
Biology of Sport, Vol. 27 No2, 2010   111

Acute hepatic response to diet modification

Reprint request to:
José Moncada-Jiménez,
P.O.Box 239-1200 (Pavas)
San Jose, Costa Rica
Tel.  +506 8857-5738
Fax. +506 2225-0749
E-mail: jose.moncada@ucr.ac.cr

 Accepted 
for publication  

3.02.2010

INTRODUCTION
The gastrointestinal system is not only responsible for nutrient 
absorption, but also for hosting beneficial bacteria. A failure to keep 
bacteria within the intestines will produce a state called endotoxemia 
in which bacterial lipopolysaccharides (LPS) or endotoxin translocates 
to reach the liver. LPS translocation might occur when factors such 
as a reduction in splanchnic blood flow, ischemia, long stays at 
altitude, or increased body core temperature affect the integrity of 
the intestinal wall [23,63]. Indeed, splanchnic blood flow decreases 
in an inversely proportional manner in relation to the percentage of 
maximal oxygen consumption (VO2max) achieved during exercise 
[20]. LPS elicits a cytokine-mediated pro-inflammatory response 
that can eventually evolve in sepsis and heat stroke.
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ABSTRACT: The purpose of the study was to compare the acute hepatic response to diet modification and 
exercise-induced endotoxemia, and to determine if associations exist between liver damage markers, body core 
temperature, and IL-6 responses to a laboratory-based duathlon. Eleven moderately-trained healthy males 
followed a low-carbohydrate (CHO) and a high CHO diet to change their glycogen stores two-days before 
completing a duathlon. Blood samples were obtained at rest, immediately after and 1- and 2-h following the 
duathlon for determination of endotoxin-lipopolysaccharide binding protein (LPS-LBP) complex, IL-6, and liver 
integrity markers AST, ALT, and AST/ALT ratio. Hydration status and body core temperature were assessed at rest, 
during, and after the duathlon. Athletes were more dehydrated and had higher AST/ALT ratios in the low- 
compared to the high-CHO diet trial regardless of the measurement time (p<0.05). IL-6 increased from resting 
to immediately after, 1- and 2-h following duathlon regardless of the diet (p<0.05). A higher LPS-LBP complex 
concentration was observed from rest to immediately after the duathlon. No significant correlations were found 
between LPS-LBP complex levels and body core temperature. In conclusion, athletes on a low-CHO diet showed 
higher hepatic structural damage and finished more dehydrated compared to athletes on a high-CHO diet. Body 
core temperature and LPS-LBP complex levels were unrelated beyond the increase in body core temperature 
explained by exercise. No significant associations were found between body core temperature, IL-6 and LPS-LBP 
complex concentrations.
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The mechanism for cytokine activation involves binding of LPS 
to serum lipopolysaccharide-binding protein (LBP) to form the LPS-
LBP complex [62]. LBP is an acute-phase protein synthesized in 
hepatocytes considered an opsonin (i.e., can enhance the uptake of 
bacteria by phagocytic cells) for activation of macrophages (e.g., 
Kupffer cells) by LPS [38,64]. LPS-LBP complex catalyzes the transfer 
of LPS to membrane-bound soluble CD14, and is considered a marker 
of bacterial translocation, transport, and clearance [17]. 

Once the LPS binds to LBP, the intracellular signal transduction 
occurs that leads to a proinflammatory response mediated by 
cytokines such as interleukin-6 (IL-6) released from macrophages 
[62]. Therefore, a direct association is hypothesized between  
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LPS-LBP complex and IL-6 [65]. Others have reported subclinical 
increases in circulating pro-inflammatory IL-6 during strenuous 
exercise [27,60]. 

Endurance and resistance training exercise also promote changes 
in liver damage markers in humans, as previously reported during 
cycling and running competitions [10,13,35,41,49,52,57].  
The chronic effect of exercise in the detoxifying ability of the liver 
has been studied in animal models where rats who trained for 
10-weeks showed lower hepatic damage than their sedentary 
counterparts [9]. This evidence in an animal model clearly suggests 
a training adaptation of the liver in its ability to detoxify noxious 
substances such as LPS. How these findings might be extrapolated 
to humans is debatable and subject to research.

In spite of the evidence showing that the liver potential to 
metabolize and clear different drugs is reduced in the presence of 
LPS [61], the precise mechanisms involved are poorly understood. 
We suggest a hypothesis that explains that one of such mechanisms 
might be the initial endogenous energy supply of the liver since LPS 
clearance is an energy-dependent process carried out by the liver 
resident macrophages, the Kupffer cells. A similar hypothesis was 
studied in a rat model where fasting reduced or deactivated temporarily 
the activity of the Kupffer cells [55]. However, the study was 
conducted using an animal organ donor model, and not a human 
exercise-induced hepatotoxicity model. 

Therefore, the purpose of this study was to compare the acute 
hepatic response to initial endogenous hepatic energy levels and 
exercise-induced endotoxemia, and to determine if associations exist 
between liver damage markers, body core temperature, and IL-6 
responses to a laboratory-based duathlon. Our main hypothesis was 
that endogenous liver energy stores, as manipulated by diet and 
endurance exercise, would elicit a differential acute response in 
markers of liver damage and the LPS-LBP complex-mediated IL-6 
response.

MATERIALS AND METHODS 
Subjects. Eleven moderately-trained healthy males 

(age=36.64±4.95 yr; VO2max=57.36±7.41 ml/kg/min; 
height= 1.74±0.06 m; weight=74.47±7.66 kg; DEXA body 
fat=17.22±6.63%; fat-free mass=61.42±5.85 kg) participated 
in the study. They trained for middle and long distance events such 
as marathon and triathlon on an average of 11 h•wk-1, including 
running on average 13 km•wk-1 and cycling 24 to 40 km•wk-1. 
Written informed consent was obtained from each subject prior to 
participation, and the Institutional Review Board from Auburn 
University approved the study. Based on the IL-6 response to exercise 
from previous studies [6,14], and using the nQuery Advisor® 
statistical sample size software, it was estimated that a sample size 
of 10 would have a power (β =0.80) to detect an effect size of 0.996 
with a 0.05 significance level [43].

Protocol. The protocol initially involved screening with a health 
history questionnaire for current use of nonsteroidal anti-inflammatory 

drugs (NSAID). Volunteers were not allowed to participate if they 
had anemia, any gastrointestinal disorders or other chronic disorders. 
Participants were also excluded if they had a cardiac pacemaker or 
other implanted electromedical device, were current cigarette 
smokers, had an acute or chronic illness or infection, food allergies, 
or any vaccinations within the previous two-week period.

Liver energy manipulation and exercise intervention. Liver energy 
stores were modified by diet and exercise as described elsewhere 
[36]. Briefly, two isoenergetic diets were designed for each 
participant, a glycogen depletion diet or low carbohydrate (CHO) 
(low-CHO) and a diet high in CHO (high-CHO). The nutrient content 
was significantly different for CHO and fat content for both diets. 
Diets were prepared of commercially available pre-packaged foods 
and given to each participant 72-h before an exercise trial taking 
into consideration allotments for breakfast, lunch, dinner, and 
snacks.

Forty-eight hours before completing a duathlon, participants on 
the high-CHO diet were instructed to return to the laboratory to 
complete a 60-min sub-maximal (70% VO2max) jog on the treadmill, 
and 24-h before the duathlon, participants were required to rest. 
During the 48-h in which participants consumed the low-CHO diet, 
they were required to run on a treadmill for 60-min (70% VO2max) 
two-days before the duathlon and 45-min at the same intensity on 
the day prior to the duathlon. Then, participants were instructed to 
rest (i.e., no extra exercise) the day before the duathlon.

Duathlon. On the evening before the experimental session, 
participants were reminded to ingest a silicon-coated pill (HQ Inc., 
Palmetto, FL, USA). This pill was used as the sensor for determining 
core temperatures during the experimental duathlon. The sensor 
was factory-calibrated and was designed to be ingested easily and 
voided with normal bowel movements within 48-h [31].

On the day of the duathlon participants arrived at the laboratory, 
returned empty food packages and voided their bladders before 
body weight was measured. Then, they were instructed to sit quietly 
for 5-min. Next, a fasting blood sample was obtained. Following  
the initial blood draw, participants were provided with a standardized 
breakfast to eat before resting in a comfortable chair. After  
the 60-min the rest period, participants had 10-min to warm up 
and then started the duathlon in the following order: a) treadmill 
run of 5-km (Run-1); b) 30-km stationary cycle (Bike); and c)  
10-km treadmill run (Run-2). The subjects ran at 0% grade and 
were allowed to modify only the treadmill speed. For the cycling 
part of the race, participants had previously attached their own 
bicycles to a CompuTrainer™ (Racer Mate, Inc., Seattle, WA, USA). 
During the duathlon the participants were given the opportunity to 
drink chilled water ad libitum; solid foods were avoided at all times. 
Total volume of ingested liquid was measured for further analyses 
of hydration status. Body temperature was monitored during each 
stage of the duathlon and VO2 was also determined seeking to 
assure an exercise intensity of >70% VO2max. Once the experimental 
session was completed, the subjects were provided with rehydration 
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fluids, fruit, and an appointment for the next visit to the laboratory. 
Experimental exercise sessions were separated by at least 7 days.

Blood sampling and analytical procedures. Antecubital venous 
blood samples were obtained at rest, immediately after and again 
1- and 2-h after the duathlon. Blood samples were obtained for 
determination of hematocrit (Hct) and hemoglobin (Hb). Another 
blood sample was obtained, allowed to clot,  centrifugated at 1500g 
for 15-min to prepare serum aliquots to be stored at -80°C for further 
analysis of  hepatocyte integrity markers aspartate aminotransferase 
(AST) and alanine aminotransferase (ALT) (Flex®Dimension®, Dade 
Behring Inc., Deerfield, IL, USA). Enzyme linked-immuno-sorbent 
assay (ELISA) kits were used for determination of insulin (IN), 
glucagon (GL) (LINCO, St. Charles, MO, USA), LPS-LBP complex, 
and a high-sensitivity human IL-6 (HsIL-6) (Cell Sciences, Inc., 
Canton, MA, USA). Plasma concentration of IL-6 and LPS-LBP were 
corrected to take into consideration changes in plasma volume due 
to exercise [11].

Statistical analysis. Data were analyzed with the Statistical 
Package for the Social Sciences (SPSS®), version 15.0 for Windows. 
Descriptive data are presented as means (M) and standard deviation 
(± SD), and statistical significance was set a priori at p≤0.05. Paired 
samples t tests were used to determine significant mean differences 
between experimental conditions in the dependent variables IN/GL 
ratio, performance time in the duathlon, diet composition, and 
hydration status. Factorial 2 x 4 (diets x time points) repeated 
measures analyses of variance (ANOVA) were computed to analyze 
AST, ALT, the AST/ALT ratio, LPS-LBP complex, and IL-6. Body core 
temperature was analyzed by a 2 x 7 (diets x time points) factorial, 
repeated-measures ANOVA. Percentage VO2max was analyzed by 
a 2 x 3 factorial, repeated-measures ANOVA. For all ANOVA tests, 
appropriate follow-up analyses were computed if significant 
interactions and/or main effects were found. Finally, a Pearson 
product-moment correlation was calculated between body composition 
and IL-6.

RESULTS 
Diet and endogenous hepatic energy change. The two diets had 
similar energy content (~11 MJ); however, the low-CHO diet provided 
significantly more fat (67%) and less CHO (21%) than the high-CHO 
diet (25% fat, 63% CHO) (p<0.001). The protein content from total 
energy for both diets was ~11% (p>0.05). The mean (SD) fasting 

IN/GL ratio in the low-CHO Diet (0.27±0.10) was lower (p≤0.05) 
than the mean ratio on the high-CHO diet (0.39±0.20), indicating 
athlete’s compliance to the dietary regimen and a change in 
endogenous hepatic energy status. 

Hydration status, body core temperature and duathlon 
performance. Analysis of hydration status indicated a higher fluid 
loss (3978.4±1222.4 vs. 3341.8±1235.6 ml) and dehydration 
(-1.6±1.2 vs. -1.0±1.4%) after the low-CHO diet trial compared 
to the high-CHO diet trial (p=0.001). Body core temperature analyses 
did not indicate an interaction effect between diet and measurement 
times (p=0.626). In general, body core temperatures increased from 
resting to the different segments of the race and post-exercise period 
(p≤0.001) regardless of the diet consumed (Fig. 1). No differences 
in mean performance time in the total duathlon were observed during 
the low-CHO diet (136.38±20.09 min) and the high-CHO 
(134.88±20.89 min) diet. Regardless of the dietary trial, the subjects 
performed the duathlon at an intensity of 71.1±2.0% of their 
individually determined VO2max. 

Liver damage markers. Biochemical and immunological variables 
measured in this study are presented in table 1. Repeated measures 
ANOVA indicated no significant interaction between diet and 
measurement time in the AST, ALT, and/or the AST/ALT ratio (p>0.05). 
For AST, the main effect diet showed significant mean differences in 
the low- compared to the high-CHO diet (39.23±3.52 vs. 
29.40±1.75 U/L; p=0.007), whereas the main effect measurement 

FIG. 1.  BODY CORE TEMPERATURE DURING A DUATHLON. VALUES 
ARE COLLAPSED IN SINGLE COLUMNS SINCE NO DIFFERENTIAL 
EFFECTS BETWEEN DIETARY CONDITIONS WERE OBSERVED. BROKEN 
LINES REPRESENT UPPER AND LOWER LIMITS FOR NORMAL RESTING 
BODY TEMPERATURE FOR ADULTS[33]. VALUES ARE MEANS ± SEM.

TABLE 1. BIOCHEMICAL AND IMMUNE PLASMA MARKERS FOR THE EXPERIMENTAL CONDITIONS (M ± SD).

Low-CHO diet High-CHO diet

R I + 1 h + 2 h R I +1 h +2 h

ALT (U/L)a 35.68 ± 5.54 37.05 ± 7.28 34.09 ± 6.37 34.05 ± 7.85 32.09 ± 5.36 34.50 ± 7.02 32.77 ± 7.06 33.61 ± 6.27

AST (U/L)a 31.82 ± 9.90 40.81 ± 11.56 39.97 ± 11.72 40.54 ± 12.50 24.41 ± 4.90 30.80 ± 6.37 29.97 ± 6.34 31.79 ± 6.33

LPS-LBP (pg/ml)a 4.59 ± 1.72 5.91 ± 4.03 4.92 ± 3.14 4.05 ± 1.91 3.84 ± 1.66 4.43 ± 2.10 3.67 ± 1.77 4.07 ± 0.85

IL-6 (pg/ml)a 0.82 ± 0.53 9.23 ± 7.38 5.84 ± 4.40 3.99 ± 3.52 0.73 ± 0.56 8.05 ± 5.19 5.77 ± 3.25 3.58 ± 1.78

Legend: R = resting; I = immediately after duathlon; + 1h = 1-h following duathlon; +2 h = 2-h following duathlon.
a - p > 0.05, for interaction effects (diet condition X measurement time). Significant main effects are presented in the results section.

p<0,05; c +2-h <  a< c +1-h < b
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time indicated significantly higher mean values immediately, 1- and 
2-h following exercise compared to resting values (p<0.001).  
For ALT, a significant measurement time main effect was observed, 
with baseline values lower than immediately after exercise (p=0.010). 
No significant differences were found between immediately, 1- and 
2-h following exercise in ALT values. For AST/ALT ratio, the main 
effect diet showed a ratio higher in the low- compared to the high-
CHO diet (1.15±0.37 vs. 0.89±0.12; p=0.042) (Fig. 2a).  
In addition, the main effect measurement time showed that the AST/
ALT ratio increased from resting to immediately following exercise 
and remained elevated 1- and 2-h following exertion (Fig. 2b).

Endotoxin and IL-6 markers. Regardless of the dietary manipulation, 
intestinal permeability increased immediately following exercise from 
resting as determined by the LPS-LBP complex (Fig. 3a, p≤0.05). 
The mean LPS-LBP complex concentrations increased from resting 
to immediately after exercise and decreased from resting to 1- and 
2-h following exercise (Fig. 3b). Mild-endotoxemia, defined as  
LPS-LBP complex > 5 pg/ml [51], was found at baseline in three 
participants (27%) on the low-CHO diet compared to only one (9%) 
participant on the high-CHO diet. However, endotoxemia was 
observed in six subjects (55%) immediately following exercise in the 
low-CHO diet, compared to five subjects (45%) on the high-CHO 
diet. One-hour after exercise, four (36%) and three (30%) subjects 

in the low and the high-CHO diets had endotoxemia. Finally, 2-h 
following exercise, endotoxemia was found only in one athlete in the 
low- and the high-CHO diets, respectively. The highest LPS-LBP 
complex concentration found in a participant was 16.7 pg/ml 
immediately following exercise in the low-CHO diet condition. 

* - p<0,05

* - p<0,05 from resting

A

B
FIG 2A-B. MAIN EFFECT ANALYSES SHOWS: 
A) AST/ALT RATIO FOLLOWING A LOW- AND A HIGH CHO DIET, 
B) THE RELATIVE CHANGE (∆%) FROM RESTING FOLLOWING 
A DUATHLON.

FIG 3A-B. LPS-LBP COMPLEX ACUTE RESPONSE FOLLOWING 
TWO DIETARY CONDITIONS. PANEL A) SHOWS THE INTERACTION 
BETWEEN DIETARY CONDITIONS AND MEASUREMENT TIME. 
MAIN EFFECT MEASUREMENT TIME WAS SIGNIFICANTLY 
DIFFERENT FROM RESTING (p<0.05). BROKEN LINES 
REPRESENT CUT-OFF POINT FOR MILD ENDOTOXEMIA. PANEL 
B) SHOWS RELATIVE CHANGE (∆%) IN LPS-LBP COMPLEX FROM 
RESTING FOLLOWING A DUATHLON.

A

B

* - p<0,05 main effect measurement time from resting

FIG 4. PLASMA IL-6 CONCENTRATIONS FOR MALES 
PERFORMING A DUATHLON. VALUES ARE COLLAPSED 
INTO SINGLE COLUMNS SINCE NO DIFFERENTIAL EFFECTS 
BETWEEN DIETARY CONDITIONS WERE OBSERVED. VALUES 
ARE MEANS ± SEM.

a<b; p<0,05
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No interaction effect between diet and measurement time on IL-6 
was observed (p>0.05). Main effect measurement time showed an 
IL-6 concentration increased from baseline to immediately following 
duathlon, which remained elevated 1- and 2-h after the exercise 
sessions (Fig. 4). Pearson-product moment correlations in the low-
CHO diet 2-h following exercise indicated an inverse correlation 
between fat-free-mass and IL-6 (r=-0.645; p=0.032). Also, in the 
high-CHO diet 2-h following exercise, an inverse correlation was 
found between fat-free-mass and IL-6 (r=-0.653; p=0.041).

DISCUSSION 
The primary findings of this study were a higher dehydration level 
and a mild increase in markers of hepatic damage in the low-CHO 
diet compared to the high-CHO diet following a duathlon. We found 
an acute exercise-induced mild endotoxemia in both dietary 
conditions and did not find changes in physical performance or 
IL-6 response when initial liver energy status was altered by diet 
and exercise before a duathlon.

The main energy-requiring processes carried out by the liver are 
ureagenesis, futile cycling of substrates, gluconeogenesis, protein 
synthesis, and ketogenesis [37]. We hypothesized that under a low-
CHO diet, hepatic glycogen stores and available energy would be 
reduced and therefore hepatocellular clearance of endotoxins impaired, 
as suggested by animal models where hepatocyte shrinkage and 
damage occurred following intense exercise [18,28,30,55].  
Thus, in the low-CHO diet trial, we expected to find a higher 
hepatocellular damage following exercise compared to the high-CHO 
diet trial. Since LBP is produced by hepatocytes [59], we expected in 
the low-CHO diet to find an inverse correlation between LPS-LBP and 
ALT, a serum transaminase more specific to hepatocellular injury [24]. 
In the low-CHO condition, LPS-LBP complex values were consistently 
higher than in the high-CHO trial at virtually all sampling times from 
resting up to the 2-h following exercise; however, no statistical 
differences or significant associations with ALT were observed.

The AST/ALT ratio is considered a surrogate marker for hepatocyte 
necrosis and inflammation, with values >1.0 suggestive of hepatocyte 
damage [1]. In this study, the AST/ALT ratio was > 1.0 immediately 
following exercise and in the recovery phase (i.e., 1- and 2-h post-
exercise), indicating hepatocyte and liver parenchyma structural 
damage. ALT increased from baseline to immediately following 
exercise, indicating a mild hepatocyte damage possibly explained by 
a combination of factors such as exercise intensity, duration, and 
reperfusion to the liver following exercise [28]. However, even in  
the presence of a reduced hepatic blood flow induced by intense 
exercise, the liver is able to maintain its metabolic functions [39]; 
therefore, using the AST/ALT as a true marker of hepatic damage 
during exercise may be equivocal [49]. 

In the present study, the mean exercise intensity (~70% VO2max) 
elicited by the subjects during the duathlon in both dietary conditions 
was high enough to cause intestinal permeability and bacterial 
translocation from resting as demonstrated by the increased LPS-LBP 

complex concentration. This exercise intensity caused bacterial 
translocation immediately following exercise similar to that reported 
in marathon and ultra-endurance events [3,4,6,7,27,44].  
The increased LPS-LBP complex marker indicated a higher 
transmission of cellular signaling capable of eliciting an increased 
cytokine response. This finding is similar to previous research in 
sedentary and athletic populations [20,46,47]. 

We expected to find a positive correlation between LPS-LBP 
complex levels and body core temperature since endotoxins are 
pyrogenic agents capable of eliciting a febrile-like response [48]. No 
significant correlation coefficients were found between core 
temperature and endotoxin translocation levels measured immediately, 
1- and 2-h following exercise. We suggest that the pyrogenic effect 
of the increased endotoxemia was not significantly greater than the 
expected increase in body temperature associated with exercise (body 
core temperature > 37.8°C). The highest mean core temperature 
recorded in our participants was 40.69°C in the high-CHO diet 
condition who completed the run-2 (10 km) in more than 60 min. 
This figure was slightly below the proposed 41.0°C and 42.0°C shown 
to impair physiologic functions in humans [32]. LBP is produced in 
hepatocytes under IL-6 stimulation to capture and present LPS to 
CD14 and induce the secretion of IL-6 [26]. Therefore, we expected 
to find a correlation between LPS-LBP complex and IL-6; however, 
we were unable to demonstrate a significant correlation in either 
dietary conditions up to 2-h following exercise.

Immune cytokines such as IL-6 have very high metabolic rates 
[5], and therefore fuel availability before, during and after exercise 
is of greater concern for athletes. Others [21] have found that 
compared to high-CHO diets, low-CHO diets significantly impaired 
immune response (e.g., higher cortisol release, neutrophilia, 
leucocytosis, neutrophil:lymphocyte ratio, and IL-6; and lower plasma 
glutamine) following 1-h of cycle ergometer exercise performed at 
70% of their individual VO2max. A very low-CHO diet implies a very 
high-fat dietary content, which has been shown detrimental to 
immune function. We expected to find an increase in IL-6 from 
baseline following exercise in both dietary conditions, as previously 
reported in measurements taken after light, moderate and hard 
intensity exercise performed for short- and long-periods of time 
[2,7,12,22,27,34,40,51]. In our study, IL-6 increased significantly 
from baseline immediately following the duathlon regardless of the 
diet, and remained elevated 1- and 2-h following exercise. This finding 
is consistent to figures shown by marathon runners and athletes 
running in a treadmill for 2.5-h [40,45].

In the present study, our athletes ran at approximately 70% of 
their individual VO2max and were allowed to drink water ad libitum 
until the last blood sample was drawn 2-h after the duathlon.  
We reported an 11-fold increase in IL-6 from baseline that also steadily 
decreased 7- and 5-fold 1-and 2-h following exercise  
(Fig. 4). Others have found 22-fold increases from baseline immediately 
and 1-h following 100-min of cycling exercise at 70% VO2max 
followed by a time-trial test[8]. A mild dehydration (1.6% body mass) 
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