
2 Presentation: Improving Quality in Business Processes, Products
and Organizational Systems — Darren Dalcher and Luis
Fernández-Sanz

6 Preventative Software Quality Control: Using Human Checking
to Change Defective Human Practice — Tom Gilb and Lindsey
Brodie

14 The Software Process Improvement Hype Cycle — Miklós Biró
21 Quality Going for Gold — Derek Irving and Margaret Ross
26 Can Teamwork Management Help in Software Quality and Proc

ess Improvement? — Esperança Amengual-Alcover and Antònia
Mas-Picacho

34 Evidence-based Software Engineering and Systematic Literature
Reviews — Barbara Kitchenham, David Budgen, and O. Pearl
Brereton

42 Software Project Success: Moving Beyond Failure — Darren
Dalcher

51 Software Measurement for Better Project and Process Quality —
Christof Ebert

62 Methods for Testing Web Service Compositions — José García-
Fanjul, Marcos Palacios-Gutiérrez, Javier Tuya-González, and
Claudio de la Riva-Alvarez

67 A Quality Evaluation Model for Web2.0 e-Learning Systems —
Stephanos Mavromoustakos and Katerina Papanikolaou

75 From Mondo Digitale (AICA, Italy)
History of Computing
The Turing Test: History and Significance — Giuseppe O. Longo

89 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

 Vol. X, issue No. 5, October 2009

CEPIS NEWS

UPENET (UPGRADE European NETwork)

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editors: Fiona Fanning, Rafael Fernández Calvo

Editorial Board
Prof. Vasile Baltac, CEPIS President
Prof. Wolffried Stucky, CEPIS Former President
Hans A. Frederik, CEPIS Vice President
Prof. Nello Scarabottolo, CEPIS Honorary Treasurer
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Full Steam Ahead" / © CEPIS 2009
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2009 (for the monograph)
© CEPIS 2009 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (December 2009)

"Privacy and Identity Management"

(The full schedule of UPGRADE is available at our website)

Monograph: Experiences and Advances in Software
Quality
(published jointly with Novática*)
Guest Editors: Darren Dalcher and Luis Fernández-Sanz

6 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Keywords: Continuous Process Improvement, Inspec-
tion, Peer Review, Sampling, Specification Quality Con-
trol.

1 Introduction
If we carry out inspection of specifications properly

[1][2] the cost is barely tolerable for some: about one hour
of effort, per page1 checked, per systems engineer or soft-
ware engineer. The harvest, even if we are skilled, is only
to identify between 40-80% of the major defects. That leaves
many remaining major defects undetected, and many of
these will be found, at considerable cost, during testing or
in the final released product.

Of course, finding defects using traditional inspection
(and fixing them) earlier than the test stage is beneficial
and may even pay off. However, there is a better way: Speci-
fication Quality Control (SQC). It ought to appeal to all
Spec QC purposes, and especially to the many organiza-
tions that have not been able to stomach the high costs and
low effectiveness of traditional inspection.

The main concept of SQC is to shift emphasis from "find-
ing and fixing defects" to "estimating the specification de-
fect density", and using this information to motivate sys-
tems and software engineers to learn to avoid defect injec-
tion in the first place. Such a shift permits a dramatic cost
saving. When our QC purpose is measurement rather than
"cleanup" we can sample rather than have to check 100%
of the specifications. This is the major opportunity that SQC
provides. The main purpose of SQC is to motivate indi-
viduals to learn to reduce major defect insertion.

Secondary purposes include:
To prevent uneconomic major-defect density speci-

fications from escaping downstream – and thus to avoid the

Preventative Software Quality Control:
Using Human Checking to Change Defective Human Practice

Tom Gilb and Lindsey Brodie

Traditional Software Inspection is often uneconomic and ties up valuable staff resources. Shifting the emphasis from
cleanup (that is, from identifying defects and then removing them), to merely sampling the major defect level of specifica-
tions, produces significant benefits. It enables the quality level of specifications to be determined more rapidly. Conse-
quently, the QC (Quality Control) can be carried out more frequently. Systems and software engineers rapidly learn,
through SQC (Software/Specification QC) feedback, to take standards seriously, which in turn reduces defect injection.
Further, by analyzing where/how the defects occur, continuous process improvement can be supported. The key idea is to
inexpensively measure the degree of violation of critical practices, as expounded in standards (‘Rules’). Then to make
sure that work which exceeds reasonable levels of major defect density fails to exit from its creation process. Avoid
Garbage Out!

Authors

Tom Gilb is the author of "Competitive Engineering: A
Handbook for Systems & Software Engineering Management
using Planguage" (2005), "Principles of Software Engineering
Management" (1988) and "Software Inspection" (1993). His book
"Software Metrics" (1976) coined the term and, was used as the
basis for the Software Engineering Institute Capability Maturity
Model Level Four (SEI CMM Level 4). His most recent interests
are development of true software engineering and systems
engineering methods; and teaching top managers better ways to
control big projects (better objectives and Evolutionary learning).
Tom Gilb was born in Pasadena CA in 1940. He moved to
England in 1956, and then two years later he joined IBM in
Norway. Since 1963, he has been an independent consultant and
author. <Tom@Gilb.com>, <www.gilb.com>.

Lindsey Brodie is an IT consultant, currently carrying out PhD
research at Middlesex University. She has worked in industry
for many years: originally in technical support and then in soft-
ware development, corporate IT strategy and business process
design. She edited Tom Gilb’s ‘Competitive Engineering’ book.
Her interests include requirements and stakeholder value. Her
current research concerns prioritization using metrics; the aim
being to improve support for stakeholder IT decision-making.
<L.Brodie@mdx.ac.uk>.

consequent delays and quality problems. The major tactic
to achieve this is to impose a numeric exit-barrier for the
specification process, such as "only a maximum of 1.0 re-
maining majors per page"

To teach and reinforce current specification stand-
ards.

2 Process Details
2.1 Traditional Inspection Method
The old inspection method (widely practiced in CMM

Level 3 as peer reviews) was based on the idea of inspect-
ing 100% of all pages, at optimum rate checking (one page
per hour), using a review team of between 2 and 5 software

1 A page is defined as 300 words of non-commentary text.
Non-commentary text is core specification or background
text; it is not notes or other commentary text.

UPGRADE Vol. X, No. 5, October 2009 7© CEPIS

Experiences and Advances in Software Quality

and systems engineers. The maximum yield of major de-
fects from such an inspection process is in the range of 40%-
80% depending on specification type (for example, a maxi-
mum of 60% for software source code specifications, and a
maximum of 80% for requirements specifications – in prac-
tice however it is actually more likely that only 30% is
achieved since malpractice is common). The reported abil-
ity to actually correctly correct major defects once found is
only 5 out of 6 fixes attempted ([3], reported in [1]). All this
amounts to the following:

The same order-of-magnitude defects remaining as
before the quality control process was applied

Little or no change in the defect insertion density. In
requirements specifications this regularly exceeds 100 ma-
jor defects per 300 lines of specification (Personal experi-
ence by field measurement over many years).

2.2 New SQC Method
The new "SQC method" is based on the following:

Sampling of a specification.
A few (1 to 3) pages at a time.
Starting early (perhaps once the first 5% of a large

specification is written).
Frequently (every week or so) until the work is com-

pleted.
For each individual systems or software engineer (each

one must be motivated and trained personally), their sam-
pled specification pages will be checked against a set of a
few simple rules – usually about 3 to 7 rules are applied (for
example, for initial checks these could be: Clear enough to
test, Unambiguous to intended readers, and No design op-
tions in the requirements). The reviewers/checkers are asked
to identify all deviations from these rules. Any deviation is
termed a "specification defect". The reviewers/checkers are
then asked to classify any specification defect that can po-
tentially lead to loss of time or significant reduction in prod-
uct quality as "major". The entire checking session might
use only 2 engineers for 30 to 60 minutes This might seem
quite a high checking rate, but remember that only a few
rules are being used and no other documents are being con-
sulted to check out the original source of material, so we
can go faster. In any event, as long as we turn up more de-
fects than the threshold exit level for defects, then exactly
how effective we are in detecting defects is a secondary is-
sue.

Major defect findings are reported to a review leader,
who calculates the estimated number of defects actually
present, based on the total found by the team. An inexperi-
enced team is usually about one third effective, so the esti-
mated total number of majors per page is about three times
the total of unique majors found by the team. This is a very
rough calculation but it seems to work well in practice.

A pre-arranged standard for exit control (the fail to exit
level) is set for unacceptable specification major-defect den-
sity. Initially it can be set at "anything more than 10.0 ma-
jors per page". In the longer term (beyond 6 months of cul-
ture change), the aim should be to set the limit at "anything

more than 1.0 majors per page". To give some examples,
IBM reported using a maximum of 0.25 major defects per
page [4]. NASA reported a standard of using 0.1 major de-
fects per page [5]. The initial limit set is a matter of trying
to get better as fast as humanly possible. Ultimately, it should
become a matter of finding the level that pays off for the
class of work you are doing.

Note: There are several limitations to this simplified
SQC process:

It is only a small sample, so the accuracy is not as
good as for a 100% or for a larger-than-few-page sample

The team will not have time or experience to get up
to speed on the rules and the concept of major defects

A small team of two people does not have the prob-
able greater effectiveness of 3 or 4 people

The entire specification will not have been checked,
so there will not be the basis for making corrections to the
entire specification

The checking will not have been carried out against
all the possible source documents (usually in the SQC proc-
ess no source documents are used and memory is relied on.
While this means that the checking is not nearly as accu-
rate, it does considerably speed up the process).

However, if the sample turns up a defect-density esti-
mation of 50 to 150 major defects per page (which is quite
normal), that is more than sufficient to convince the people
participating and their managers that they have a serious
problem.

As discussed earlier, the immediate solution to the prob-
lem of high defect density is not to set about removing the
defects from the document, because the same order of mag-
nitude level of defects would still remain. The best solution
for a document with a high defect density is to rewrite it
entirely, using an individual who does not insert too many
defects. Long term, the most effective practical solution is
to adopt SQC as part of the corporate process, and more
importantly, to make sure each individual specification
writer takes the defect density criteria (and its "no exit"
consequence) seriously. They will then learn to follow the
rules, and as a result will reduce their personal defect injec-
tion rate. On average, a personal defect injection rate should
fall by about 50% after each experience of using the SQC
process. Widespread use of SQC will result in large num-
bers of systems and software engineers learning to follow
the rules. To get to the next level of quality improvement,
the next step is to improve the rules themselves (see Figure
1).

3 Case Study 1: A Financial Organization
In 2003, a large multinational financial group was a pi-

lot user of this SQC process (see Figure 2). It also had com-
bined this with adopting a specification and planning lan-
guage, Planguage [6]. After six months, the organization
reported the following for requirements and design speci-
fications:

Across 18 development projects using the new re-
quirements method, the average major defect rate (per page)

8 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Figure 1: Specification of the SQC Process.

SQC Process
Tag: SQC. Version: April 18, 2005. Owner: Tom@Gilb.com. Status: Revised Draft.

Entry Conditions:
A group of two, or more, suitable people* to carry out SQC is assembled in a meeting.
The people have sufficient time to complete an SQC. Total Elapsed Time: 30 to 60 minutes.
There is a trained SQC team leader at the meeting to manage the process.

Procedure

P1: Identify Checkers: Two people, maybe more, should be identified to carry out the checking.

P2: Select Rules: The group identifies about three rules to use for checking the specification. (My favorites are clarity ("clear
enough to test"), unambiguous ("to the intended readership"), and completeness ("compared to sources"). For requirements, I
also use "no optional design").

P3: Choose Sample(s): The group then selects sample(s) of about one "logical" page in length (300 non-commentary words).
Choosing such a page at random can add credibility – so long as it is representative of the content that is subject to quality
control. The group should decide whether all the checkers should use the same sample or whether different samples are more
appropriate.

P4: Instruct Checkers: The SQC team leader briefly instructs the checkers about the rules, the checking time, and how to
document any defects, and then determine if they are major defects (majors).

P5: Check Sample: The checkers use between 10 and 30 minutes to check their sample against the selected rules. Each
checker should "mark up" their copy of the document as they check (underlining issues and classifying them as "major" or not).
At the end of checking, each checker should count the number of "possible majors" (spec defects, rule violations) they have
found in their page.

P6: Report Results: The checkers each report to the group their number of "possible majors." Each checker determines their
number of majors and reports it.

P7: Analyze Results: The SQC team leader extrapolates from the findings the number of majors in a single page (about 6
times** the largest number of majors found by a single person, or alternatively 3 times the unique majors found by a 2 to 4
person team). This gives the major-defect density estimate. If using more than one sample, you should average the densities
found by the group in different pages. The SQC team leader then multiplies the "average major defects per page density" by the
"total number of pages" to get the "total number of major defects in the specification" (for dramatic effect!).

P8: Decide Action: If the number of majors per page found is a large one (ten majors or more), then there is little point in the
group doing anything, except determining how they are going to get someone to write the specification "properly", meaning to
acceptable exit level. There is no economic point in looking at the other pages to find "all the defects", or correcting the majors
already found. There are simply too many majors not found.

P9: Suggest Cause: The team then chooses any major defect and thinks for a minute why it happened. Then the team agrees
a short sentence, or better still a few words, to capture their verdict.
Exit Conditions
• Exit if less than 5 majors per page extrapolated total density, or if an action plan to "rewrite" the specification has been agreed.

Notes:
* A suitable person is anyone, who can correctly interpret the rules and the concept of "major".
** Concerning the factor of multiplying by "6 ": We have found by experience ([1]: reported by Bernard) that the total unique

defects found by a team is approximately twice that of the number found by the person, who finds the most defects in the team. We also
find that inexperienced teams using SQC seem to have about one third effectiveness in identifying the major defects that are actually
there. So 2 x 3 = 6 is the factor we use (Or 3 x the number of unique majors found by the entire team).

UPGRADE Vol. X, No. 5, October 2009 9© CEPIS

Experiences and Advances in Software Quality

Figure 2: Overview of the SQC Process [6].

on first inspection is 11.2
14 of the 18 development projects exited success-

fully on first pass SQC. The other 4 development projects
failed to meet the exit criteria of 10 major defects per page,
the projects" specifications had to be improved, and were
then re-inspected

A sample of 6 development projects with require-
ments in the "old" specification format were tested against
the following set of rules:

· The requirement is uniquely identifiable
· All stakeholders are identified
· The content of the requirement is "clear and unambigu-

ous"
· A practical test can be applied to validate delivery of

the requirement.
The average major defect rate (per page) in this sample

was 80.4.
A few months later, as a result of the continuing overall

success of the pilot testing, the client decided to spread SQC
widely to all types of technical specification.

4 Case Study 2: A Jet Engines Manufacturer
At one of my clients, we sampled 2 pages of an 82-page

requirements document: four managers checked page 81,
and four other managers, who were directly involved with
the requirement specifications projects, checked page 82.
These pages were all "non-functional" requirements (such
as, security). We agreed to check against the following sim-
ple set of requirement specification rules:

1. Unambiguous to intended Readership
2. Clear enough to test.
3. No Design specifications (= "how to- be good") mixed

in.
Violation of any one of these rules constituted a speci-

fication "defect" and was classified either as "major" (likely
to result in potential damage to effort or quality) or "mi-
nor" (no way they can harm us, even though they are de-
fects).

We also agreed a specification exit level of "No more
than one remaining major defect per page". They "agreed"
(for demo purposes!) that any manager who signed off (ap-
proved) a requirements specification with more than 100
remaining major defects per page should be fired for in-
competence. Later that day they themselves were, as we
shall see, to provide clear numeric evidence that – they them-
selves should be "fired"!

The 8 managers were given 30 minutes to check their
page. At the end they reported the following major defects
found by themselves individually:

Page 81 (three quarters of a page): 15, 15, 20, and 4
majors.

Page 82 (a full page): 24, 15, 30 and 3 majors.

4.1 Estimating the Number of Major Defects Found
by the Team

From the results of this input, we could estimate the
number of unique major defects found by the team. First
we had a hypothetical choice of either logging all the unique

10 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

major defects (Using old Inspection methods, logging would
take 3 minutes for each defect resulting in a 3 hour job), or
estimating the result approximately. Not surprisingly, the
managers choose the quick estimation. To estimate the
number of unique majors (that is, the number of majors that
are not duplicated - so if the same defect is found by more
than one checker it only counts as one defect); we can dou-
ble the count of the largest number of majors found by one
individual in a small (2-4 people) group. This is based on
observations done at Cray Research ([1] pp. 299-301).

From personal experience, it works well. In this case,
this means that the group working on page 82 had about (2
x 30) 60 majors per page found (±15 majors of course). The
group working on page 81 had about 40 total unique major
defects they could log if they so chose to log them in detail.

4.2 Estimating the Total Number of Defects per
Page – Including Those NOT Found by the Team

But of course inexperienced checkers do not find 100%
of the majors defects present - they find only about a third.
Remember even experienced checkers carrying out source
code inspections peak at source code bug-finding effective-
ness of 60% ([1] reported by IBM MN), and most groups
are not that good. Requirements and design checking tends
to have an effectiveness ranging between 30% and 80% or
more, depending on a wide range of process factors. These
effectiveness factors include, speed of checking, available
related project data, use of standards and checklists, and
intelligibility of the specification being checked.

4.3 Can we Verify the Level of Checking
Effectiveness in Practice?

If you want to prove these estimates, the proof is sim-
ple: carry out an inspection, and then remove the major de-
fects you have identified. That should leave twice that
number estimated remaining – the two thirds NOT found
by checkers (In this example, 80 major defects for page 81,
and 120 for page 82). This sounds incredible. How could
people miss so many on a single page? The proof comes
when you repeat the checking process, and predictably find
one third of the remainder (one third of 80); and can prove
they were there on the first checking pass. Skeptics turn
into believers at this point. We have carried out this test on
our courses for years, and it always proves the case.

4.4 So, How Many Major Defects Are There in Total
on the Page?

In this case, the managers accepted my assertion – that
the 60 majors on page 82 were an indication of about 180
majors in the page (and 150 majors on page 81, indicative
of the same density as page 82). Now this indicates an aver-
age of (120 + 180)/2 = 150 majors per page. I asked the
managers if they felt this was probably typical for the other
("functional") pages. They said they had no doubts that it
did. If managers are skeptical, the solution is simple, take
another sample at random. I can assure you that the result

found for defect density will be essentially the same order
of magnitude.

4.5 Then, How Can We Estimate the Total Number
of Major Defects in the Sspecification?

Now this leads us to an estimation that we have about 150
(average per physical page) x 82 (total pages) = 12,300 Ma-
jors in total. I was initially quite shocked on calculating this
number. But the managers were for some strange reason not
as skeptical as I was. I did not know anything about the project
beyond that the requirements were just handed to me 45 min-
utes earlier and that the managers were somehow responsible.

4.6 How Many Bugs Will Be Generated as a Result
of these Specification Major Defects?

But let"s carry on with the calculations! Now another
factor that has to be taken into consideration is that not all
major defects in specifications lead directly to bugs. The
problem being that we don"t know exactly which of the
major specification defects will actually cause bugs to be
inserted - that depends on the "sleepiness of the program-
mers on the day"! Two pieces of research I recall showed
that 25% to 35% of majors actually turn into bugs. For ex-
ample, to make this plausible, a random guess as to the
correct interpretation of an ambiguity with 2 options would
give a 50% chance of a bug and 50% not. I have found that
a good rule of thumb, one which correlates well with ob-
served reality, is that one third of the major defects will
cause bugs in the system. So, for this example, that implies
that about 4,100 (= 12,300/3) bugs will occur.

4.7 What Do these Major Defects Cost in Project
Terms? How Do They Delay the Project?

One of my clients (Philips Defence, UK; see the case
study in [1], page 315) studied about 1,000 major defects
found in the specification inspection of a wide variety of
systems engineering specifications. They determined that
the median downstream cost of not finding the majors would
have been 9.3 hours (range up to 80 hours). So I use 10
hours as a rough rounded approximation of the cost of a
major if it occurs downstream (at test and field stages).

Well, in this case study, that implies 41,000 hours (10 x
4,100 defects that hit us) of effort lost in the project through
faulty requirements. I was quite shocked at the implication
of this quick estimate based on a small sample. But the man-
agers were quite at home with it. They responded, "Don"t
worry Tom, we believe you!"

Why? I asked. So they explained, "Because (and we
know you did not have any inkling of this) we have 10
people on the project, each using about 2,000 hours per
year, and the project is already 1 year late (a total of 20,000
hours) and we have at least one more year of correcting the
problems before we can finish."

5 Case Study 3: An Air Traffic Control Project (in
Sweden/Germany)

UPGRADE Vol. X, No. 5, October 2009 11© CEPIS

Experiences and Advances in Software Quality

 Specification Quality Control (SQC) Form - An Example Filled Out

SQC Date: May 29, 200X. SQC Start Time: _______
SQC Leader: Tom.
Author: Tino. Other Checkers: Artur.

Specification Reference: Test Plan. Specification Date and/or Version: V 2.
Total Physical Pages: 10.
Sample Reference within Specification: Page 3.
Sample Size (Non commentary words): approx. 300.

Rules used for Checking: Generic Rules, Test Plan Rules.
Planned Exit Level (Majors per page): _______ or less.
Checking Time Planned (Minutes): 30. Actual: 25.
Checking Rate Planned (Non commentary pages per hour): 2.
(Note this rate should be less than 2 pages per hour)

Actual Checking Rate (Non commentary words per minute): __________
Number of Defects Identified by each Checker:

Majors: 6, 8, 3. Total Majors Identified in Sample: 17.
Minors: 10, 15, 30.

Estimated Unique Majors Found by Team: 16 ± 5.
(Note 2 x highest number of Majors found by an individual checker)
Estimated Average Majors per Page: ~16 x 3 = 48.
(A Page = 300 Non commentary words)
Majors in Relation to Exit Level: 48/1 (47 too many).
Estimated Total Majors in entire Specification: 48 x 10 = 480.

Recommendation for Specification (Exit/Rework/Rewrite): No exit, redo and resubmit.
Suggested Causes (of defect level): Author not familiar with rules.
Actions suggested to mitigate Causes: Author studies rules. All authors given training in
rules.
Person responsible for Action: Project Manager.
SQC End Time: 18:08. Total Time taken for SQC: ________

Version: August 15, 2004. Owner: Tom@Gilb.com

Another client had a seriously delayed software compo-
nent for an air traffic control simulator. The contract dic-
tated about 80,000 pages of logic specifications. The sup-
plier had written and approved about 40,000 pages of these.
The next stage for the logic specifications was writing the
software.

The divisional director, Ingvar, gave me the technical
managers for a day to try to sort out the problem. These men
had each personally signed off the 40,000 pages. We pulled
3 random pages from the 40,000 and I asked the managers
to find logic errors in the specifications – errors in the sense
that if coded the ATC system would be wrong. Within an
hour of checking they found 19 major defects in the 3 sam-
ple pages. They agreed that these pages were representative
of the others.

That evening, Ingvar took 30 minutes to check the 19
defects personally, while his managers and I waited in his
office. He finally said, "If I let one of these defects get out
to our customer, the CEO would fire me!"

Now the 19 defects found in the 3 pages represent an
actual defect density of approximately three times that (that
is, they probably did not find two thirds of the existing de-
fects). So the managers had signed off about (20 x 40,000)
0.8 million bugs. And they had only done half the contracted
logic specification. Well, the sample told us a great deal.

We started thinking that afternoon about what could have
been done better. The conclusion was that we had a "fac-
tory" of analysts producing about 20 major defects per page
of ATC logic specification. We also concluded that if we
had taken such a sample earlier, say after the first dozen

Figure 3: An Example of an SQC Form Filled Out.

12 UPGRADE Vol. X, No. 5, October 2009 © CEPIS

Experiences and Advances in Software Quality

Estimating Remaining Major Defect Density

Assumptions:
A logical page (page) is 300 non-commentary words.
Your SQC effectiveness is 33.3% and your SQC is a statistically stable process.
One sixth of your attempts to fix defects fail (One sixth is average failure to fix).
New defects are injected during your attempts to fix defects at 5%.
The uncertainty factor in the estimation of remaining defects is ± 30%.
Probable remaining major defects per page =
"Probable unidentified majors" + "Bad fix majors" + "Majors injected"
Let E = Effectiveness expressed as a percentage (%) = 33.3%

If 33 major defects per page have been found during SQC.
Probable unidentified majors =
Major defects total estimated 3 x Found Majors (33) = about 100 ±30

Bad fix majors = One sixth of fixed majors =
Of 30 attempted fixes, 5 major defects in each page are not fixed.
This is useful to recognize.
Even if you found all defects, 1/6 would remain after all were fixed.

Majors injected = 5% of majors attempted to be fixed = 1.5 major defects per page.
(this is not always calculated, since it is small, compared to the error margin)

Probable remaining major defects/page, after fixing what we found in a sample =
66 (not found) + 5 (not fixed) = roughly 71 remaining major defects per page.

Taking into account the uncertainty factor of ± 30% and rounding down to the nearest whole number gives 50 Remain-
ing Major Defects per Page

 (Minimum = 50, Maximum = 92 remaining major defects per page).

Figure 4: An Example of Calculating the Remaining Major Defects per Page.

pages written, we might have discovered the systemic de-
fect-density pollution-rate earlier, and hopefully have done
something about it.

Too bad that they did not have SQC! The project got
completed, but only after being sold off to another corpora-
tion. The director lost his job and it was not just for a single
defect.

The irony was that when I first met the director, he told
me he had read a book of mine. Too bad he did not practice
what he read. His corporation, I later realized, had a bad
ingrained habit. They did not review specifications until all
pages were completed.

I asked the manager who signed the third signature on
the specification approval why he signed off on what we all
acknowledged was a tragedy. He told me it was because
"the other managers signed it ahead of him". I guess that is
when I lost faith in management approvals.

6 SQC Estimations and Calculations
At this point, it is worth summarizing the overall SQC

process of estimating and calculating. See Figures 3 and 4,
which show how to arrive at the defect level for a specifica-

tion and how to calculate the number of remaining defects
in a specification respectively. The calculations shown are
for yet another case study.

7 Continuous Process Improvement
Notice how towards the end of Figure 3 there are two

questions concerned with analyzing the origin of the de-
fects (that is, "Suggested Causes" and "Actions suggested
to mitigate Causes"). The aim of these questions is to iden-
tify problems in work practices that need correction. This
approach is identical to Capability Maturity Model Level 5,
and to the Defect Prevention Process (see discussion of Mays
in [1]).

In the Raytheon Study [7][8], this process improvement
effort reduced rework costs, within about 7 years, from ap-
proximately 27% of all development costs down to about
4%. Before that happened though, the individual discipline
of software engineers actually following their existing (bad)
processes, led to a reduction from 43% rework costs to the
27% cited above in a year. So there is a lot of short-term
improvement available by getting people to follow even sim-

UPGRADE Vol. X, No. 5, October 2009 13© CEPIS

Experiences and Advances in Software Quality

ple standards.
Personal experience with SQC is that by merely moti-

vating people to follow the simple rules of "clear/unambigu-
ous/no design" in requirements we can reduce the number
of major defects inserted into requirements by, in one case,
an average of 80 majors/page to about an average of 11
majors/page within 6 months. Corporate engineering meas-
urements (Douglas Aircraft 1988) and other examples indi-
cate that the individual rate of reduction of defect insertion
is about 50% per learning cycle. So, in about 7 cycles of
writing specifications and measuring defects an individual
gets to the exit level of less than one major per page.

8 Summary
SQC costs very little, but its effect on early control over

injected defects is significant. It can drive defect injection
down by one and then, with time, two orders of magnitude.

The key SQC concept compared to traditional Spec In-
spection methods is to measure by sampling, and use the
information to motivate people to "learn the rules" (that is,
the standards and/or best practices), and reduce their defect
injection.

Traditional Spec Inspection techniques are doomed to
high costs and low effects because:

They can only hope to find about half the problems
(Given 40-80% is the very best in practice)

They spend approximately 3-4 hours engineering
effort per page of specification (for full effectiveness)

References
[1] T. Gilb, D. Graham. Software Inspection. Addison

Wesley, 1993. ISBN-10: 0201631814.
[2] Ron Radice. High Quality Low Cost Software Inspec-

tions. Paradoxicon Publishing, 2002. ISBN-10:
0964591316.

[3] M.E. Fagan. Advances in Software Inspections. IEEE
Transactions on Software Engineering. Vol. SE-12, No.
7, pp. 744-751, July 1986.

[4] W.S. Humphrey. Managing the Software Process.
Addison-Wesley, Reading, MA, 1989. ISBN-10:
0201180952.

[5] I. Bhandari, M.J. Halliday, J. Chaar, R. Chillarege, K.
Jones, J.S. Atkinson, C. Lepori-Costello, P.Y. Jasper,
E.D. Tarver, C.C. Lewis, M.Yonezawa. In-process im-
provement through defect data interpretation. IBM
Systems Journal, Issue 1, Volume 33, p. 182, 1994.

[6] T. Gilb. Competitive Engineering: A Handbook
For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage. Elsevier
Butterworth-Heinemann, 2005. ISBN-10: 0750665076.

[7] T. Haley, B. Ireland, Ed. Wojtaszek, D. Nash, R. Dion.
Raytheon. Raytheon Electronic Systems experience in
Software Process Improvement. 1995. This paper is
available on-line at: <http://www.sei.cmu.edu/publica-
tions/documents/95.reports/95.tr.017.html>.

[8] R. Dion. Process Improvement and the Corporate Bal-
ance Sheet. IEEE Software, July 1993, pp. 28-35.

