-
ing.

It should also be stressed that many of the papers pub-
lished in the field of testing SOAs are not validated against
industrial-size examples. Many of them are just exempli-
fied with simple compositions of services that are extracted
from standards or designed ad-hoc for the research. It is of

the utmost importance to define standard examples that can
be used to validate the researches, and compare the results
obtained on the application of different testing techniques.
Industrial sized examples must also be published to evalu-
ate the scalability of the research approaches.

7 Conclusions
In recent years, researchers have worked on different

techniques to test compositions of services. One of the fields
in which there have been a greater number of proposals is
the monitoring of SOAs, an especially relevant matter, bear-
ing in mind the low-coupled nature of services.

Regarding the testing of dynamic binding compositions,
there are just a few research proposals and much work needs
to be done in the future, even at the conceptual level. A
great amount of work has been published about functional
testing of SOAs, using techniques that were productive in
the past for other kinds of software, but there is also a need
to focus on the quirks of compositions of services.

Advances in the testing of SOA software could be made
if there were commonly adopted standards for the specifi-
cation of the behaviour of services. The only standard that
has been clearly adopted at the industrial level has been
BPEL. This language allows specification of the functional
behaviour of compositions of web services but there is a
growing need to define and adopt standards for the defini-
tion of functional and non functional properties for indi-
vidual services.

Acknowledgements
This work is supported by the Ministry of Science and Inno-

vation (Spain) under the National Program for Research, Devel-
opment and Innovation, projects Test4SOA (TIN2007-67843-C06-
01) and RePRIS (TIN2007-30391-E).

References
[1] G. Canfora, M. Di Penta. Testing services and service-

centric systems: challenges and opportunities. IT Pro-
fessional 2006; 8(2):10–17.

[2] J. Zhang, L.J. Zhang. Web services quality testing. Int.
Journal of Web Services Research 2005; 2(2):1-4.

[3] W3C. Web Services Glossary. <http://www.w3.org/
TR/ws-gloss/>.

[4] IBM. Business Process Execution Language for Web
Services version 1.1. <http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/>.

[5] IEEE. IEEE Std 610.12-1990, IEEE standard glossary
of software engineering terminology. <http://
standards.ieee.org>.

[6] A. Bertolino. Software testing research: achievements,
challenges, dreams. Proceedings of the Workshop on
the Future of Software Engineering (FOSE), 2007;
Minneapolis (USA); pp. 85-103.

[7] F. Raimondi, J. Skene, W. Emmerich. Efficient online
monitoring of web-service SLAs. Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2008;

66 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Atlanta (Georgia – USA); pp. 170-180.
[8] A. Benharref, R. Dssouli, M. Adel Serhani, A. En-

Nouaary, R.H. Glitho. Efficient traces’ collection
mechanisms for passive testing of web services. Infor-
mation and Software Technology 2009; 51:362-374.

[9] L. Baresi, S. Guinea. Towards dynamic monitoring of
WS-BPEL processes. Proceedings of the Third Inter-
national Conference on Service-Oriented Computing
(ICSOC), 2005; Amsterdam (Holanda); pp. 269-282.

[10] A. Rozinat, W.M.P. Van der Aalst. Conformance check-
ing of processes based on monitoring real behavior.
Information Systems 2008; 33(1):64-95.

[11] M.P. Papazoglou, W.J. Van den Heuvel. Service ori-
ented architectures: approaches, technologies and re-
search issues. The VLDB Journal 2007; 16:389-415.

[12] A. Bertolino, A. Polini. The Audition Framework for
testing web services interoperability. Proceedings of
the 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications, 2005; Porto
(Portugal); pp. 134-142.

[13] X. Bai, S. Lee, W.T. Tsai, Y. Chen. Collaborative web
services monitoring with active service broker. Pro-
ceedings of the IEEE International Computer Software
and Applications Conference (COMPSAC), 2008;
Turku (Finlandia); pp. 84-91.

[14] O. Moser, F. Rosenberg, S. Dustdar. Non-intrusive
monitoring and service adaptation for WS-BPEL. Pro-
ceedings of the Int. World Wide Web Conference
(WWW), 2008; Beijing (China); pp. 815-824.

[15] J. García-Fanjul, J. Tuya, C. De la Riva. Generating
test cases specifications for BPEL compositions of web
services using SPIN. Proceedings of the Int. Workshop
on Web Services - Modeling and Testing, 2006;
Palermo (Italia); pp. 83-94.

[16] H. Huang, W.T. Tsai, R. Paul, Y. Chen. Automated
model checking and testing for composite web serv-
ices. Proceedings of the Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, 2005; Seattle (USA); pp. 300-307.

[17] L. Mei, W.K. Chan, T.H. Tse. Data flow testing of serv-
ice-oriented workflow applications. Proceedings of the
30th International Conference on Software Engineer-
ing (ICSE), 2008; Leipzig (Alemania); pp. 371-380.

[18] J. Yan, Z. Li, Y. Yuan, W. Sun, J. Zhang. BPEL4WS
unit testing: test case generation using a concurrent path
analysis approach. Proceedings of the 17th Interna-
tional Symposium on Software Reliability Engineer-
ing (ISSRE), 2006; Raleigh (North Carolina - USA);
pp. 75-84.

[19] G. Dai, X. Bai, Y. Wang, F. Dai. Contract-based testing
for web services. Proceedings of the 31st Annual In-
ternational Computer Software and Applications Con-
ference (COMPSAC), 2007; Beijing (China); pp. 517-
526.

[20] A. Bertolino, G. De Angelis, L. Frantzen, A. Polini.
Model-based generation of testbeds for web services.
Proceedings of the 20th International Conference on

Testing of Software and Communicating Systems and
8th International Workshop on Formal Approaches to
Testing of Software (TestCom/FATES), 2008; Tokyo
(Japón); pp. 266-282.

[21] Z. Li, W. Sun, Z.B. Jiang, X. Zhang. BPEL4WS unit
testing: framework and implementation. Proceedings
of the IEEE International Conference on Web Serv-
ices (ICWS), 2005; Orlando (USA); pp. 103-110.

[22] P. Mayer, D. Lübke. Towards a BPEL unit testing
framework. Proceedings of the Workshop on Testing,
Analysis, and Verification of Web Services and Appli-
cations (TAV-WEB), 2006; Portland (Maine – USA);
pp. 33-42.

[23] Leibniz Universität Hannover. BPELUnit - The Open
Source Unit Testing Framework for BPEL. <http://
www.se.uni-hannover.de/forschung/soa/bpelunit/>.

[24] S. Jones. Toward an acceptable definition of service.
IEEE Software 2005; 22(3):87-93.

