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Abstract

In a typical class, we have students at different levels of knowledge,
student with different ability to learn the material. In the ideal world,
we should devote unlimited individual attention to all the students and
make sure that everyone learns all the material. In real life, our resources
are finite. Based on this finite amount of resources, what is the best
way to distribute efforts between different students?

Even when we know the exact way each student learns, the answer
depends on what is the objective of teaching the class. This can be
illustrated on two extreme example: If the objective is to leave no stu-
dent behind, then in the optimal resource arrangement all the effort
goes to weak students who are behind, while more advanced students
get bored. If the effort is to increase the school’s rating by increasing
the number of graduates who are accepted at top universities, then all
the effort should go to the advanced students while weak students fail.

An additional difficulty is that in reality, we do not have exact in-
formation about the cognitive ability of each student, there is a large
amount of uncertainty. In this paper, we analyze the problem of opti-
mal resource distribution under uncertainty. We hope that the resulting
algorithms will be useful in designing teaching strategies.
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1 Deciding Which Teaching Method Is Better:

Formulation of the Problem

Pedagogy is a fast developing field. New methods, new ideas and constantly
being developed and tested. New methods and new idea may be different in
many things:

• they may differ in the way material is presented,

• they may also differ in the way the teacher’s effort is distributed among
individual students: which of the students get more attention, etc.

Testing can also be different:

• Sometimes, the testing consists of comparing the new method with the
method that is currently used.

• Sometimes, the testing consists of comparing two (or more) different
versions of the same pedagogical technique; such testing is needed to
decide which version is better.

To perform a meaningful comparison, we need to agree on the criterion:
how do we decide which method is better? Once we have selected a criterion,
and we have performed enough experiments to get a good idea of how students
will learn under different version of the method, a natural question is: what is
the optimal way to teaching the students – optimal with respect to the selected
criterion?

2 How This Problem is Usually Solved Now:

A Brief Description

How can we gauge the efficiency of different teaching techniques? The success
of each individual student i can be naturally gauged by this student’s grade xi.
So, for two different techniques T and T ′, we know the corresponding grades
x1, . . . , xn and x′

1, . . . , x
′
n′. Which method is better?

In some cases, the answer to this question is straightforward. For example,
when n′ = n and when we can rearrange the grades in such a way that xi ≤ x′

i

for all i and xi < x′
i for some i, then clearly the method T ′ is better.

In practice, however, the comparison is rarely that straightforward. Often,
some grades decrease while some other grades increase. In this case, how do
we decide whether a new method is better or not?
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In pedagogical experiments, the decision is usually made based on the
comparison of the average grades

E
def
=

x1 + . . . + xn

n
(1)

and

E ′ def
=

x′
1 + . . . + x′

n′

n′ . (2)

For example, we can use the t-test (see, e.g., [4]) and conclude that the method
T ′ is better if the corresponding t-statistic

t
def
=

E ′ − E√
V

n
+

V ′

n′

, (3)

where

V
def
=

1

n − 1
·

n∑
i=1

(xi − E)2, V ′ def
=

1

n′ − 1
·

n′∑
i=1

(x′
i − E ′)2, (4)

exceeds the appropriate threshold tα (depending on the level of confidence α
with which we want to make this conclusion).

3 How This Problem is Usually Solved Now:

Limitations

The average grade is not always the most adequate way to gauging the success
of a pedagogical strategy. Whether the average grade is a good criterion or
not depends on our objective.

Let us illustrate this dependence on a simplified example. Suppose that
after using the original teaching method T , we get the grades x1 = 60 and
x2 = 90. The average value of these grades is

E =
60 + 90

2
= 75. (5)

Suppose that the new teaching method T ′ leads to the grades x′
1 = x′

2 = 70.
The average of the new grades is E ′ = 70.

Since the average grade decreases, the traditional conclusion would be that
the new teaching method T ′ is not as efficient as the original method T . How-
ever, one possible objective may be to decrease the failing rate. Usually, 70
is the lowest grade corresponding to C, and any grade below C is considered
failing. In this case,

• in the original teaching method, one of the two students failed, while

• in the new teaching method, both students passed the class.

Thus, with respect to this objective, the new teaching method is better.
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4 Towards Selecting the Optimal Teaching Strat-

egy: Possible Objective Functions

Motivations. Since the traditional approach – of using the average grade as
a criterion – is not always adequate, let us formulate the general problem of
optimal teaching.

General description. To formulate this problem, we must know how the
relative “quality” of a given teaching strategy can be determined from the
grades x1, . . . , xn. In this section, we will denote the corresponding dependence
by f(x1, . . . , xn).

The traditional approach. In particular, the traditional approach corre-
sponds to using the average

f(x1, . . . , xn) =
x1 + . . . + xn

n
. (6)

Minimizing failure rate. The objective of minimizing the failure rate means
that we minimize the number of students whose grade is below the passing
threshold x0:

f(x1, . . . , xn) = #{i : xi < x0}. (7)

Comment. Since the general objective is to maximize the value of the ob-
jective function f(x1, . . . , xn), we can reformulate the criterion (7) as a max-
imization one: namely, minimizing (7) is equivalent to maximize the number
of students whose grade is above (or equal to) the passing threshold x0:

f(x1, . . . , xn) = #{i : xi ≥ x0}. (8)

No child left behind. Other criteria are also possible. For example, the
idea that no child should be left behind means, in effect, that we gauge the
quality of a school by the performance of the worst student – i.e., of the student
with the lowest grade min(x1, . . . , xn). Thus, the corresponding objective is to
maximize this lowest grade:

f(x1, . . . , xn) = min(x1, . . . , xn). (9)

Maximizing success rate. The quality of a high school is often gauged by
the number of alumni who get into prestigious schools. In terms of the grades
xi, this means, crudely speaking, that we maximize the number of students
whose grade exceeds the minimal entrance grade e0 for prestigious schools:

f(x1, . . . , xn) = #{i : xi ≥ e0}. (10)
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From the mathematical viewpoint, this criterion is equivalent to minimizing
the number of students whose grade is below e0 – and is, thus, equivalent to
criterion (7), with x0 = e0,

Best school to get in. There is a version of the above criterion which is not
equivalent to (7), when the quality of a high school is gauged by the success
of the best alumnus: e.g., “one of our alumni got into Harvard”. In terms of
the grades xi, this means, crudely speaking, that we maximize the highest of
the grades max(x1, . . . , xn), i.e., that we take

f(x1, . . . , xn) = max(x1, . . . , xn). (11)

Case of independence. An important practical case is when students are,
in some reasonable sense, independent. This case has been actively analyzed in
decision theory. In particular, it has been proven that the corresponding objec-
tive function can be represented as the sum of “marginal” objective functions
representing different participants, i.e.,

f(x1, . . . , xn) = f1(x1) + . . . + fn(xn); (12)

see, e.g., [1, 2].

In this case, increasing the grade of one of the students will make the
situation better – so it is reasonable to assume that all the functions fi(xi) are
strictly increasing.

Criteria combining mean and variance. Another possible approach comes
from the fact that the traditional criterion– that only takes into account the
average (mean) grade E is not always adequate. The reason for inadequacy
is that the mean does not provide us any information about the “spread” of
the grades, i.e., the information about how much the grades deviate from the
mean. This information is provided by the standard deviation σ, or, equiv-
alently, the sample variance V = σ2. Thus, we arrive at criteria of the type
f(E, V ).

When the mean is fixed, usually, we aim for the smallest possible variation
– unless we gauge a school by its best students. Similarly, when the variance
is fixed, we aim for the largest possible mean.

Thus, it is reasonable to require that the objective function f(E, V ) is an
increasing function of E and a decreasing function of V .
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5 Towards Selecting the Optimal Teaching Strat-

egy: Formulation of the Problem

Let ei(xi) denote the amount of effort (time, etc.) that is need for i-th student
to achieve the grade xi. Clearly, the better grade we want to achieve, the more
effort we need, so each function ei(xi) is strictly increasing.

Let e denote the available amount of effort. In these terms, the problem of
selecting the optimal teaching strategy means that we maximize the objective
function under the constraint that the overall effort cannot exceed e:

Maximize f(x1, . . . , xn) (13)

under the constraint
e1(x1) + . . . + en(xn) ≤ e. (14)

6 Explicit Solution: Case of Independent Stu-

dents

For the case of independent students, when the objective function has the form
(12), it is possible to derive an explicit solution to the corresponding constraint
optimization problem (13), (14).

First we note that, due to monotonicity, if the total effort is smaller than
e, then we can spend more effort and get the better value of the objective
function (12). In other words, the maximum is attained when all the effort is
actually used, i.e., when we have the constraint

e1(x1) + . . . + en(xn) = e. (15)

To maximize the objective function (12) under this constraint, we can use the
Lagrange multiplier method. According to this method, the maximum of the
function (12) under constraint (15) is attained when for some value λ, the
auxiliary function

f1(x1) + . . . + fn(xn) + λ · (e1(x1) + . . . + en(xn)) (16)

attains its (unconstrained) maximum. Differentiating this auxiliary function
with respect to xi and equating the derivatives to 0, we conclude that

f ′
i(xi) + λ · e′i(xi) = 0, (17)

where f ′
i and e′i denote the derivatives of the corresponding functions. From

this formula, we can explicitly describe λ as

−f ′
i(xi)

e′i(xi)
= λ. (18)
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So, once we know λ, we can find all the corresponding grades xi – and the
resulting efforts – by solving, for each i, a (non-linear) equation (18) with a
single variable xi.

The value λ can be found from the formula (15), i.e., from the condition

that for the resulting values xi, we get
n∑

i=1

ei(xi) = e.

7 Explicit Solution: “No Child Left Behind”

Case

In the No Child Left Behind case, we maximize the lowest grade. For this
objective function, there is also an explicit solution. Since our objective is to
maximize the lowest grade, there is no sense to use the effort to get one of the
student grades better than the lowest grade – because the lowest grade will
not change. From the viewpoint of the objective function, it is more beneficial
to use the same efforts to increase the grades of all the students at the same
time – this will increase the lowest grade.

In this case, the common grade xc that we can achieve can be determined
from the condition (15), i.e., from the equation

e1(xc) + . . . + en(xc) = e. (19)

Comment. A slightly more complex situation occurs when we start not at the
beginning, but at the intermediate situation when some students already have
some knowledge. Let us denote the starting grades by x

(0)
i . Without losing

generality, let us assume that the students are sorted in the increasing order
of their grades, i.e., that x

(0)
1 ≤ . . . ≤ x

(0)
n . In this case, the optimal effort

distribution aimed at maximizing the lowest grade is as follows:

• first, all the efforts must go into increasing the original grade x
(0)
1 of the

worst student to the next level x
(0)
2 ;

• if this attempt to increase consumes all available effort, then this is what
we got;

• otherwise, if some effort is left, we raise the grades of the two lowest-
graded students x1 and x2 to the yet next level x

(0)
3 , etc.

In precise terms, the resulting optimal distribution of efforts can be described
as follows. First, we find the largest value k for which all the grades x1, . . . , xk

can be raised to the k-th original level x
(0)
k . In precise terms, this means the

largest value k for which

e1(x
(0
k ) + . . . + ek(x

(0)
k ) ≤ e. (20)
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This means that for the criterion min(x1, . . . , xn), we can achieve the value

x
(0)
k , but we cannot achieve the value x

(0)
k+1.

Then, we find the value x ∈ [x
(0)
k , x

(0)
k+1) for which

e1(x) + . . . + ek−1(x) + ek(x) = e. (21)

This value x is the optimal value of the criterion min(x1, . . . , xn).

8 Explicit Solution: “Best School to Get In”

Case

If the criterion is the Best School to Get In, i.e., in terms of grades, the largest
possible grade xi, then the optimal use of effort is, of course, to concentrate
on a single individual and ignore the rest. Which individual to target depends
on how much gain we will get. In other words,

• first, for each i, we find xi for which ei(xi) = e, and then

• we choose the student with the largest value of xi as a recipient of all
the efforts.

9 Need to Take Uncertainty Into Account

Assumptions: reminder. In the above text, we assumed that:

• we know exactly the benefits f(x1, . . . , xn) of achieving the knowledge
levels corresponding to the grades x1, . . . , xn; for example, we know the
exact expressions for the marginal functions fi(xi);

• we know exactly how much effort ei(xi) is needed to bring each student
i to a given grade level xi, and

• we know exactly the level of knowledge xi of each student – it is exactly
determined by the grade xi.

In practice, we have uncertainty.

Average benefit function. First, we rarely know the exact marginal func-
tion fi(xi) characterizing each individual student. At best, we know the aver-
age function u(x) describing the average benefits of grade x to a student.
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Average effort function. Second, we rarely know the exact effort function
ei(xi) characterizing each individual student. At best, we know the average
function e(x) describing the average effort needed to bring a student to the
level of knowledge corresponding to the grade x.

Interval uncertainty. Finally, the grade x̃i is only an approximate indica-
tion of the student’s level of knowledge. Once we know the grade x̃i, we cannot
conclude that the level of knowledge xi is exactly x̃i. At best, we know the
accuracy εi of this representation. In this case, the actual (unknown) level of

knowledge xi can take any value from the interval xi = [xi, xi]
def
= [x̃i−εi, x̃i+εi].

Under interval uncertainty, instead of a single value of the objective func-
tion f(x1, . . . , xn), we get an interval of possible values

[f, f ] = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}. (22)

10 How to Take Uncertainty Into Account

Let us analyze how we can take into account these different types of uncer-
tainties.

Average benefit function: general situation. Let us first consider the
case when instead of the individual benefit functions f1(x1), . . . , fn(xn), we
only know the average benefit function u(x). In this case, for a combination
of grades x1, . . . , xn, the resulting value of the objective function is

f(x1, . . . , xn) = u(x1) + . . . + u(xn). (23)

Smooth benefit functions. Usually, the benefit function is reasonably
smooth. In this case, if (hopefully) all grades are close, we can expand the func-
tion u(x) in Taylor series around the average grade, and keep only quadratic
terms in this expansion. The general form of this quadratic approximation is

u(x) = u0 + u1 · x + u2 · x2, (24)

for some coefficients u0, u1, and u2. For this function, the expression (23) for
the objective function takes the form

f(x1, . . . , xn) = n · u0 + u1 ·
n∑

i=1

xi + u2 ·
n∑

i=1

x2
i , (25)

i.e., the form
f(x1, . . . , xn) = f0 + f1 · E + f2 · M, (26)
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where f0
def
= n · u0, f1

def
= n · u1,f2

def
= n · u2, E is the average (1), and M is the

second sample moment:

M
def
=

1

n
·

n∑
i=1

x2
i . (27)

Thus, for smooth benefit functions u(x), to estimate the benefit of a given
combination of grades x1, . . . , xn, it is not necessary to know all these n grades,
it is sufficient to know the average grade and the mean squared grade (or,
equivalently, the standard deviation of the grades).

Comment. In general, the benefit function u(x) is increasing with xi. How-
ever, it is worth mentioning that this conclusion holds for every quadratic
function u(x), not necessarily a function which is increasing for all the values
x1, . . . , xn.

Case of interval uncertainty. Until now, we assumed that we know the
exact values x1, . . . , xn of the students’ knowledge levels. What will happen if
instead, we only know intervals [xi, xi] of possible values of xi?

Since the benefit function u(x) is increasing (the more knowledge the bet-
ter),

• the largest possible value f of the objective function is attained when
the values xi are the largest possible xi = xi, and

• the smallest possible value f of the objective function is attained when
the values xi are the smallest possible xi = xi.

In other words, we get the following interval [f, f ] of possible values f(x1, . . . , xn)
of the objective function:

[f, f ] =

[
n∑

i=1

u(xi),
n∑

i=1

u(xi)

]
. (28)

Comment. We mentioned that for the case of smooth (quadratic) benefit
function and exactly known xi, we do not need to keep all n grades – it is
sufficient to keep only the first and second sample moments of these grades.
A natural question is: in the case of interval uncertainty, do we need to keep
n intervals, or can we use a few numbers instead? In the Appendix, we show
that under interval uncertainty, in the general case, all n values are needed.
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Appendix

Interval Uncertainty, Smooth Benefit Function:

Analysis

Informal description of our result. In the main text, we mentioned that
for the case of smooth (quadratic) benefit function u(x) and exactly known
xi, we do not need to keep all n grades, it is sufficient to keep only the first
and second sample moments of these grades. Let us show that for interval
uncertainty, all n bounds are needed.

Specifically, we will prove the following.

Precise formulation of the result. Suppose that we have n intervals [x̃i−
εi, x̃i + εi]. We will consider a non-degenerate case when all the grades x̃i are
different.

Let us assume that for every quadratic function u(x), we know the range
[f, f ] of the function u(x1) + . . . + u(xn) over the intervals [x̃i − εi, x̃i + εi].
Then, based on the ranges corresponding to different quadratic functions u(x),
we can uniquely reconstruct the original collection of intervals.

In other words, if two different non-degenerate collections of intervals lead
to exact same ranges for every quadratic function, then these collections coin-
cide – i.e., they differ only by permutations.

Comment. It is not known whether the same is true if we allow arbitrary –
not necessarily non-degenerate – collections of intervals.
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Proof. For every quadratic function u(x), the largest possible value f of the

sum
n∑

i=1

u(xi) is attained when each of the terms u(xi) is the largest possible,

and is equal to the sum of the corresponding n largest values:

f = f 1 + . . . + fn. (29)

For every real number a, the quadratic function u(x) = (x−α)2 attains its
largest value on the interval [x̃i − εi, x̃i + εi] at one of the endpoints x̃i − εi or
x̃i + εi. One can easily check that:

• when a ≤ x̃i, then the largest possible value f i of u(x) on the interval
[x̃i − εi, x̃i + εi] is attained when xi = xi = x̃i + εi and is equal to
f i = (xi − a)2;

• when a ≥ x̃i, then the largest possible value f i of u(x) on the interval
[x̃i − εi, x̃i + εi] is attained when xi = xi = x̃i − εi and is equal to
f i = (xi − a)2.

Let us use this fact to describe the dependence of f on the parameter a.
When a �= x̃i, the value f is the sum of n smooth expressions.
At each point a = xi, all the terms f j in the sum f are smooth except for

the term f i that turns from (xi − a)2 to (xi − a)2. The derivative of f i with
respect to a changes from 2 · (a − xi) to 2 · (a − xi), i.e., increases by

2 · (a − xi) − 2 · (a − xi) = 2 · (xi − xi) = 4 · εi. (30)

Since all the other components f j are smooth at a = x̃i, at a = x̃i, the

derivative of the sum f(a) also increases by 4εi.
Thus, once we know the value f for all a,

• we can find the values x̃i as the values at which the derivative is discon-
tinuous; and

• we can find each value εi as 1/4 of the increase of the derivative at the
corresponding point x̃i.

The statement is proven.

Estimating f(E, V ) under interval uncertainty. Let us now consider
the case when the objective function has the form f(E, V ), where f(E, V )
increases as a function of E and decreases as a function of V . How can we
estimate the range [f, f ] of the values of this objective function under interval
uncertainty xi ∈ [xi, xi]?
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In general, this range estimation problem is NP-hard already for the case
f(E, V ) = −V ; see, e.g., [3]. This means, crudely speaking, that unless P=NP
(and most computer scientists believe that P�=NP), no efficient (polynomial
time) algorithm can always compute the exact range.

The maximum of the expression f(E, V ) can be found efficiently. For that,
it is sufficient to consider all 2n+2 intervals [r, r] into which the values xi and
xi divide the real line, and for each of these intervals, and for each r ∈ [r, r],
take the values

• xi = xi when xi ≤ r;

• xi = r when [r, r] ⊆ [xi, xi]; and

• xi = xi when r ≤ xi.

(The proof is similar to the ones given in [3].)
For the minimum of f(E, V ), for reasonable cases, efficient algorithms are

also possible. One such case is when none of the intervals [xi, xi] is a proper
subset of another one, i.e., to be more precise, when xi, xi �⊆ (xj , xj).

In this case, a proof similar to the one from [3] shows that if we sort the
intervals in lexicographic order

[x1, x1] ≤ [x2, x2] ≤ . . . ≤ [xn, xn], (31)

where
[a, b] ≤ [b, b] ↔ a < b ∨ (a = b & a ≤ b), (32)

then the minimum of f is attained at one of the combinations

(x1, . . . , xk−1, xk, xk+1, . . . , xn) (33)

for some xk ∈ [xk, xk]. Thus, to find the minimum, it is sufficient to sort the
values, and then find the smallest possible value of f(E, V ) for each of n + 1
such combinations.
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