文章编号:1004-0609(2010)08-1618-05

# MoSi<sub>2</sub>加热元件的高温碳化

陈 辉<sup>1</sup>,马 勤<sup>1,2</sup>,宋秋香<sup>1</sup>

(1. 兰州理工大学 甘肃省有色金属新材料省部共建国家重点实验室,兰州 730050;2. 兰州理工大学 有色金属合金省部共建教育部重点实验室,兰州 730050)

摘 要:采用 XRD、SEM 和 EPMA 技术研究 MoSi<sub>2</sub>棒材的高温碳化行为。结果显示:试样心部仍为 MoSi<sub>2</sub>相, 碳化产物为 Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C;碳化层组织疏松,有大量圆形孔洞存在,厚度约为 500~800  $\mu$ m,心部组织表现为 MoSi<sub>2</sub> 沿晶和穿晶脆性断裂特征;碳化产物位于三元 Mo-Si-C 平衡相图中 Mo<sub>5</sub>Si<sub>3</sub>、Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C 三相区内, 试样由内到外,Mo<sub>2</sub>C 含量逐渐升高;碳化产物主要由 Mo<sub>5</sub>Si<sub>3</sub>碳化形成,而并非 MoSi<sub>2</sub>的直接碳化产物。 关键词:MoSi<sub>2</sub>;碳化行为;Mo<sub>5</sub>Si<sub>3</sub>C;加热元件 中图分类号:TB304;TF125 文献标志码:A

## Carbonation behavior of MoSi<sub>2</sub> at high temperature

CHEN Hui<sup>1</sup>, MA Qin<sup>1, 2</sup>, SONG Qiu-xiang<sup>1</sup>

(1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials,

Lanzhou University of Technology, Lanzhou 730050, China;

2. Key Laboratory of Non-ferrous Metal Alloys, Ministry of Education,

Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: The carbonation behavior of  $MoSi_2$  at high temperature was investigated by XRD, SEM and EPMA. The results show that the internal part of the sample consists of  $MoSi_2$ . The major carbonization productions are  $Mo_5Si_3C$  and  $Mo_2C$ . The structure of carbonized layer is loose and there is a large number of circular holes with thickness of about 500–800  $\mu$ m. The internal microstructure of the specimen shows brittle fracture characteristics of  $MoSi_2$ . The carbonized products locate at the  $Mo_5Si_3$ ,  $Mo_5Si_3C$  and  $Mo_2C$  three-phase region of the ternary Mo-Si-C equilibrium phase diagram. The content of  $Mo_2C$  gradually increases from inner to extra of the sample. The carbonized products form from carbonizing  $Mo_5Si_3$ , rather than a direct carbonization product of  $MoSi_2$ .

**Key words:** MoSi<sub>2</sub>; carbonation behavior; Mo<sub>5</sub>Si<sub>3</sub>C; heating element

难熔金属硅化物(MoSi<sub>2</sub>)兼具金属和陶瓷的双重 特性<sup>[1]</sup>,因具有较高的熔点(2 030 )、较好的高温抗 氧化性和耐腐蚀性<sup>[2-5]</sup>、良好的导热性和导电性以及良 好的热稳定性和强度,而被认为是一种极具潜力的超 高温结构材料<sup>[6-9]</sup>。目前,MoSi<sub>2</sub>被广泛应用是作为高 温电炉使用的电热元件<sup>[10-13]</sup>。MoSi<sub>2</sub>发热元件在1000 以上氧化气氛中加热时,因选择性氧化在表面生成 一层致密的石英玻璃保护膜,可阻止内部基体的进一 步氧化。在空气介质中, $MoSi_2$ 发热元件的最高使用 温度为1900 ,炉温可以达到1850  $^{[14-15]}$ 。然而, 在石油化工、化学工业、煤气转化及热处理等行业中, 电热材料经常暴露于 CO、CH<sub>4</sub> 或 C<sub>3</sub>H<sub>8</sub>等含碳气氛中, 这些气氛通过如下反应产生活性碳原子: CO+H<sub>2</sub>==C+H<sub>2</sub>O (1)

基金项目:甘肃省自然科学基金资助项目(3ZS061-A25-038);兰州理工大学特色研究方向资助项目(T200304)

收稿日期:2009-09-18;修订日期:2010-03-25

通信作者:马 勤,教授,博士;电话:0931-2976064;E-mail:maq@lut.cn

(2)

 $CH_4 = C + 2H_2$ 

 $2CO = C + CO_2 \tag{3}$ 

电热材料 MoSi<sub>2</sub>与反应放出的活性碳反应,发生碳化,从而加速电热元件的失效与损坏。

对二硅化钼电热元件的高温碳化研究,至今未见 到相关报道。本文作者针对某企业在非氧化性气氛中 使用二硅化钼元件导致元件过早失效破坏现象,对碳 化元件的心部组织、过渡层组织及碳化层组织进行了 组织结构分析,并对其高温碳化行为进行了初步探讨。

### 1 试验过程

试验原料采用某企业提供的经高温碳化失效的 MoSi<sub>2</sub>棒材。将 MoSi<sub>2</sub>棒材线切割出 10 mm 长的棒材 4 段,进行分析测试。第一段棒材经砂纸打磨抛光后, 使用体积比为 1:6:7 的 HF-HNO<sub>3</sub>-H<sub>2</sub>O 腐蚀液腐蚀 2~5 s,观察试样的金相组织;取第二段棒材用砂纸打 磨抛光后不腐蚀,进行偏光组织观察和心部 XRD 物 相分析;第三段棒材在不露出心部组织(MoSi<sub>2</sub>)的前提 下,将碳化层打磨出不同深度的横截面,进行 XRD 分析;取第四段棒材脆断后进行断口形貌观察。

采用 MEF3 光学显微镜观察试样的明场和偏光组 织;采用 X 射线衍射仪(日本理学 Rigaku D/max-2400 型,Cu 靶, λ=0.154 18 nm)分析试样的物相组成;采 用电子探针(EPMA)分析试样的微区成分;利用场发射 扫描电子显微镜(FESEM)观察试样的表面形貌和断口 组织;并对其碳化过程进行分析。

### 2 结果与讨论

图 1 所示为 MoSi<sub>2</sub>电热元件碳化后的 SEM 像。由 图 1 可以看出,电热元件在含碳气氛中长期使用后, 表面已明显被碳化,碳化层组织疏松,厚度约为 500 μm。

为进一步分析电热元件碳化后的物相转变,分别 对心部组织和碳化层进行 XRD 分析,如图 2 所示。 由图 2 可看出,碳化后试样的心部组织与碳化层的物 相发生明显改变,试样心部组织的主要物相仍为 MoSi<sub>2</sub>,碳化层的主要物相除了 MoSi<sub>2</sub>外,还生成了 Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C 碳化物,这进一步说明试样已发生 明显的碳化腐蚀。

图 3 所示为试样心部组织与渗碳层的 SEM 像。

<u>100 шт</u>

#### 图 1 试样的 SEM 像

Fig.1 SEM image of sample





**Fig.2** XRD patterns of internal organization (a) and carbonation layer (b) of sample

由图 3 可看出,心部组织主要由白色的 MoSi<sub>2</sub>和黑色 的 SiO<sub>2</sub>玻璃相组成(见如图 3(a))。从图 3(b)心部组织 的偏光显微镜照片上也可以看到,黑色相在偏光下表 现出明显的黑十字效应,证明其黑色相为玻璃相。而 图 3(c)的碳化层主要由白色、灰色和黑色 3 种相组成, 电子探针微区成分分析其白色相为 Mo<sub>5</sub>Si<sub>3</sub>C 及少量 Mo<sub>5</sub>Si<sub>3</sub>,灰色相为 MoSi<sub>2</sub>,黑色为玻璃粘土相。其成 分组分如表 1 所列。电子探针分析并没有观察到 Mo<sub>2</sub>C 的存在,其原因有待进一步研究。

### 2.2 试样的断口分析

图 4 所示为试样碳化后表面、心部组织与碳化层 的断口形貌。其中,图 4(a)所示为试样的表面断口照 片,图 4(b)和(c)所示分别为心部组织与碳化层的断口 放大照片。由图 4 可以看出,试样表层有一层厚度约 500~800 μm 的碳化层,碳化层组织疏松,有大量的圆



#### 表1 试样心部组织和碳化层的 EPMA 分析结果

 Table 1
 EPMA analysis results of internal organization and carbonations layer for sample

| Sample zone           | Phase color | Mole fraction/% |        |       |                                       |
|-----------------------|-------------|-----------------|--------|-------|---------------------------------------|
|                       |             | Мо              | Si     | С     | Other component (Cl, K, Na, P, Ca, O) |
| Internal organization |             | 34.743          | 63.857 | -     | 1.399                                 |
| Carbonation layer     | White       | 62.512          | 35.166 | 0.441 | 1.881                                 |
|                       | Gray        | 39.672          | 56.727 | 1.859 | 1.742                                 |
|                       | Black       | _               | 46.909 | 0.361 | 52.730                                |

形孔洞存在,这是由于试样碳化过程中形成的挥发性物质从试样中排出,从而在试样碳化层中留下大小不一的孔洞。而试样心部组织的断口照片表现出明显的 MoSi<sub>2</sub> 沿晶和穿晶脆性断裂特征。

### 2.3 试样的碳化过程

为了进一步对试样的碳化过程进行分析,对碳化 层的外表层和内层组织进行了 XRD 分析,其结果如 图 5 所示。由图 5 可以看出,碳化层表面层主要物相 为 Mo<sub>2</sub>C 和 Mo<sub>5</sub>Si<sub>3</sub>C,而碳化层内层的主要物相为 MoSi<sub>2</sub>、Mo<sub>2</sub>C 和 Mo<sub>5</sub>Si<sub>3</sub>C。由 Mo<sub>2</sub>C 和 Mo<sub>5</sub>Si<sub>3</sub>C 衍射 峰强度可知,在外表层,Mo<sub>2</sub>C 的含量较高;在内表 层,Mo<sub>5</sub>Si<sub>3</sub>C 的含量较高,试样由内到外 Mo<sub>2</sub>C 含量 逐渐升高。说明碳化初期以 Mo<sub>5</sub>Si<sub>3</sub>碳化生成 Mo<sub>5</sub>Si<sub>3</sub>C 为主,后期以 MoO<sub>3</sub>碳化生成 Mo<sub>2</sub>C 为主。碳化产物 Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C 位于三元 Mo-Si-C 平衡相图的 *A* 区 (见图 6<sup>[16]</sup>),即 Mo<sub>5</sub>Si<sub>3</sub>、Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C 三相区内。



图 5 试样碳化层的 XRD 谱

Fig.5 XRD patterns of carbonation layer: (a) Inner; (b) Surface



**Fig.6** Simplified isothermal section of Mo-Si-C ternary system at 1 200  $^{[16]}(T \text{ phase is } Mo_5Si_3C)$ 

产物中并没有发现  $MoSi_2$ 的碳化产物 SiC,可见碳化 主要为  $Mo_5Si_3$ 的碳化,而并非  $MoSi_2$ 的直接碳化产物。

根据试样碳化后的物相组成以及 Mo-Si-C 三元平 衡相图、分析试样碳化过程中可能发生了如下的反应:

 $2MoSi_2 + 7O_2 = 2MoO_3 + 4SiO_2$  (4)

 $5MoSi_2 + 7O_2 = Mo_5Si_3 + 7SiO_2$  (5)

 $Mo_5Si_3+2CO = Mo_5Si_3C+CO_2$ (6)

 $2MoO_3 + 8CO = Mo_2C + 7CO_2 \tag{7}$ 

 $2CO = C + CO_2 \tag{8}$ 

$$SiO_2+C=Si+CO_2$$
 (9)

 $SiO_2+Si=2SiO$  (10)

随着温度的升高,试样中的  $MoSi_2$  首先与气体中 混合的部分  $O_2$  发生如式(4)和(5)的反应,生成  $MoO_3$ 、  $Mo_5Si_3$  及  $SiO_2$ 。生成的  $Mo_5Si_3$ 和  $MoO_3$  会与气体中的 CO 发生如式(6)和(7)的反应,生成  $Mo_5Si_3C$  和  $Mo_2C$ 。 此外,在高温下,CO 可发生分解反应生成活性 C 和  $CO_2$  气体。活性 C 与  $SiO_2$  发生如式(9)的反应,生成  $CO_2$ 和 Si。在高温下,Si 还可以和  $SiO_2$  发生反应生成 挥发性的 SiO,如反应式(10)。反应过程中生成的气体 和挥发性物质在试样中留下孔洞,使气体进一步扩散, 最终导致试样失效。

### 3 结论

1) 试样经碳化后,其心部物相仍为 $MoSi_2$ ,碳化 产物为 $Mo_2C$ 和 $Mo_5Si_3C$ ;在碳化层外表层, $Mo_2C$ 的 含量较高,内表层 $Mo_5Si_3C$ 的含量较高,试样由内到 外 $Mo_2C$ 含量逐渐升高;

 2)碳化层组织疏松,厚度约 500~800 μm,有大量的圆形孔洞存在,试样心部组织表现出明显的 MoSi<sub>2</sub>沿晶和穿晶脆性断裂特征。

 3) 碳化初期以 Mo<sub>5</sub>Si<sub>3</sub>碳化生成 Mo<sub>5</sub>Si<sub>3</sub>C 为主, 后期以 MoO<sub>3</sub>碳化生成 Mo<sub>2</sub>C 为主,碳化产物 Mo<sub>5</sub>Si<sub>3</sub>C
 和 Mo<sub>2</sub>C 位于三元 Mo-Si-C 平衡相图的 Mo<sub>5</sub>Si<sub>3</sub>、
 Mo<sub>5</sub>Si<sub>3</sub>C 和 Mo<sub>2</sub>C 三相区内;碳化主要为 Mo<sub>5</sub>Si<sub>3</sub>的碳 化,而并非 MoSi<sub>2</sub>的直接碳化产物。

#### REFERENCES

[1] 黄朝晖,胡建辉,杨景周,刘艳改,房明浩. MoSi₂高温氮化行为的研究[J]. 稀有金属材料与工程,2007,36:276-278.
 HUANG Zhao-hui, HU Jian-hui, YANG Jing-zhou, LIU Yan-gai,

FANG Ming-hao. Nitridation behavior of MoSi<sub>2</sub> at high temperature[J]. Rare Metal Materials and Engineering, 2007, 36: 276–278.

[2] 张厚安, 刘心宇, 陈 平, 唐果宁. 稀土和 Mo<sub>5</sub>Si<sub>3</sub> 强韧化 MoSi<sub>2</sub> 材料的磨粒磨损特性[J]. 中国有色金属学报, 2002, 12(1): 136-139.

ZHANG Hou-an, LIU Xin-yu, CHEN Ping, TANG Guo-ning. Abrasive wear behaviors of MoSi<sub>2</sub> reinforced by rare earth and Mo<sub>5</sub>Si<sub>3</sub> under dry friction[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 136–139.

- [3] YEH C L, CHEN W H. Combustion synthesis of MoSi<sub>2</sub> and MoSi<sub>2</sub>-Mo<sub>5</sub>Si<sub>3</sub> composites[J]. Journal of Alloys and Compounds, 2007, 438(2): 165–170.
- [4] GUO Zhi-quan, BLUGAN G, GRAULE T, REECE M, KUEBLER J. The effect of different sintering additives on the electrical and oxidation properties of Si<sub>3</sub>N<sub>4</sub>-MoSi<sub>2</sub> composites[J]. Journal of the European Ceramic Society, 2007, 27(5): 2153-2161.
- [5] ZHANG Hou-an, LIU Xin-yu, NING Ai-lin, LONG Chun-guang. Rare earth activated sintering of MoSi<sub>2</sub> and its electric conductivity[J]. Trans Nonferrous Met Soc China, 2001, 11(1): 141–144.
- [6] 冯培忠,曲选辉,杜学丽,崔大伟,田建军,臧若愚.陶瓷矿
   物改性 MoSi<sub>2</sub> 发热元件的组织结构和性能[J].北京科技大学
   学报,2006,28(7):664-667.

FENG PEI-zhong, QU Xuan-hui, DU Xue-li, CUI Da-wei, TIAN Jian-jun, ZANG Ruo-yu. Microstructure and properties of an MoSi<sub>2</sub> heating element modified by ceramic compound[J]. Journal of University of Science and Technology Beijing, 2006, 28(7): 664–667.

- [7] PATEL M, SUBRAMANYUAM J, BHANU PRASAD V V B. Synthesis and mechanical properties of nanocrystalline MoSi<sub>2</sub>-SiC composite[J]. Scripta Materialia, 2008, 58(3): 211–214.
- [8] PETROVIC J J. Toughening strategies for MoSi<sub>2</sub>-based

high-temperature structural silicides[J]. Intermetallics, 2000, 8(9/11): 1175–1182.

- [9] 马勤, 王翠霞, 薛群基, 何 荔, 朱雪斌. Mo/2Si 混合粉末 的摩擦化学效应[J]. 摩擦学学报, 2002, 22(2): 126-129.
   MA Qin, WANG Cui-xia, XUE Qun-jin, HE Li, ZHU Xue-bin. Tribochemical effects of Mo/2Si powder mixture in ball milling[J]. Tribology, 2002, 22(2): 126-129.
- [10] VASUDEVAN A K, PETROVIC J J. Comparative overview of molybdenum disilicide composites[J]. Mater Sci Eng A, 1992, 155(1/2): 1–17.
- [11] PETROVIC J J. Toughening strategies for MoSi<sub>2</sub>-based high-temperature structural silicides[J]. Intermetallics, 2000, 8(9/11): 1175–1182.
- [12] 马 勤, 阎秉钧, 康沫狂, 杨延清. 金属硅化物的应用与发展
  [J]. 稀有金属材料与工程, 1999, 28(1): 10-13.
  MA Qin, YAN Bin-jun, KANG Mo-kuang, YANG Yan-qing.
  Development and applications of metal silicides[J]. Rare Metal Materials and Engineering, 1999, 28(1): 10-13.
- [13] MEIER S, HEINRICH G. Processing-microstructure-properties relationship of MoSi<sub>2</sub>-SiC composites[J]. Journal of the European Ceramic Society, 2002, 22: 2357–2363.
- [14] 王晓虹,任耀剑,冯培忠. MoSi<sub>2</sub>发热元件表面保护膜的形貌 与结构[J]. 机械工程材料,2008,32(1):63-66.
  WANG Xiao-hong, REN Yao-jian, FENG Pei-zhong. Scale of MoSi<sub>2</sub> heating element[J]. Materials for Mechanical Engineering, 2008, 32(1):63-66.
- [15] 冯培忠, 王晓虹, 缪姚军. 一种 MoSi<sub>2</sub>发热元件的组成和结构 分析[J]. 硅酸盐通报, 2007, 26(5): 939-942.
  FENG Pei-zhong, WANG Xiao-hong, MIAO Yao-jun. Analysis of composition and microstructure of MoSi<sub>2</sub> heating element[J].
  Bulletin of the Chinese Ceramic Society, 2007, 26(5): 939-942.
- [16] van LOO F J J, SMET F M, RIECK G D, VERSPUI G. Phase relations and diffusion paths in the Mo-Si-C system at 1 200
   [J]. High Temp High Press, 1982, 14: 25–31.

(编辑 李艳红)