Alternative Method for Choosing Ridge

Parameter for Regression

A. V. Dorugade and D. N. Kashid

Department of Statistics, Shivaji University Kolhapur-416004, Kolhapur, India-416004 adorugade@rediffmail.com, dnkashid in@yahoo.com

Abstract

The parameter estimation method based on minimum residual sum of squares is unsatisfactory in the presence of multicollinearity. Hoerl and Kennard [1] introduced alternative method called ridge regression estimator. In ridge regression, ridge parameter or biasing constant plays an important role in parameter estimation. Many researchers are suggested various methods for determining the ridge parameter. In this article, we have proposed new method for choosing the ridge parameter. The performance of the proposed method is evaluated and compared with through simulation study in terms of mean square error (MSE). The technique developed in this communication seems to be very reasonable because of having smaller MSE.

Keywords: Ridge regression, Ridge parameter, Multicollinearity

1. Introduction

The ordinary least squares (OLS) estimator is unbiased estimator. In the presence of multicollinearity OLS estimator could becomes unstable due to their large variance, which leads to poor prediction. The one of the popular solution of this problem is ridge regression. The concept of ridge regression is first introduced by Hoerl and Kennard [1]. This method is the modification of the least squares method that allows biased estimators of the regression coefficients. Therefore, these biased estimators are preferred over estimator, because they will have a larger probability of being close to the true parameter values with smaller MSE of regression coefficients. In presence of multicollinearity, selection of ridge parameter plays an important role, because the idea of that adding a small constant to the diagonal elements of the matrix X'X will improve the conditioning of a

matrix has been recognized by numerical analysis, because this would dramatically decrease its 'condition number' (Vinod and Ullah, [8]).

Ridge parameter 'k' (k_{HKB}) proposed by Hoerl and Kennard [2] perform fairly well. Recently, many researchers are suggested various methods for choosing ridge parameter in ridge regression. These methods have been suggested by Lawless and Wang [4], McDonald and Galarneau (1975), Mallows (1973), Wahba, Golub and Farebrother (1975), Health (1979), Khalaf and Shukur [3] and others.

In this article, we suggest an alternative method for choosing ridge parameter and hence ridge estimator. This article is organized as: In Section 2, model and estimators are described. New method for choosing ridge parameter and some results are given in Section 3. In Section 4, performance of new method is evaluated by simulation technique in terms of MSE. Some conclusions are drawn at the end of this article.

2. Model and Estimators

Consider widely used linear regression model

 $Y = X\beta + \varepsilon$,

(1)

where Y is a n×1 vector of observations on a response variable Y. β is a p×1 vector of unknown regression coefficients, X is a matrix of order (n × p) of observations on p predictor (regressor) variables X₁, X₂,...,X_p and ε is an n × 1 vector of random variables which are distributed as $N(0, \sigma^2 I_n)$. The most common estimator for β is the least squares estimator $\hat{\beta} = (X'X)^{-1} X'Y$. For the sake of convenience, we assume that the matrix X is standardized in such a way that X'X is a non-singular correlation matrix. This paper is concerned with dealing the situation X'X has at least one small eigen value leading to a high MSE for β meaning that $\hat{\beta}$ is an unreliable estimator of β .

Let \wedge and T be the matrices of eigen values and eigen vectors of X'X, respectively, satisfying $T'X'XT = \wedge = \text{diagonal}(\lambda_1, \lambda_2, ..., \lambda_p)$, where λ_i being the ith eigen value of X'X and $T'T = TT' = I_p$. We obtain the equivalent model $Y=Z\alpha+\varepsilon$, (2)

where Z = XT, it implies that $Z'Z = \wedge$, and $\alpha = T'\beta$ (see Montgomery et al. [7])

Then Ordinary least squares (OLS) estimator of α is given by

$$\hat{\alpha} = (Z'Z)^{-1}Z'Y = \wedge^{-1}Z'Y.$$
(3)

Therefore, OLS estimator of β is given by

$$\beta = T \hat{\alpha}$$

The ordinary ridge regression (ORR) estimator of α suggested by Hoerl and Kennard [1] is written as

$$\hat{\alpha}_{RR} = \left[I - kA_k^{-1}\right] \hat{\alpha} \quad k \ge 0,$$
(4)
where $A_k = \left(\wedge + kI_p\right)$ and $k = \frac{p\hat{\sigma}^2}{\hat{\alpha}'\hat{\alpha}}$

Hence **r**idge regression estimator of β is

$$\hat{\beta}_{RR} = T \hat{\alpha}_{RR}$$

and mean square error of $\hat{\alpha}_{RR}$ is

MSE
$$(\hat{\alpha}_{RR})$$
 = Variance $(\hat{\alpha}_{RR})$ + [Bias $(\hat{\alpha}_{RR})$]²
= $\hat{\sigma}^2 \sum_{i=1}^p \lambda_i / (\lambda_i + k)^2 + k^2 \sum_{i=1}^p \alpha_i^2 / (\lambda_i + k)^2$ (5)

where $\hat{\sigma}^2$ is the OLS estimator of σ^2 i.e. $\hat{\sigma}^2 = \frac{YY - \hat{\alpha}ZY}{n - p - 1}$, $\alpha = T'\beta$.

We observe that, when k = 0 in equation (4), OLS estimator of α is recovered. As k increases the ridge regression estimators are biased but more precise than OLS estimator (Mardikyan and Cetin, [5]). Hoerl *et al.* [2] suggested that, the value of 'k' is chosen small enough, for which the mean squared error of ridge estimator, is less than the mean squared error of OLS estimator.

Many researchers have been suggested different ways of estimating the ridge parameter. Some of the well known methods for choosing ridge parameter value are listed below.

(1)
$$k_{HKB} = \frac{p\sigma^2}{\hat{\alpha}'\hat{\alpha}}$$
 (Hoerl, Kennard, [1]) (6)

(2)
$$k_{LW} = \frac{p\hat{\sigma}^2}{\sum_{i=1}^p \lambda_i \hat{\alpha}_i^2}$$
 (Lawless and Wang, [4]) (7)

$$(3) k_{HMO} = p \hat{\sigma}^2 \Big/ \sum_{i=1}^{p} \left[\hat{\alpha}_i^2 \Big/ \left\{ 1 + \left(1 + \lambda_i \left(\hat{\alpha}_i^2 / \hat{\sigma}^2 \right)^{1/2} \right) \right\} \right] \quad i = 1, 2, ..., p.$$
(8)

(Masuo Nomura, [6]) (4) $k_{KS} = (\lambda_{max}\hat{\sigma}^2)/((n-p-1)\hat{\sigma}^2 + \lambda_{max}\hat{\alpha}^2_{max})$ (Khalaf and Shukur, [3]) (9) All the methods of estimating ridge parameter are used in section 4.

3. Proposed ridge parameter

Hoerl and Kennard [1] showed that ridge estimator is biased estimator and its squared bias is continuous and monotonically increasing function of 'k'. Also they proved that the MSE of $\hat{\alpha}_{RR}$ is less than MSE of $\hat{\alpha}$ when $0 \le k \le \frac{\sigma^2}{\hat{\alpha}_{max}^2}$ where $\hat{\alpha}_{max}^2$ is the largest element of α^2 and σ^2 is replaced by its

449

A. V. Dorugade and D. N. Kashid

estimate $\hat{\sigma}^2 = \frac{Y'Y - \hat{\alpha}'Z'Y}{n-p}$. Many researchers are interested in ridge estimator, such that this estimator having smaller total MSE than OLS estimator. The MSE of ridge estimator is depends on the ridge parameter (*k*).

In this article, we have suggested a new method for determining ridge parameter k' and it is defined as

$$k_{D} = \max\left(0, \frac{p\hat{\sigma}^{2}}{\hat{\alpha}'\hat{\alpha}} - \frac{1}{n(VIF_{j})_{\max}}\right)$$
(10)

where $VIF_j = \frac{1}{1 - R_j^2}$ j = 1, 2, ..., p is variance inflation factor of jth regressor.

Our suggested estimator is modification of k_{HKB} '. The small amount $\frac{1}{n(VIF_j)_{\text{max}}}$ is subtracted from k_{HKB} '. This amount, however varies with

the size of the sample (n) used and strength of the multicollinearity in the model.

Now we discuss results related to the proposed method.

Some Results

Result 1 If $(VIF_j)_{\text{max}}$ is too large then k_D is an approximately ' k_{HKB} '. Proof: The proposed ridge parameter is

$$k_{D} = \max\left(0, \frac{p\hat{\sigma}^{2}}{\hat{\alpha}'\hat{\alpha}} - \frac{1}{n(VIF_{j})_{\max}}\right)$$

If $(VIF_{j})_{\max}$ is too large then $\frac{1}{n(VIF_{j})_{\max}} \to 0$.
Therefore, $\frac{p\hat{\sigma}^{2}}{\hat{\alpha}'\hat{\alpha}} - \frac{1}{n(VIF_{j})_{\max}} \to \frac{p\hat{\sigma}^{2}}{\hat{\alpha}'\hat{\alpha}}$
Hence; we rewrite the proposed estimator as
 $k_{D} = \max\left(0, \frac{p\hat{\sigma}^{2}}{\hat{\alpha}'\hat{\alpha}}\right)$

$$\Rightarrow k_D \cong k_{HKB} \qquad \text{since} \quad k_{HKB} \ge 0$$

Result 2 If $(VIF_j)_{\text{max}}$ is close to one then k_D is either 0 or $k_{HKB} - \frac{1}{n}$. Proof: If $(VIF_j)_{\text{max}}$ is close to 1

then the quantity
$$\frac{1}{n(VIF_j)_{\text{max}}}$$
 is approximately $\frac{1}{n}$

Hence $k_{HKB} - \frac{1}{n}$ may be positive or negative. So that, we have considered two cases

Case I: If $k_{HKB} \le \frac{1}{n}$ then $k_{HKB} - \frac{1}{n} \le 0$ Hence by definition of k_D , $k_D = 0$. Case II: If $k_{HKB} > \frac{1}{n}$ that implies $k_D = k_{HKB} - \frac{1}{n} > 0$ Therefore $k_D = k_{HKB} - \frac{1}{n}$

Result 3 $0 \le k_D \le k_{HKB}$ Proof: The proposed ridge parameter k_D is

$$k_D = \max\left(0, \ k_{HKB} - \frac{1}{n(VIF_j)_{\text{max}}}\right)$$

The possible values of k_D are

$$k_{D} = 0 \qquad \text{if } k_{HKB} \le \frac{1}{n(VIF_{j})_{\max}}$$
$$k_{D} > 0 \qquad \text{if } k_{HKB} > \frac{1}{n(VIF_{j})_{\max}}$$

from above relations,

 $k_D \ge 0$ (11) Let k_{HKB} , *n* and (*VIF*)_{max} be the nonnegative. Hence

$$k_{HKB} - \frac{1}{n(VIF_j)_{\max}} \le k_{HKB}$$

Therefore, $k_D \le k_{HKB}$ (12)

from inequality (11) and (12)

$$0 \le k_D \le k_{HKB}$$
(13)

Hoerl et al. [2] have shown that $k_{HKB} \leq \frac{\sigma^2}{\hat{\alpha}_{\max}^2}$. Using this, inequality (13) becomes $k_D \leq k_{HKB} \leq \frac{\sigma^2}{\hat{\alpha}_{\max}^2}$. Hence proposed ridge parameter (k_D) satisfy the upper bound of ridge parameter stated by Hoerl and Kennard [1].

4. Performance of the proposed ridge parameter

In this section, we examined the performance of the ridge estimator using the proposed ridge parameter k_D over the different ridge parameters (k). We examined the MSE ratio of the ridge estimator using proposed ridge parameter and other ridge parameters over OLS estimator.

We have considered two examples. In example 1, we generate data for two predictor variables with different combinations of sample size, correlation between predictor variables and variance of the error terms. In example 2, same simulation study is carried out for 4 predictor variables.

Example 1

We have generated random sample of size n for two predictor variables. To exhibit multicollinearity in the simulated data, we use the different degree of correlation between the variables included in the model. Here we put correlation values $\rho = 0.999$ and 0.9999. We have used sample size n = 20, 50, 75, and 100. The variance of the error terms are taken as $\sigma^2 = 5$, 10, 25 and 100. Ridge estimates are computed using different ridge parameters given in Eq. (6) to (10). The MSE of such ridge regression parameters are obtained using Eq. (5). This experiment is repeated 1500 times and obtains the average MSE (AMSE). Firstly, we computed the AMSE ratios of OLS estimator over different estimators. Secondly, AMSE ratios of ridge estimator using ridge parameter ' k_{HKB} ', over OLS and different ridge estimators are computed and these ratios are reported in Table 4.1. We consider the method that lead to the maximum ratio to the best from the MSE point of view.

From Table 4.1 we observe that performance of the proposed ridge parameter (k_D) is better than other ridge parameters for all combinations of correlation between predictors (ρ), variance of the error term (σ^2) and sample size (n) used in this simulation study.

	σ²	5				10			
ρ	k	n= 20	50	75	100	20	50	75	100
0.999	LS / HKB	2.821	2.739	2.714	2.826	2.482	2.847	2.836	2.704
	LS / LW	1.776	1.401	1.151	1.164	1.969	2.013	1.589	1.115
	LS / HMO	1.903	1.829	1.819	1.974	1.783	1.973	1.950	1.827
	LS / KS	2.212	1.762	1.742	1.652	2.102	2.230	2.299	1.766
	LS / k_D	2.875	2.806	2.787	2.896	2.480	2.866	2.863	2.736
	HKB / LS	0.354	0.365	0.368	0.354	0.403	0.351	0.353	0.370
	HKB / LW	0.630	0.512	0.424	0.412	0.793	0.707	0.560	0.412
	HKB / HMO	0.674	0.668	0.670	0.699	0.718	0.693	0.688	0.676
	HKB / KS	0.784	0.643	0.642	0.585	0.847	0.783	0.811	0.653
	HKB / k _D	1.019	1.025	1.027	1.025	0.999	1.006	1.009	1.012
0.9999	LS / HKB	3.078	2.806	2.781	3.011	3.304	2.712	3.406	2.797
	LS / LW	1.095	0.909	0.934	1.239	1.954	1.234	1.302	1.051
	LS / HMO	1.999	1.823	1.888	2.117	2.424	1.875	2.335	1.928
	LS / KS	1.701	1.588	1.447	1.941	2.784	1.734	2.223	1.745
	LS / k_D	3.177	2.889	2.846	3.088	3.329	2.741	3.445	2.828
	HKB / LS	0.325	0.356	0.360	0.332	0.303	0.369	0.294	0.358
	HKB / LW	0.356	0.324	0.336	0.411	0.591	0.455	0.382	0.376
	HKB / HMO	0.649	0.649	0.679	0.703	0.734	0.691	0.686	0.690
	HKB / KS	0.553	0.566	0.520	0.644	0.842	0.640	0.653	0.624
	HKB / k _D	3.078	2.806	2.781	3.011	3.304	2.712	3.406	2.797
	σ ²	25				100			
	LS / HKB	2.221	2.562	2.796	2.635	2.088	2.489	2.862	2.695
	LS/LW	1.804	1.988	1.625	1.198	1.719	1.990	1.957	1.208
	LS / HMO	1.730	1.801	1.856	1.799	1.874	1.843	1.961	1.802
0.999	LS/KS	1.864	2.137	2.046	1.699	1.735	2.087	2.351	1.775
	LS / k _D	2.222	2.567	2.816	2.655	2.087	2.487	2.874	2.711
	HKB / LS	0.447	0.390	0.358	0.379	0.474	0.402	0.349	0.371
	HKB / LW	0.807	0.776	0.581	0.455	0.815	0.799	0.684	0.448
	HKB / HMO	0.774	0.703	0.664	0.683	0.889	0.740	0.685	0.669
	HKB / KS	0.834	0.834	0.732	0.645	0.823	0.839	0.821	0.659
	HKB / k _D	0.994	1.002	1.007	1.007	0.990	0.999	1.004	1.006
	LS / HKB	2.759	2.409	3.107	2.864	2.543	2.977	2.530	2.396
0.9999	LS/LW	1.471	1.003	1.283	1.297	1.424	1.335	0.960	0.932
	LS / HMO	1.896	1.588	2.124	2.072	1.706	2.001	1.658	1.626
	LS/KS	1.966	1.445	1.758	2.048	1.726	1.904	1.425	1.508
	LS / k_D	2.777	2.430	3.131	2.882	2.556	2.995	2.547	2.410
	HKB / LS	0.362	0.415	0.322	0.349	0.393	0.336	0.395	0.417
	HKB / LW	0.533	0.416	0.413	0.453	0.560	0.448	0.379	0.389
	HKB / HMO	0.687	0.659	0.684	0.723	0.671	0.672	0.655	0.679
	HKB/KS	0.713	0.600	0.566	0.715	0.679	0.640	0.563	0.629
	HKB / k_D	1.007	1.008	1.008	1.006	1.005	1.006	1.007	1.006

Table 4.1 Ratio of AMSE of OLS over various ridge estimators for different ' k '

Example 2

We have generated random sample of size n from N_4 (0, $\Sigma_1)$ on $X_1,\,X_{2,}\,X_3$ and X_4

where

 $\Sigma_{1} = \begin{bmatrix} 1 & 0.2290 & -0.8240 & -0.2450 \\ 0.2290 & 1 & -0.139 & -0.973 \\ -0.8240 & -0.139 & 1 & -0.030 \\ -0.2450 & -0.973 & -0.030 & 1 \end{bmatrix}$

We consider the model as,

 $\mathbf{Y} = 10 + \mathbf{X}_1 + \mathbf{X}_2 + 2 \mathbf{X}_3 + \mathbf{X}_4 + \varepsilon, \quad \text{where } \varepsilon \sim N(0, \sigma^2).$

We have generated the data with sample sizes n = 20, 50, 75, and 100. The variance of the error terms are taken as $\sigma^2 = 1, 5, 10$ and 25. Same simulation study carried out as in Example 1 and the MSE ratios of different estimators over OLS estimator are reported in Table 4.2.

Table 4.2 Ratio of AMSE of OLS over various ridge estimators for different 'k'

σ ²		1			5				
k	n=20	50	75	100	20	50	75	100	
LS / HKB	1.82	2.0768	2.25	2.13	2.35	2.2058	2.31	2.15	
LS/LW	1.61	1.5289	1.53	1.24	1.58	1.1154	1.12	1.01	
LS / HMO	1.2	1.4589	1.63	1.54	1.74	1.6039	1.69	1.56	
LS / KS	1.64	1.8551	2.07	1.84	1.96	1.783	1.84	1.68	
LS / k_D	1.83	2.1011	2.28	2.16	2.38	2.2334	2.34	2.18	
HKB / LS	0.548	0.482	0.443	0.469	0.425	0.453	0.434	0.465	
HKB / LW	0.881	0.736	0.677	0.584	0.672	0.506	0.487	0.467	
HKB / HMO	0.659	0.702	0.724	0.721	0.737	0.727	0.733	0.727	
HKB / KS	0.900	0.893	0.920	0.862	0.834	0.808	0.797	0.779	
HKB / k _D	1.002	1.012	1.011	1.013	1.010	1.013	1.012	1.014	
σ^2	10				25				
LS / HKB	2.17	2.25266	2.15	1.99	2.4	2.20892	2.2	2.283053	
LS / LW	1.02	1.01283	0.98	0.86	1.17	0.96391	1.01	1.035561	
LS / HMO	1.57	1.63747	1.57	1.41	1.82	1.59446	1.62	1.666361	
LS / KS	1.7	1.75973	1.56	1.41	1.9	1.60854	1.72	1.852263	
LS/k _D	2.2	2.2817	2.18	2.02	2.43	2.23914	2.22	2.311604	
HKB / LS	0.461	0.444	0.466	0.503	0.416	0.453	0.455	0.438	
HKB / LW	0.472	0.450	0.457	0.433	0.486	0.436	0.461	0.454	
HKB / HMO	0.723	0.727	0.729	0.709	0.755	0.722	0.739	0.730	
HKB / KS	0.784	0.781	0.727	0.707	0.789	0.728	0.783	0.811	
HKB / k _D	1.014	1.013	1.013	1.016	1.010	1.014	1.012	1.013	

From Table 4.2 we conclude that new method for ridge parameter performs quite well than all other ridge parameters for all combinations of variance of the error term (σ^2) and sample sizes (n) in our study.

5. Conclusion

The new method for estimating the ridge parameter in ridge regression has been given. The proposed ridge estimator (k_D) is based on number data points (n) and strength of multicollinearity in the data. The performance of the proposed ridge parameter is evaluated through the simulation study. Also, we compare the ratio of average MSE with ridge parameter proposed by Hoerl and Kennard [2], Khalaf and Shukur [3] and others. The performance of the proposed ridge parameter is better than other ridge parameters used in ridge regression.

References

- [1] A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation of Nonorthogonal problems, Technometrics, 12(1970), 55-67.
- [2] A.E. Hoerl, R.W. Kennard and K.F. Baldwin, Ridge regression: Some Simulations, Communications in Statistics, 4(1975), 105-123.
- [3] G. Khalaf and G. Shukur, Choosing ridge parameter for regression Problem, Communications in Statistics. –Theory and Methods, 34(2005), 1177-1182.
- [4] J.F. Lawless and P. Wang, A simulation study of ridge and other regression estimators, Communications in Statistics – Theory and Methods, 14(1976), 1589-1604.
- [5] S. Mardikyan and E. Cetin, Efficient Choice of Biasing Constant for Ridge Regression, Int.J.Contemp.Math.Sciences, 3(2008), 527-547.
- [6] N. Masuo, On the Almost Unbiased Ridge Regression Estimation, Communications in Statistics –Simulation, 17(1988), 729-743.
- [7] D.C. Montgomery, E.A. Peck and G.G. Vining, Introduction to Linear Regression Analysis, Wiley, New York, 2006.
- [8] C.M. Theobald, Generalization of mean square error applied to ridge Regression, Journal of the Royal Statistical Society, ser B 36(1974), 103-106.

[9] H.D. Vinod and A .Ullah, Recent Advances in Regression Methods, Dekker, New York, 1981.

Received: May, 2009