Applied Mathematical Sciences, Vol. 3, 2009, no. 52, 2553 - 2562

An Algorithm for the Calculation of Progress or Regress via TOPSIS and Malmquist Productivity Index

Z. Iravani¹

Department of Mathematics, Shahre-Rey Branch Islamic Azad University, Tehran, Iran

F. Hosseinzadeh Lotfi

Department of Mathematics, Science and Research Branch Research Branch, Islamic Azad University Tehran 14515-775, Iran

M. Ahadzadeh Namin

Department of Mathematics, Science and Research Branch, Islamic Azad University Tehran 14515-775, Iran

Abstract

In this paper, the TOPSIS method is used for two times t and t + 1. In order to calculate the progress or regress via Malmquist index, the positive and negative ideal and negative ideals at time t and t + 1 are calculated first, then we consider the distance all of the possible alternatives among by positive ideal and negative ideal at time periods of t and t + 1. Then we calculate the distance of all the A_j for the positive ideal and negative ideal for the other time period. Then we use the Malmquist productivity index to calculate the progress or regress of all A_j .

Keywords: Topsis, Positive ideal solution, Nagative ideal solution, Malmquist index, Progress, Regress

¹Corresponding author: Z. Iravani, E-mail:zohrehiravani@yahoo.com

	c_1	c_2	•	•	•	c_n
A_1	x_{11}	x_{12}				x_{1n}
A_2	x_{21}	x_{22}			•	x_{2n}
		•				
		•				
		•				
A_m	x_{m1}	x_{m2}				x_{mn}

Table 1: Matrix format a MCDM problem

1 Introduction

Decision-making problem is the process of finding the best option among all of the feasible alternatives. For many problems, the decision-maker wants to solve a multiple criteria decision making (MCDM) problem. In the MCDM, the managerial level defines the goals and chooses the final optimal alternative. The multi-criteria nature of decisions is emphasized at this managerial level, at which public officials called decision makers have the power to accept or reject the solution proposed by engineering level [1].

In classical MCDM methods, the rating and the weights of the criteria are known precisely [2,3]. A survey of the methods has been presented in Hwang and Yoon [3]. Technique for order performance by similarity to ideal solution(TOPSIS) [4], one of the known classical MCDM methods, was first developed by Hwang and Yoon [3] for solving a MCDM problem.

2 TOPSIS method

A MCDM problem can be concisely expressed in the matrix format as

$$w = [w_1, \ldots, w_n]$$

Where A_1, \ldots, A_m are the possible alternatives among which decision makers have to choose; c_1, \ldots, c_n , are the criteria with alternative performance which are measured; x_{ij} is the rating of alternative A_i with respect to criterion c_j ; w_j is the weight of criterion c_j .

TOPSIS method is presented in Chen and Hwang [1], in reference to Hwang and Yoon [2]. TOPSIS is a multiple criteria method to identify the solution from a finite set of alternatives. The basic principle is that the chosen alternative should have the shortest distance from the positive ideal solution and the

\mathbf{t}	c_1	c_2	•	•	•	c_n
A_1	x_{11}^t	x_{12}^{t}		•	•	x_{1n}^t
A_2	x_{21}^t	x_{22}^{t}	•	•	•	x_{2n}^t
•	•	•	•	•	•	•
•	•	•	•	•	•	•
			•	•	•	
A_m	x_{m1}^t	x_{m2}^t	•	•	•	x_{mn}^t

Table 2: Matrix format in time t

t	c_1	c_2	•	•	•	c_n
A_1	x_{11}^{t+1}	x_{12}^{t+1}	•	•	•	x_{1n}^{t+1}
A_2	x_{21}^{t+1}	x_{22}^{t+1}	•	•	•	x_{2n}^{t+1}
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•		•	•	•	•	•
A_m	x_{m1}^{t+1}	x_{m2}^{t+1}	•	•	•	x_{mn}^{t+1}

farthest distance from the negative ideal solution. The procedure of TOPSIS can be expressed in a set of steps:

- 1. First we calculate the normalized decision matrix.
- 2. Then we calculate the weighty normalized decision matrix.
- 3. After that we calculate the positive and negative ideals.
- 4. We calculate distance of all DMs by the positive and negative ideals.

3 Calculate progress or regress via TOPSIS and Malmquist Index

Suppose we have matrix (1) in two times of t and t + 1 as follows: Now we can calculate the normalized decision matrices (2) and (3). The normalized value of n_{ij} is calculated as Where n_{ij}^t and n_{ij}^{t+1} are defined by (1) and (2) as follows:

$$n_{ij}^{t} = \frac{x_{ij}^{t}}{\sqrt{\sum_{i=1}^{m} (x_{ij}^{t})^{2}}} \qquad j = 1, \dots, n \qquad i = 1, \dots, m \tag{1}$$

t	c_1	c_2	•	•	•	c_n
A_1	n_{11}^t	n_{12}^{t}				n_{1n}^t
A_2	n_{21}^{t}	n_{22}^{t}	•		•	n_{2n}^t
•	•	•	•	•	•	•
•	•	•	•	•	•	•
		•				
A_m	n_{m1}^t	n_{m2}^t	•	•	•	n_{mn}^t

Table 4: Normalized matrix in time t

Table 5: Normalized matrix in time t+1

t+1	c_1	c_2	•	•	•	c_n
A_1	n_{11}^{t+1}	n_{12}^{t+1}	•	•	•	n_{1n}^{t+1}
A_2	n_{21}^{t+1}	n_{22}^{t+1}				n_{2n}^{t+1}
	•	•	•	•	•	•
	•	•		•	•	•
A_m	n_{m1}^{t+1}	n_{m2}^{t+1}		•		n_{mn}^{t+1}

$$n_{ij}^{t+1} = \frac{x_{ij}^{t+1}}{\sqrt{\sum_{i=1}^{m} (x_{ij}^{t+1})^2}} \qquad j = 1, \dots, n \qquad i = 1, \dots, m \tag{2}$$

Now consider the normalized matrices (4) and (5). Then we calculate the weighty normalized decision matrices (6) and (7) by relations (3) and (4) as follows: where v_{ij}^t and v_{ij}^{t+1} are

$$v_{ij}^t = w_i^t n_{ij}^t$$
 $j = 1, \dots, m, i = 1, \dots, n$ $\sum_{i=1}^n w_i^t = 1$ (3)

t	c_1	c_2	•		•	c_n
A_1	v_{11}^t	v_{12}^{t}	•	•	•	v_{1n}^t
A_2	v_{21}^{t}	v_{22}^t	•		•	v_{2n}^t
•	•	•	•	•	•	•
•	•	•	•	•	•	•
A_m	v_{m1}^t	v_{m2}^t	•		•	v_{mn}^t

Table 6: Weighty Normalized matrix in time	e 6: Weighty Normalized matrix	in time	e t
--	--------------------------------	---------	-----

t+1	c_1	c_2		•		c_n
A_1	v_{11}^{t+1}	v_{12}^{t+1}				v_{1n}^{t+1}
A_2	v_{21}^{t+1}	v_{22}^{t+1}		•	•	v_{2n}^{t+1}
		•				
	•	•	•	•	•	•
	•	•		•	•	•
A_m	v_{m1}^{t+1}	v_{m2}^{t+1}				v_{mn}^{t+1}

Table 7: Weighty Normalized matrix in time t+1

$$v_{ij}^{t+1} = w_i^{t+1} n_{ij}^{t+1}$$
 $j = 1, \dots, m, i = 1, \dots, n$ $\sum_{i=1}^n w_i^{t+1} = 1$ (4)

Here we have the positive ideal and the negative ideal at times t and t + 1 as follows

$$A^{t} = \{v_{1}^{+t}, \dots, v_{n}^{+t}\} = \{(\max_{j} v_{ij}^{t} \mid i \in I), (\min_{j} v_{ij}^{t} \mid i \in J)\}$$
$$B^{t} = \{v_{1}^{-t}, \dots, v_{n}^{-t}\} = \{(\min_{j} v_{ij}^{t} \mid i \in I), (\max_{j} v_{ij}^{t} \mid i \in J)\}$$

where A^t and B^t represent the positive ideal and the negative ideal at time t respectively. I is associated with the benefit criteria and J is associated with the cost criteria. Similarly, at time t + 1 we have

$$A^{(t+1)} = \{v_1^{+(t+1)}, \dots, v_n^{+(t+1)}\} = \{(\max_j v_{ij}^{(t+1)} \mid i \in I), (\min_j v_{ij}^{(t+1)} \mid i \in J)\}$$

$$B^{(t+1)} = \{v_1^{-(t+1)}, \dots, v_n^{-(t+1)}\} = \{(\min_j v_{ij}^{(t+1)} \mid i \in I), (\max_j v_{ij}^{(t+1)} \mid i \in J)\}$$

where $A^{(t+1)}$ and $B^{(t+1)}$ represent the positive ideal and the negative ideal at time (t+1) respectively.

Now we can calculate the separation measuring, using the n-dimensional Euclidean distance. The separation of each alternative from the ideal solution is given as

$$p_j^{(t)(t)} = \left\{ \sum_{j=1}^n (v_{ij}^t - v_i^{+t})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(5)

$$n_j^{(t)(t)} = \left\{ \sum_{j=1}^n (v_{ij}^t - v_i^{-t})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(6)

where $p_j^{(t)(t)}$ and $n_j^{(t)(t)}$ represent the distance to the positive ideal and the negative ideal respectively, at time t.

$$p_j^{(t+1)(t+1)} = \left\{ \sum_{j=1}^n (v_{ij}^{t+1} - v_i^{+t+1})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(7)

$$n_j^{(t+1)(t+1)} = \left\{ \sum_{j=1}^n (v_{ij}^{t+1} - v_i^{-t+1})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(8)

where $p_j^{(t+1)(t+1)}$ and $n_j^{(t+1)(t+1)}$ represent the distance to the positive ideal and the negative ideal respectively, at time t+1. Now we have

$$p_j^{(t)(t+1)} = \left\{ \sum_{j=1}^n (v_{ij}^t - v_i^{+t+1})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(9)

$$n_j^{(t)(t+1)} = \left\{ \sum_{j=1}^n (v_{ij}^t - v_i^{-t+1})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(10)

and

$$p_j^{(t+1)(t)} = \left\{ \sum_{j=1}^n (v_{ij}^{t+1} - v_i^{+t})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(11)

$$n_j^{(t+1)(t)} = \left\{ \sum_{j=1}^n (v_{ij}^{t+1} - v_i^{-t})^2 \right\}^{\frac{1}{2}}, \qquad j = 1, \dots, m$$
(12)

Where $p_j^{(t)(t+1)}$ is distance A_j at time t from the positive ideal at time t+1, Similarly, we define the $p_j^{(t)(t+1)}$, and $n_j^{(t)(t+1)}$ are distance A_j at time t from the negative ideal in time t+1.

But if the distance of the positive ideal is less and the distance of the negative ideal is more, decision-making is better. Then M^+ and M^- are the positive ideal and the negative ideal can be defined as

$$M^{+} = \frac{p_{j}^{(t+1)(t+1)}}{p_{j}^{(t)(t)}} \left[\frac{p_{j}^{(t+1)(t+1)}}{p_{j}^{(t+1)(t+1)}} \cdot \frac{p_{j}^{(t)(t+1)}}{p_{j}^{(t+1)(t)}} \right]^{\frac{1}{2}}$$
(13)

$$M^{+} = \left[\frac{p_{j}^{(t+1)(t+1)}}{p_{j}^{(t)(t+1)}} \cdot \frac{p_{j}^{(t+1)(t)}}{p_{j}^{(t)(t)}}\right]^{\frac{1}{2}}$$
(14)

$$M^{-} = \frac{n_{j}^{(t)(t)}}{n_{j}^{(t+1)(t+1)}} \left[\frac{n_{j}^{(t+1)(t+1)}}{n_{j}^{(t)(t+1)}} \cdot \frac{n_{j}^{(t+1)(t)}}{n_{j}^{(t)(t)}} \right]^{\frac{1}{2}}$$
(15)

$$M^{-} = \left[\frac{n_{j}^{(t)(t+1)}}{n_{j}^{(t+1)(t+1)}} \cdot \frac{n_{j}^{(t)(t)}}{n_{j}^{(t+1)(t)}}\right]^{\frac{1}{2}}$$
(16)

Now by (20) and (21) we have

- 1. If $M^+ > M^-$, there is progress.
- 2. If $M^+ < M^-$, there is regress.
- 3. If $M^+ = M^-$, we don't have anything.

4 Example

In this section, we work out a numerical example to illustrate the TOPSIS method for decision-making problems via Malmquist productivity index in time t and t+1.

\mathbf{t}	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
c_1	2	3	5	1	4	8	2	5
c_2	1	3	4	6	7	5	9	6
And	1 1 4	Δ	Λ	Δ	Δ	Λ	Δ	Δ
ι+.	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
c_1	2	3	4	2	3	6	2	5
c_2	1	3	4	6	7	5	9	6

In this example, A_1, \ldots, A_8 are projects at time t and t + 1. C_1 is the cost and C_2 is the benefit.

Fig. 1. The ideal negative and positive at time t and t+1

where the solid circle defined $A_j, j = 1, ..., m$ at time t and the circle defined $A_j, j = 1, ..., m$ at time t + 1.

c_1	c_2	$n_{ij}(c_1)$	$n_{ij}(c_2)$	$p_j^{(t)(t)}$	$n_j^{(t)(t)}$	$p_j^{(t)(t+1)}$	$n_j^{(t)(t+1)}$
2	1	0.164399	0.0628669	0.129969	0.247453	0.2368254	0.208075
3	3	0.246598	0.565825	0.131583	0.2095668	0.217468	0.169546
5	4	0.140997	0.251478	0.175578	0.148187	0.20585	0.110979
1	6	0.082199	0.377217	0143849	0.287698	0.262874	0.249133
4	7	0.328798	0.440086	0.148187	0.175578	0.206693	.0135719
8	5	0.657596	0.314347	0.287698	0.143849	0.258204	0.139083
2	9	0.164399	0.565825	0.129969	0.247453	0.236825	0.208075
5	6	0.410997	0.377217	0.175578	0.148187	0.20585	0.110979

where $A^t = (0.0411, 0.164399)$ and $B^t = (0.328798, 0.02055)$ are the positive ideal and negative ideal respectively.

c_1	c_2	$n_{ij}(c_1)$	$n_{ij}(c_2)$	$p_j^{(t+1)(t+1)}$	$n_j^{(t+1)(t+1)}$	$p_j^{(t+1)(t)}$	$n_j^{(t+1)(t)}$
2	2	0.193347	0.123325	0.215819	0.19579	0.116804	0.235737
3	4	0.290021	0.246651	0.161557	0.171998	0.111734	0.210572
4	1	0.386695	0.061663	0.264919	0.096674	0.202533	0.13584
2	5	0.193347	0.308313	0.123325	0.22933	0.05651	0.267829
3	8	0.290021	0.493301	0.057333	0.260012	0.132524	0.291375
6	6	0.580042	0.369976	0.214332	0.154157	0.249771	0.168948
2	9	0.193347	0.554964	0.096674	0.3134	0.126001	0.34626
5	6	0.483368	0.369976	0.171998	0.161557	0.201638	0.186088

where $A^{t+1} = (0.096674, 0.277482)$ and $B^{t+1} = (0.290021, 0.030831)$ are the positive ideal and negative ideal respectively.

	M^+	M^{-}
1	0.904982193	1.056202483
2	0.733530519	0.990476666
3	1.213492469	1.11906877
4	.429300085	1.0080251343
5	.49805999	0.560831676
6	.848930811	0.876460394
$\overline{7}$	0	0.688819
8	0.82746141	0.739611035

Here A_1 , A_2 , A_4 , A_5 , A_6 , A_7 have regress and A_3 , A_8 have progress.

5 Conclusion

Topsis is a multiple criteria method to identify solution from a finite set of alternative based on simultaneous minimization of distance from an ideal point and maximization of distance from a nadir point, and in this paper we calculate progress or regress by Malmquist index via Topsis method.

References

- [1] Duckstein L., S. Opricovic, "Multiobjective optimization in river basin development", Water Resources Research 16(1)(1980)14-20
- [2] Dyer J. S., P. C. Fishburn, R. E. Steuer, J. Wallenius and S. Zionts, " Multiple criteria decision making, Multiattibute utility theory", *Management Science* 38(5) (1992)645-654.
- [3] Hwang C. L., K. yoon, "Multiple Attribute Decision making", Methods and Application, springer, berlin Heidelberge", 1981.
- [4] Lui Y. J., c. L. Hwang, "TOPSIS for MODM", European Journal of Oper-

ational Research 76(3)(1994)486-500.

[5] Chen S. J., C.L. Hwang, "Fuzzy Multiple Attribute Decision Making", Methods and Application, Springer-Verlag, Berlin, 1992.

Received: March, 2009