
2 Presentation: Improving Quality in Business Processes, Products
and Organizational Systems — Darren Dalcher and Luis
Fernández-Sanz

6 Preventative Software Quality Control: Using Human Checking
to Change Defective Human Practice — Tom Gilb and Lindsey
Brodie

14 The Software Process Improvement Hype Cycle — Miklós Biró
21 Quality Going for Gold — Derek Irving and Margaret Ross
26 Can Teamwork Management Help in Software Quality and Proc

ess Improvement? — Esperança Amengual-Alcover and Antònia
Mas-Picacho

34 Evidence-based Software Engineering and Systematic Literature
Reviews — Barbara Kitchenham, David Budgen, and O. Pearl
Brereton

42 Software Project Success: Moving Beyond Failure — Darren
Dalcher

51 Software Measurement for Better Project and Process Quality —
Christof Ebert

62 Methods for Testing Web Service Compositions — José García-
Fanjul, Marcos Palacios-Gutiérrez, Javier Tuya-González, and
Claudio de la Riva-Alvarez

67 A Quality Evaluation Model for Web2.0 e-Learning Systems —
Stephanos Mavromoustakos and Katerina Papanikolaou

75 From Mondo Digitale (AICA, Italy)
History of Computing
The Turing Test: History and Significance — Giuseppe O. Longo

89 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

 Vol. X, issue No. 5, October 2009

CEPIS NEWS

UPENET (UPGRADE European NETwork)

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editors: Fiona Fanning, Rafael Fernández Calvo

Editorial Board
Prof. Vasile Baltac, CEPIS President
Prof. Wolffried Stucky, CEPIS Former President
Hans A. Frederik, CEPIS Vice President
Prof. Nello Scarabottolo, CEPIS Honorary Treasurer
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Full Steam Ahead" / © CEPIS 2009
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2009 (for the monograph)
© CEPIS 2009 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (December 2009)

"Privacy and Identity Management"

(The full schedule of UPGRADE is available at our website)

Monograph: Experiences and Advances in Software
Quality
(published jointly with Novática*)
Guest Editors: Darren Dalcher and Luis Fernández-Sanz

34 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Keywords: Evidence-based Practice, Evidence-based
Software Engineering, Systematic Literature Review.

1 Introduction
In 2004, Kitchenham et al. [1] first suggested that soft-

ware engineering should consider adopting evidence-based
practice as pioneered in the field of medicine. The ideas
were further considered in two subsequent papers, one dis-
cussing the implications for practitioners, the other discuss-
ing how evidence-based software engineering could be
taught ([2], [3]).

Kitchenham et al. [1] defined the goal of evidence-based
software engineering (EBSE) as:

To provide the means by which current best evidence
from research can be integrated with practical experience
and human values in the decision making process regard-
ing the development and maintenance of software.

By analogy with medicine, Dybå et al. [2] identified evi-
dence-based software engineering as a five step process:

1. Converting a relevant problem or information need
into an answerable question.

2. Searching the literature for the best available evi-
dence to answer the question.

3. Critically appraising the evidence for its validity,
impact, and applicability.

4. Integrating the appraised evidence with practical
experience and the values and circumstances of the cus-
tomer to make decisions about practice.

5. Evaluating software development performance and
seeking ways to improve it.

Although these papers were sympathetic to the idea of
EBSE they pointed out some potential problems, for exam-
ple:

Human-centred software engineering experiments
are skill-based. They cannot have the same objectivity as
medical trials which can utilize double-blind protocols (i.e.
experiments where neither the experimenter nor the subject
knows which treatment the subject has received) to avoid
subject or experimenter bias.

Most software experiments are laboratory experi-
ments which are difficult to generalize, whereas medical

Evidence-based Software Engineering
and Systematic Literature Reviews

Barbara Kitchenham, David Budgen, and O. Pearl Brereton

In 2004-5, Kitchenham, Dybå and Jørgensen wrote three papers discussing the concept of evidence-based software engi-
neering (EBSE). EBSE is concerned with the aggregation of empirical evidence and uses systematic literature reviews
(SLRs) as a methodology for performing unbiased aggregation of empirical results. This paper presents the concepts of
EBSE and SLRs. In order to access the current impact of these concepts we relate existing systematic reviews to the
software engineer’s body of knowledge (SWEBOK) structure. Our long term goal is to see the SWEBOK supported by a
software engineer’s body of evidence.

Authors

Barbara Kitchenham is Professor of Quantitative Software
Engineering at Keele University in the UK. She has worked in
software engineering for over 30 years both in industry and aca-
demia. Her main research interest is software measurement and
its application to project management, quality control, risk
management and evaluation of software technologies. Her most
recent research has focused on the application of evidence-based
practice to software engineering. She is a Chartered
Mathematician and Fellow of the Institute of Mathematics and
Its Applications, a Fellow of the Royal Statistical Society and a
member of the IEEE Computer Society. <b.a.kitchenham@
cs.keele.ac.uk>

David Budgen is Professor of Software Engineering at Durham
University. He received BSc and PhD degrees in theoretical
physics from the University of Durham in 1969 and 1973. After
a period working on naval command and control systems, where
he developed an interest in software design issues, he was
appointed to a post at the University of Stirling, moving to a
chair of software engineering at Keele in 1991, and then to
Durham in 2005. He is the author of many papers on software
design as well as of the textbook Software Design. His research
has addressed both the development and evaluation of software
development environments and also the actual processes
employed in designing software. He has also investigated design
strategies appropriate for component-based development, and
more recently, service-based systems. He has been a member of
the EPSRC computing college since its foundation in 1997.
<david.budgen@durham.ac.uk>

O. Pearl Brereton is Professor of Software Engineering in the
School of Computing and Mathematics at Keele University. She
was awarded a BSc degree in Applied Mathematics and
Computer Science from Sheffield University (1970) and a PhD
in Computer Science from Keele University (1977). After a
period in industry and working for the UK’s Science and
Engineering Research Council she moved to a research post at
Keele University in 1980. She was awarded a personal chair in
2003. Her research focuses on evidence-based software
engineering and component-based /service-oriented systems. She
is a member of the EPSRC computing college, IEEE Computer
Society, the ACM, and the British Computer Society.
<o.p.brereton@cs.keele.ac.uk>

UPGRADE Vol. X, No. 5, October 2009 35© CEPIS

Experiences and Advances in Software Quality

controlled trials are field experiments where real patients
receive real (or sometimes placebo) treatments.

It is not clear who the "practitioner" is in the context
of EBSE. Unlike medical practitioners, software engineers
are not usually responsible for selecting and using appro-
priate methods, this is usually the task of senior managers.
In our opinion, we should also regard authors of text books
and developers of standards as "practitioners" in the sense
that they are individuals that may want to make use of EBSE
results.

Facilities for searching digital libraries are not as good
as those available to medics.

Also, EBSE relies on the existence of good quality em-
pirical studies and the ability to aggregate the results of those
studies. With respect to empirical studies in general, for over
30 years, Basili’s pioneering work on empirical software
engineering has lead to an increasing acceptance of the need
for empirical studies (e.g. ([4], [5], [6]).

Furthermore, since the mid 90’s there have been many
initiatives aimed at improving the quality of empirical soft-
ware engineering research. In 1995, the Empirical Software
Engineering Journal was established. Several books on em-
pirical software engineering were published ([7], [8], [9]).
Kitchenham et al. published a paper specifying guidelines
for empirical studies in software engineering [10] and
Jedlitschka et al. presented a set of guidelines for reporting
experiments [11]. The International Symposium on Empiri-
cal Software Engineering (ISESE) was established in 2003
and merged with the Metrics Symposium in 2008 to form
the Empirical Software Engineering and Measurement Con-
ference. Since 2005, researchers at the Simula Research
Laboratory have published a series of systematic literature
reviews investigating the nature and quality of experiments
in software engineering ([12], [13], [14], [15]). This sug-
gests that one basic requirement for EBSE is achieved to
some extent.

With respect to the ability to aggregate good quality re-
search results, evidence-based practice usually adopts the
systematic literature review methodology. This methodol-
ogy was first developed in the field of medicine (see for
example [16]), but has also been adopted by social scien-
tists ([17], [18]). In 2004, Kitchenham summarized current
medical guidelines and attempted to adapt them for soft-
ware engineering research [19]. The software engineering
guidelines were updated in 2007 [20].

We are currently undertaking a research project "Evi-
dence-based Practice Informing Computing" (EPIC) aimed
at assessing the use of evidence-based practice and system-
atic literature reviews in software engineering <http://
www.ebse.org.uk>. The results of the EPIC studies are ad-
dressing some of the issues raised by the guidelines for ex-
ample:

What problems do novice researchers face when per-
forming systematic reviews [21]?

How can we determine the quality of software engi-
neering empirical studies that include technology-centric as
well as human-centric empirical studies ([22], [23])?

Are complex search strings as suggested by medi-
cal standards more efficient than simple search strings?

Are broad searches rather than targeted searches nec-
essary in software engineering [24]?

This paper aims to introduce the concepts of Evidence-
based Software Engineering and in particular the system-
atic review methodology. Section 2 describes systematic
literature reviews. Section 3 presents a summary of the dis-
tribution of systematic reviews across the SWEBOK cat-
egories [25] and presents our vision for the future of soft-
ware engineering.

2 Systematic Reviews - Background
We start by explaining the basic methodology and ra-

tionale for systematic reviews. Then we discuss the differ-
ent types of literature review that can broadly be called "sys-
tematic".

2.1 Basic Methodology
Systematic reviews (sometimes called systematic litera-

ture reviews in software engineering to ensure they are not
confused with inspection research) are a form of second-
ary study that assess the impact of individual empirical stud-
ies (referred to as primary studies). A systematic review
involves several discrete activities. Existing guidelines for
systematic reviews have slightly different suggestions about
the number and order of activities. However, medical guide-
lines and sociological text books (e.g. [16], [17], [18]) are
broadly in agreement about the three major stages in the
process: Planning the Review, Conducting the Review, Re-
porting the Review.

The stages associated with planning the review are:
Identification of the need for a review.
Commissioning a review.
Specifying the research question(s).
Developing a review protocol.
Evaluating the review protocol.

The stages associated with conducting the review are:
Identification of research.
Selection of primary studies.
Study quality assessment.
Data extraction and monitoring.
Data synthesis.

The stages associated with reporting the review are:
Specifying dissemination mechanisms.
Formatting the main report.
Evaluating the report.

We consider all the above stages to be mandatory ex-
cept:

Commissioning a review which depends on whether
or not the systematic review is being done on a commercial
basis.

Evaluating the review protocol and Evaluating the
report which are optional and depend on the quality assur-
ance procedures decided by the systematic review team (and
any other stakeholders).

The stages listed above may appear to be sequential,

36 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

but it is important to recognize that many of the stages in-
volve iteration. In particular, many activities are trialled
during the protocol development stage, and refined when
the review proper takes place.

2.2 Goals and Rationale
Systematic reviews aim to search for, and aggregate, all

relevant information on a specific research topic, where in
the context of evidence-based software engineering, "in-
formation" implies empirical evidence. (However, there is
no reason not to use a systematic approach if you need to
aggregate other forms of research.)

The use of the term "all relevant" qualifying "informa-
tion" implies that all primary studies addressing the research
topics should be included in the review. However, many
researchers prefer to restrict the aggregation process to "best
quality" research. For example, in the context of software
engineering research, researchers may identify many "les-
sons learnt" papers that were conducted without using any
well-defined research methodology. Such studies may be
excluded from any aggregation of primary study results due
to poor quality (see [26] for a discussion of how to improve
experience reports).

The critical issue for systematic reviews compared with
conventional reviews is that a systematic review uses a de-
fined methodology that aims to ensure that the review is
both fair and seen to be fair. In particular, systematic re-
views aim to be:

Open i.e. all the review procedures are reported ini-
tially in a study plan (referred to as a protocol) and in the
final report of the study (where deviations from the proto-
col need to be reported).

Unbiased i.e. (as far as possible) all relevant primary
studies are included and the results of the included primary
studies are fairly aggregated.

Repeatable i.e. (as far as possible) the review could
be replicated by other researchers. Note, however, when
searching digital libraries, even if electronic search strings
are specified, search results may not be completely repeat-
able.

The goals support one another. The requirement for an
open methodology supports the goal for unbiased search
and selection of primary studies and helps to support the
requirements for repeatability. The detailed procedures used
in a systematic literature review also support these goals.
For example, the use of a study protocol not only improves
study conduct but also reduces the opportunity for researcher
bias, since stating in advance what sources will be searched
and how avoids relying on the personal knowledge of indi-
vidual researchers. Furthermore, a protocol helps to ensure
that the study is open and repeatable.

2.3 Systematic v. Non-systematic Reviews
Kitchenham and Charters [20] and Brereton et al. [27]

both make it clear that the rigour of the systematic reviews
process means that it uses more time and effort than typical
"expert opinion" based reviews where the included studies

and the aggregation process depends on the expertise of the
authors. However, results in other disciplines confirm that
reviews may miss relevant papers. For example, Oakley and
colleagues undertook two investigations of reviews, one
related to health promotion for the elderly [28], the other
related to anti-smoking education among young people ([29]
reported in [17]). In the first case there were six reviews of
differing rigour identifying a total of 137 studies, but only
33 studies were common to at least two reviews. In the sec-
ond case there were two reviews identifying 27 studies of
which only three studies were common to both reviews.

Missing relevant studies can lead to drawing incorrect
conclusions even when undertaken by experts. For exam-
ple, after an informal review, the Nobel Laureate Linus
Pauling was convinced that mega-doses of vitamin C would
protect against the common cold. However a systematic re-
view contradicted this conclusion and identified that Pauling
had not cited 5 of the 15 methodologically sound studies
[30]. In addition, authors can be biased in their selection of
papers to cite. Shaddish surveyed authors of over 280 arti-
cles in psychological journals and found studies were often
cited because they supported the author’s argument, not
because they were good quality studies [31].

In the field of software engineering, there are examples
of systematic reviews that have overturned "common knowl-
edge" or suggested we are not as well-informed as we think
about our methods and tools:

Jørgensen [32] investigated the results of studies that
compared algorithmic cost estimation models with expert
opinion estimates. Although cost estimation research for the
past thirty years has been premised upon the inferiority of
expert opinion estimates, he found no compelling evidence
that algorithmic models are more accurate than expert opin-
ion estimates. In fact, one third of the studies said algorith-
mic models were best, one third said expert opinion-based
estimates are best and one third found no difference.

For many years the original Standish Chaos report
was taken as confirming the parlous state of software engi-
neering with the majority of projects failing and signifi-
cantly overrunning. As background to a study of Norwe-
gian projects, Moløkken-Østvold et al. [33] looked at all
empirical studies that reported failure rates and over-runs.
They found that the Standish report was completely out of
line with other contemporary studies, which suggested av-
erage overruns in the region of 30%. This figure has not
changed much in the last 20 years. The methodological prob-
lems with the original Standish report (including explicitly
soliciting reports of failing projects) were the subject of
another study [34].

Dybå and Dingsøyr recently reviewed holistic em-
pirical studies of agile methods i.e. the results of applying
an integrated set of agile methods [35]. In contrast, Hannay
et al. have reviewed empirical studies of pair-programming
[36]. Both studies suggest we know a lot less about agile
techniques than we might think. Dybå and Dingsøyr high-
light the general lack of trustworthy empirical studies, par-
ticularly related to management methods – they only found

UPGRADE Vol. X, No. 5, October 2009 37© CEPIS

Experiences and Advances in Software Quality

one study investigating SCRUM. Hannay et al. found lim-
ited evidence that agile methods exhibit greater quality and
are faster than conventional methods but are less produc-
tive. However, all these effects were small and detailed meta-
analysis casts some doubts on the reliability of the effects.

Our own study of the TAM (Technology Acceptance
Model) draws upon 73 primary studies [37]. This has dem-
onstrated the lack of objective measures for technology use
in many studies showing that studies of the TAM often meas-
ure perceived use rather than actual use and also that some
of the key components of the TAM are not good predictors
of actual use.

A number of mapping studies, a form of secondary
study that seeks to scope our empirical knowledge about a
topic (see Section 2.4), have been undertaken as part of our
own studies. While in other disciplines these form a useful
start point for a fuller SLR, when performed for software
engineering they have largely revealed the major gaps in
our empirical knowledge. Examples have included UML
[38], object-oriented design [39] and design patterns [40].

2.4 Types of Systematic Review
A standard systematic review is driven by a very spe-

cific research question that can be answered by empirical
research, for example "Are algorithmic cost models more
accurate than expert judgement-based estimates?" This re-
search question drives the identification of appropriate pri-
mary studies, informs the data extraction process applied to
each included primary study, and determines the aggrega-
tion of the extracted data. This type of secondary study con-
tributes most to evidence-based software engineering. If the
research question is of interest to industry, it provides an
unbiased summary of current empirical knowledge that can
support the identification of good practice guidelines.

There are however two other types of rigorous second-
ary study found in software engineering journals that use a
similar methodology to a standard systematic review but
have slightly different goals:

Research method studies. This type of secondary
study reviews a set of primary studies with the aim of as-
sessing the methods by which a discipline undertakes its
research, see for example [41]. Such a study uses a system-
atic process for selecting primary studies (in this case a ran-
dom sample from all papers published in a specific set of
publications in a specified time period). Thus, repeatability
rests on a statistical argument. Each primary study is classi-
fied and the results are aggregated by enumerating the per-
centages of primary studies in various categories. Although
the basic secondary study process is consistent with a sys-
tematic review, such studies do not aim to address specific
empirical research questions. They are not usually of direct
interest to researchers concerned with software engineering
topics nor to industry practitioners.

Mapping studies. This type of secondary study re-
views a specific software engineering topic and classifies
the primary research papers in that specific domain. The
research questions for such a study concern which sub-top-

ics have been addressed, what empirical methods have been
used, and what sub-topics have sufficient empirical studies
for a more detailed systematic review. Mapping studies are
of great potential importance to software engineering re-
searchers. For example, two particularly influential map-
ping studies looked at cost estimation studies [42] and soft-
ware experiments [12]. These studies catalogued the pri-
mary studies and their results were used by later more de-
tailed systematic reviews ([13], [14], [15], [43]). The sub-
sequent studies were easier to do because the original stud-
ies had already identified the relevant literature.

Although at the extreme, mapping studies and systemic
reviews have rather different goals, there is often an over-
lap. Some systematic reviews include a classification sys-
tem to organize relevant literature followed by a more de-
tailed description of the research within each category. The
important difference is that a conventional systematic re-
view makes an attempt to aggregate the primary studies in
terms of the research outcomes and investigates whether
those research outcomes are consistent or contradictory. In
contrast, a mapping study usually aims only to classify the
relevant literature.

Finally, a meta-analysis is also a type of systematic re-
view. Basically, a meta-analysis is an add-on to a conven-
tional systematic review. It relies on systematic review pro-
cedures to search and select the relevant primary studies
and define the data extraction process, but uses statistical
methods to aggregate primary study outcomes rather than
simple tabulation or narrative descriptions (see for exam-
ple [36]).

A systematic review assessing empirical evidence re-
lated to a specific software engineering issue can save time
and effort for researchers and practitioners. If it identifies
areas where no further research is necessary, there is the
opportunity to give clear-cut advice to practitioners and to
provide a reliable empirical basis for our international stand-
ards and text books. If it identifies an import research ques-
tion where empirical research is sparse, it provides a clear
justification for more detailed primary research.

A systematic mapping study is usually of most relevance
to researchers. A problem with some mapping studies is
that they only present summary results without the full list
of categorized primary studies (e.g. [38], [39], [40]). How-
ever, a mapping study which includes all the references pro-
vides an excellent starting point for other researchers.

Finally we must emphasize that systematic reviews are
not meant to be solely of interest to researchers. Results of
good quality systematic reviews provide an unbiased as-
sessment of the empirical evidence supporting proposed
software engineering methods. Such studies should provide
a welcome dose of realism compared with non-peer re-
viewed "white papers" prepared by vendors and consult-
ants with vested interests in selling products and services.
Industry is often critical of academic research, but a sig-
nificant benefit of high quality academic research is its im-
partiality. Systematic reviews provide a framework for pro-
viding impartial summaries of empirical results which are

38 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

the basis for evidence-based practice (see for example [44],
[45]). Furthermore, researchers have a responsibility to make
their results accessible to industry. They should ensure that
the results of systematic reviews are explained (whenever
possible) in terms of their implications for practice.

However, evidence-based practice also depends on prac-
titioners appreciating the need for high quality evidence and
understanding the role researchers have in the development
(via primary studies) and aggregation (via secondary stud-
ies) of empirical evidence. This would be helped if more of
our text books and international standards were based on
evidence rather than simply "expert" opinion.

3 Systematic Reviews of Software Engineering
Within software engineering, the SWEBOK [25] has

become established as an authoritative reference, drawing
widely upon expert opinion and experience, and providing
an overview of the topics and practices that currently form
the knowledge-base for software engineering research and
practice. In this section we use the structure of the SWEBOK
to summarize existing software engineering systematic re-
views.

We recently published the results of a mapping study
aimed at identifying software engineering systematic re-
views [46]. The goal of the study was to identify how many
systematic reviews had been published, what research top-
ics were being addressed, and the limitations of current sys-
tematic reviews. For this study we used a manual search of
a targeted set of 13 conferences and journals published dur-
ing the period January 1 2004 to 30 June 2007. The sources
were selected because they were known to include either
empirical studies or literature surveys, and had been used
as sources for other systematic mapping studies (e.g. [12],
[41]).

We found 20 studies (two of which were found by con-
sulting known researchers or their web sites). We have re-
cently updated this study using a broader automated search
strategy (searching 6 electronic sources) from January 2004
to July 2008 [24]. We found an extra 12 systematic reviews
in the period January 2004-June 2007, and 19 systematic
reviews in the period July 2007-June 2008, plus 1 extra re-
view published in July 2008. In addition, the Information
and Software Technology journal has just published an on-
line Virtual Special Issue of systematic reviews (linked by
a banner to the IST home page, <http://www.elsevier.com/
wps/find/journaldescription.cws_home/525444/descrip-
tion# description>). This special issue includes eight recent
systematic reviews of which only one was included in our
search (because it was published prior to June 2008). Thus,
in total we have found 59 systematic reviews of which 34
addressed software engineering questions rather than map-
ping general research trends or software engineering top-
ics. Table 1 shows the current state of evidence-based knowl-
edge when mapped on to the structure of the SWEBOK.
The total number of relevant reviews totals 32 not 34 be-
cause one review [47] was an intentional replication of an-
other (i.e. it addressed exactly the same research question

as another) and another review addressed the motivation of
individual software engineers [48] and so was outside the
scope of the SWEBOK which includes software project
management issues but not general management issues.

Because Table1 is coarse-grained at the level of
SWEBOK chapter headings, it can be slightly misleading.
In particular, although the largest number of secondary stud-
ies is reported under Software Engineering Management, 8
of these are essentially under just one of its sub-headings
(Effort, schedule and cost estimation). More important
though, as indicated above, the results from a number of
these studies contradict established practices and opinions.
Under Software Engineering Process, three papers relate
to Software Lifecycle Processes and three relate to Process
Assessment Models. Furthermore, our results confirm that
even at the level of subsections, the SWEBOK is itself very
coarse grained in places, so there can be many different
systematic reviews that apply to a single subsection.

The number of systematic reviews is encouraging. How-
ever, overall the coverage of the SWEBOK is limited, al-
though this reflects a lack of basic empirical studies as well
as a lack of systematic reviews.

There is a very real need to provide a better basis for
making IT/Computing related decisions than simply using
expert judgement, however well this is codifed ([49], [50]).
Questions about the effectiveness of large-scale government
IT procurement indicate that there is also a need to provide
a firmer basis for such projects wherever possible.

We believe that the use of the evidence-based paradigm
in software engineering provides a means to address these
needs. Furthermore, a goal of an empirical software engi-
neering BOK would provide an ideal framework for re-
searchers and practitioners. It would provide a basic re-
search agenda for researchers undertaking both primary and
secondary studies, as well as a structure for making results
available to practitioners (engineers and managers), stand-
ards and text book authors, and students.

Acknowledgements
This study was funded by the UK Engineering and Physical

Sciences Research Council project EPIC/E046983/1.

References
[1] B.A. Kitchenham, T. Dybå, M. Jørgensen. Evidence-

based Software Engineering. Proceedings of the 26th
International Conference on Software Engineering,
(ICSE ’04), IEEE Computer Society, Washington DC,
USA, 2004, pp. 273-281.

[2] T. Dybå, B.A. Kitchenham, M. Jørgensen. Evidence-
based Software Engineering for Practitioners, IEEE
Software, 22 (1), 2005, pp. 58-65.

[3] M. Jørgensen, T. Dybå, B.A. Kitchenham. Teaching
Evidence-Based Software Engineering to University
Students, 11th IEEE International Software Metrics
Symposium (METRICS’05), 2005, p. 24.

[4] V.R. Basili, M.V. Zelkowitz. The software engineer-
ing laboratory: Objectives, Proceedings of the fifteenth

UPGRADE Vol. X, No. 5, October 2009 39© CEPIS

Experiences and Advances in Software Quality

Table 1: Distribution of Existing Software Engineering Systematic Reviews.

SWEBOK
Chapters

Title Number of
Sections

Number of
Sections
with SLR
coverage

Total number of
SLRs

2 Software
Requirements

28 2 2

3 Software Design 30 2 2
4 Software

Construction
14 2 3

5 Software testing 68 3 3
6 Software

Maintenance
28 1 1

7 Software
Configuration
Management

28 0 0

8 Software
Engineering
Management

24 3 10

9 Software
Engineering
process

20 3 7

10 Software
Engineering Tools
and Methods

13 1 1

11 Software Quality 24 2 3
Total 277 19 32

annual SIGCPR conference, 1977, pp. 256-269.
[5] V.R. Basili, R.W. Reiter. A Controlled Experiment

Quantitatively Comparing Software Development Ap-
proaches. IEEE Trans on Software Eng., 1981, pp. 299-
320.

[6] S. Vegas, N. Juristo, V. Basili. Maturing Software En-
gineering Knowledge through Classifications: A Case
Study on Unit Testing Techniques. IEEE Trans on Soft-
ware Engineering, 2009, in press.

[7] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B.
Regnell, A. Wesslé. Experimentation in Software En-
gineering. An Introduction. Kluwer Academic Press,
2000.

[8] N. Juristo, A. Moreno. Basics of Software Engineering
Experimentation. Kluwer Academic Publishers, 2001,
Boston, MA. ISBN-10: 079237990X.

[9] F. Shull, J. Singer, D.I.K. Sjøberg (Eds). Guide to Ad-
vanced Empirical Software Engineering, 2008,
Springer.

[10] B. Kitchenham, S.L. Pfleeger, L.M. Pickard, P. Jones,
D. Hoaglin. K. El Emam, J. Rosenberg. Preliminary

Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering,
28(8), August 2002, pp. 721-734.

[11] A. Jedlitschka, M. Ciolkowski, D. Pfahl. Reporting
Experiments in Software Engineering, in Guide to Ad-
vanced Empirical Software Engineering, eds. F. Shull,
J. Singer, D.I.K. Sjøberg, Springer, 2008.

[12] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B.
Kampenes, A. Karahasanovic, N.K. Liborg, A.C.
Rekdal. A survey of controlled experiments in soft-
ware engineering. IEEE Trans. on Software Eng., 31
(9), 2005, pp. 733-753.

[13] T. Dybå, V.B. Kampenes, D.I.K. Sjøberg. A system-
atic review of statistical power in software engineer-
ing experiments, Information and Software Technol-
ogy, 48(8), 2006, pp. 745-755.

[14] V.B. Kampenes, T. Dybå, J.E. Hannay, Dag I. K.
Sjøberg. A Systematic Review of Effect Size. Software
Engineering Experiments, Information and Software
Technology, 49 (11-12), 2007, pp. 1073-1086.

[15] V.B. Kampenes, T. Dybå, J.E. Hannay, Dag I. K.

40 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Sjøberg. A Systematic Review of Quasi-Experiments
in Software Engineering, Information and Software
Technology, 51 (1), 2009, pp. 71-82.

[16] K.S. Khan, , R..Kunz, J. Kleijnen, G. Antes. System-
atic Reviews to Support Evidence-based Medicine. The
Royal Society of Medicine Press Ltd., 2003.

[17] M. Petticrew, H. Roberts. Systematic Reviews in the
Social Sciences: A Practical Guide. Blackwell Publish-
ing, 2005. ISBN-10: 1405121106.

[18] A. Fink. Conducting Research Literature Reviews.
From the Internet to Paper. Sage Publication, Inc., 2005.
ISBN-10: 141290904X.

[19] B.A. Kitchenham. Procedures for Undertaking System-
atic Reviews. Joint Technical Report, Computer Sci-
ence Department, 2004, Keele University (TR/SE-
0401) and National ICT Australia Ltd (0400011T.1).

[20] B.A. Kitchenham, S. Charters. Guidelines for perform-
ing Systematic Literature Reviews in Software Engi-
neering. Technical Report EBSE-2007-01, 2007.

[21] P. Brereton, B. Kitchenham, Z. Li, D. Budgen, F. Bian.
Planning problems facing novice systematic literature
reviewers: a participant-observer case study, 2009, un-
published manuscript.

[22] B. Kitchenham, P. Brereton, D. Budgen, Z. Li. An
Evaluation of Quality Checklist Proposals – A partici-
pant Observer case study. 13th International Confer-
ence on Evaluation and Assessment in Software Engi-
neering (EASE), 2009, BCS eWiC.

[23] B. Kitchenham, A.J. Burn, Z. Li. A Quality Checklist
for Technology-Centered testing Studies. 13th Inter-
national Conference on Evaluation and Assessment in
Software Engineering (EASE), 2009, BCS eWiC.

[24] B. Kitchenham, P. Brereton, M. Turner, M. Niazi, P.
Pretorius, D. Budgen. The impact of search procedures
for systematic literature reviews – An observer-partici-
pant case study. 2009, ESEM 09.

[25] A. Abran, J.W. Moore, P. Bourque, R. Dupuis (eds).
Guide to the Software Engineering Body of Knowl-
edge. IEEE Computer Society, 2004.

[26] D. Budgen, C. Zhang. Preliminary Reporting Guide-
lines for Experience Papers. 13th International Con-
ference on Evaluation and Assessment in Software En-
gineering (EASE), 2009, BCS eWiC.

[27] O.P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner,
M. Khalil. Lessons from applying the systematic lit-
erature review process within the software engineer-
ing domain. J. Sys. Software, 80(4), 2007, pp. 571-583.

[28] A. Oakley, D. Fullerton. A systematic review of smok-
ing prevention programmes for young people. London:
EPPI Centre, Institute for Education, 1995.

[29] S. Oliver, G. Peersman, A. Harden, A. Oakley. Discrep-
ancies in findings from effectiveness reviews: The case
of health promotion for older people in accident and
injury prevention. Health and Education Journal 58,
1999, pp. 66-77.

[30] P. Knipschild. Some examples of systematic reviews.
British Medical Journal, 309, 1994, pp. 719–721.

[31] W. Shadish. Author judgements about work they cite:
Three studies from psychological journals. Social Stud-
ies of Science 1995, 25, pp. 477-498.

[32] M. Jørgensen. A review of studies of expert estima-
tion of software development effort. J. Sys. Software,
70, 2004, pp. 37-60.

[33] K.J. Moløkken-Østvold, M. Jørgensen, S.S. Tanilkan,
H. Gallis, A.C. Lien, S.E. Hove. A Survey on Soft-
ware Estimation in the Norwegian Industry, Proceed-
ings Software Metrics Symposium, 2004.

[34] M. Jørgensen, K.J. Moløkken-Østvold. How large are
software cost overruns? A review of the 1994 CHAOS
report. IST, 48, 2006, pp. 297-301.

[35] T. Dybå, T. Dingsøyr. Empirical studies of agile soft-
ware development: A systematic review. Information
and Software Technology, 50 (9-10), 2008, pp. 833-
859.

[36] J.E. Hannay, T. Dybå, E. Arisholm, D.I.K. Sjøberg.
The effectiveness of pair-programming: A meta-analy-
sis, Information and Software Technology, 2009, in
press.

[37] M. Turner, B. Kitcheham, P. Brereton, S. Charters, D.
Budgen. Does the Technology Acceptance Model pre-
dict Actual Use? A Systematic Literature Review. 2009.
Accepted for publication in Information and Software
Technology.

[38] R. Pretorius, D. Budgen. A mapping study on empiri-
cal evidence related to the models and forms used in
the UML. Proceedings of 2nd ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM 2008. ACM Press, 2008, pp.
342–344.

[39] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P.
Brereton, S. Linkman. Evidence relating to Object-Ori-
ented software design: A survey. Proceedings of Em-
pirical Software Engineering& Measurement, 2007,
IEEE Computer Society Press, 2007, pp. 482-484.

[40] C. Zhang, D. Budgen. Assessing the claims for soft-
ware design patterns. 2009, submitted for publication.

[41] R.L. Glass, I. Vessey, V. Ramesh. Research in soft-
ware engineering: an analysis of the literature. Infor-
mation and Software Technology, 44(8), 2002, pp. 491-
506.

[42] M. Jørgensen, M. Shepperd. A Systematic Review of
Software Development Cost Estimation Studies. IEEE
Trans. on Software Eng., 33(1), 2006, pp. 33-53.

[43] S. Grimstad, M. Jorgensen, K. Molokken-Ostvold.
Software effort estimation terminology: The tower of
Babel. Information and Software Technology, 48 (4),
2006, pp. 302-310.

[44] M. Jørgensen. Practical Guidelines for Expert-Judg-
ment-Based Software effort estimation. IEEE Soft-
ware, 22(3), 2005, pp. 2-8.

[45] M. Jørgensen. Evidence-based Guidelines for Assess-
ment of Software Development Cost Uncertainty. IEEE
Trans. on Software Eng., 31(11), 2004, pp. 942-954.

[46] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner,

UPGRADE Vol. X, No. 5, October 2009 41© CEPIS

Experiences and Advances in Software Quality

J. Bailey, S. Linkman. Systematic Literature reviews
in software engineering – a systematic literature re-
view. Information and Software Technology, 51, 2009,
pp. 7-15.

[47] S. MacDonell, M. Shepperd. Comparing local and glo-
bal effort estimation models reflections on a system-
atic reviews. Proceedings of Empirical Software En-
gineering and Measurement, IEEE Computer Society
Press, 2007.

[48] S. Beecham, N. Baddoo, T. Hall, H. Robinson, H.
Sharp. Motivation in Software Engineering: A system-
atic literature review. Information and Software Tech-
nology, 50, 2008, pp. 860-878.

[49] B. Kitchenham, D. Budgen, P. Brereton, M. Turner, S.
Charters, S. Linkman. Large-Scale Software Engineer-
ing Questions–Expert Opinion or Empirical Evidence?.
IET Software, 2007, 1(5), pp. 161-171.

[50] D. Budgen, B. Kitchenham, P. Brereton, M. Turner, S.
Charters, S. Linkman. Employing the evidence-based
paradigm for technology-related decision making, Evi-
dence & Policy 4(2), 2008, pp. 149-169.

