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Abstract

The purpose of the paper is to set up a scheme which embodies and
generalizes a wide class of phase-transition models and, moreover, pro-
vides a direct approach which avoids ad-hoc assumptions. The starting
view is that if the order parameter is a concentration then it satisfies
an appropriate balance equation which is then a constraint expressed
by a partial differential equation. The diffusion flux and the mass sup-
ply, as well as any constitutive function, are allowed to depend on the
gradients up to third order. The body is allowed to be deformable and
this places a mathematical problem about the representation of the to-
tal time derivative of higher-order gradients. The temperature field is
allowed to depend on space and time variables. No additional fields are
introduced. Consistent with the non-locality of the model, the ther-
modynamic analysis is based on a statement of the second law where
the entropy flux is unknown and has to be determined. Non-locality,
entropy flux and evolution equation for the order parameter prove to be
directly interrelated.
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1 Introduction

Phase transition models for two-phase material systems involve an order pa-

rameter, ϕ say, in [0, 1]. If ϕ = 0 only one phase occurs, if ϕ = 1 the other

phase occurs. As ϕ ∈ (0, 1) the body can be viewed as a mixture of the two

phases. For multiphase material systems ϕ is replaced with a set of parame-

ters. As is done in a growing literature on phase transitions (see, e.g. [3, 7, 6]),
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the order parameter ϕ is viewed as a phase field, which means that ϕ is given

by a smooth function, on the space-and-time domain, rather than suffering a

jump discontinuity across a sharp surface. Hence a crucial question is how to

determine the time evolution of ϕ.

A well-known equation governing the evolution of ϕ is named after Ginzburg-

Landau (GL),

βϕ̇ = μΔϕ− g′(ϕ), (1.1)

where β, μ are positive constants [12]; Δ is the Laplacian, the superposed dot

denotes time differentiation and a prime stands for the derivative with respect

to the argument. Equation (1.1) is also named after Allen-Cahn [1].

Another evolution equation is named after Cahn-Hilliard (CH) [4] and reads

ϕ̇ = κΔ[g′(ϕ) − μΔϕ] (1.2)

where κ, μ are positive constants.

Both equations are parabolic but of different order. In addition, (1.1)

was derived by modelling the ordering of atoms within unit cells on a lattice

or phase segregation, (1.2) by modelling the diffusion of atomic species on a

lattice. It is the purpose of this paper to set up a scheme which embodies or

generalizes a wide class of phase-transition models and, moreover, provides a

direct approach which avoids ad-hoc assumptions.

Within continuum physics, a phase field is an additional field which then de-

mands for a corresponding governing equation, like (1.1) or (1.2). The starting

view of this paper is that if ϕ is a concentration then it satisfies an appropriate

balance equation which is then a constraint expressed by a partial differential

equation. Obvious as it may be, this view is rather unusual in the literature;

Ref. [14] is one of the few works which account for the constraint on ϕ within

the mixture theory. Here, however, the model is kept as simple as possible an

hence the description is based mainly on the phases as a single body rather

than a set of constituents at any step. In fact we allow for a multiphase body

and hence ϕ is a set of scalar fields. It is a further advantage of the present

approach that the results still hold formally if the order parameter need not

be a concentration.

The constitutive model is quite general and this suggests that we allow for

the diffuse-interface model by letting appropriate gradients occur in the con-

stitutive equations. For generality, we let the constitutive functions depend on

gradients up to third order. In addition, the body is allowed to be deformable

and this places a mathematical problem about the representation of the total

time derivative of higher-order gradients.
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Differently from other continuum approaches, no use is made of the micro-

force concept (see, e.g., [7, 10, 6]) which is mathematically a way to obtain

eventually the evolution equation for the order parameter. Instead, owing

to the non-locality expressed by the dependence on gradients, we allow for

a general statement of the second law where the entropy flux need not be

the ratio of the heat flux over the absolute temperature. This natural view

shows eventually that non-locality, entropy flux and evolution of ϕ are directly

interrelated.

Notation. Let Ω ⊂ IR3 be the region occupied by the body and x ∈ Ω

a position vector. We use Cartesian coordinates x1, x2, x3 and let ∂p denote

partial differentiation with respect to xp, p = 1, 2, 3. Also t ∈ IR is the time

and ∂t denotes the partial differentiation with respect to time.

2 Preliminary results

The subsequent analysis of the phase-field model involves relations among n-th

order partial derivatives. In this regard we now establish useful identities.

Let k1, ..., kn be a permutation of 1, ..., n. Hence we have the following

Lemma 1. For any pair of Cn function f, h on Ω, the derivative ∂j1 ...∂jn(fh)

can be written as

∂j1 ...∂jn(fh) =

n∑
i=0

n∑
k1,...,kn=1

1

i!(n− i)!
(∂jk1

...∂jki
f)(∂jki+1

...∂jkn
h) (2.1)

Proof. We prove (2.1) by induction. The representation (2.1) holds for n = 1.

This follows at once because n = 1 implies i = 0, 1 and hence i! = 1, (n− i)! =

1. Accordingly k1 = 1 and

∂j1(fh) = f∂j1h + (∂j1f)h.

Now assume that (2.1) holds and show that the same representation holds for

n + 1, namely

∂j1 ...∂jn∂jn+1(fh) =

n+1∑
i=0

n+1∑
k1,...,kn,kn+1=1

1

i!(n+ 1 − i)!
(∂jk1

...∂jki
f)(∂jki+1

...∂jkn
∂jkn+1

h)

(2.2)

We can write (2.2) by observing that ∂jn+1 may be applied to h or to f and

hence

n+1∑
i=0

n+1∑
k1,...,kn,kn+1=1

1

i!(n+ 1 − i)!
(∂jk1

...∂jki
f)(∂jki+1

...∂jkn
∂jkn+1

h)
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=
n∑

i=0

n∑
k1,...,kn=1

n+ 1 − i

i!(n+ 1 − i)!
(∂jk1

...∂jki
f)(∂jki+1

...∂jkn
∂jn+1h)

+
n∑

i=0

n∑
k1,...,kn,=1

i+ 1

(i+ 1)!(n− i)!
(∂jn+1∂jk1

...∂jki
f)(∂jki+1

...∂jkn
h)

=

n∑
i=0

n∑
k1,...,kn=1

1

i!(n− i)!

[
(∂jk1

...∂jki
∂jn+1f)(∂jki+1

...∂jkn
h)

+(∂jk1
...∂jki

f)(∂jki+1
...∂jkn

∂jn+1h)
]

By use of (2.1) it follows that

n+1∑
i=0

n+1∑
k1,...,kn,kn+1=1

1

i!(n+ 1 − i)!
(∂jk1

...∂jki
f)(∂jki+1

...∂jkn
∂jkn+1

h)

= ∂j1 ...∂jn [f∂jn+1h+ (∂jn+1f)h] = ∂j1...∂jn+1(fh).

As a consequence, (2.2) holds for every natural n. �

Corollary 1. For any pair of Cn functions f, h on Ω the following relation

holds,

f∂j1 ...∂jnh = ∂j1 ...∂jn(fh) −
n∑

i=1

n∑
k1,...,kn=1

1

i!(n− i)!
(∂jk1

...∂jki
f)(∂jk1

...∂jkn
h)

(2.3)

Proof. The i = 0 term in (2.1) gives

n∑
k1,...,kn=1

1

n!
f(∂jk1

...∂jkn
h) = f(∂j1 ...∂jnh).

Hence (2.1) provides the identity (2.3). �

Corollary 2. For any pair of Cn, Cn+1 functions vp, g on Ω the following

relation holds,

vp∂p∂j1 ...∂jng = ∂j1 ...∂jn(vp∂pg)−
n∑

i=1

n∑
k1,...,kn=1

1

i!(n− i)!
(∂jk1

...∂jki
vp)(∂jk1

...∂jkn
∂pg)

(2.4)

Proof. The result follows by identifying vp with f and ∂pg with h of Corollary

1. �

For any function g on Ω × IR the total time derivative ġ is defined by

ġ = ∂tg + v · ∇g



Unified approach to evolution equations 343

or, in Cartesian components,

ġ = ∂tg + vp∂pg,

the summation over the repeated index p being understood.

Denote by ˙f...g the total time derivative of the whole overlined expression.

Later on we need a relation for the total time derivative ˙∂j1 ...∂jng in terms of

spatial derivatives. The relation is given by the following

Lemma 2. For any Cn+1 function g on Ω× IR and Cn functions vp on Ω the

derivative ˙∂j1 ...∂jng is given by

˙∂j1...∂jng = ∂j1 ...∂jn ġ −
n∑

i=1

n∑
k1,...,kn=1

1

i!(n− i)!
(∂jk1

...∂jki
vp)(∂jk1

...∂jkn
∂pg).

(2.5)

Proof. By definition,

˙∂j1 ...∂jng = ∂t∂j1...∂jng + vp∂p∂j1...∂jng = ∂j1 ...∂jn∂tg + vp∂j1 ...∂jn∂pg.

By Corollary 2 we have

˙∂j1 ...∂jng = ∂j1 ...∂jn(∂tg+vp∂pg)−
n∑

i=1

n∑
k1,...,kn=1

1

i!(n− i)!
(∂jk1

...∂jki
vp)(∂jk1

...∂jkn
∂pg).

Since ∂tg + vp∂pg = ġ the result (2.5) follows. �

As a comment to (2.5), if n = 1 then

˙∂j1g = ∂j1 ġ − (∂j1vp)(∂pg) (2.6)

or, in compact form,

∇̇g = ∇ġ − LT∇g.
This relation is not new in the literature (see [11, 17]). The term LT∇g results

in an additional term for the stress tensor. The result (2.5) is new for n > 1.

Also for later applications we observe that if n = 2, 3 then (2.5) becomes

˙∂j1∂j2g = ∂j1∂j2 ġ − (∂j1∂j2vp)∂pg − (∂j1∂pg)(∂j2vp) − (∂j1vp)(∂j2∂pg), (2.7)

˙∂j1∂j2∂j3g = ∂j1∂j2∂j3 ġ − (∂j1∂j2∂j3vp)∂pg

−(∂j1∂pg)(∂j2∂j3vp) − (∂j2∂pg)(∂j1∂j3vp) − (∂j3∂pg)(∂j1∂j2vp)

−(∂j1∂j2∂pg)(∂j3vp) − (∂j1∂j3∂pg)(∂j2vp) − (∂j2∂j3∂pg)(∂j1vp) (2.8)
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3 Thermodynamic framework

The phase transition is described by letting the body occur in M phases but

regarding the M phases as a single body to which additional scalar variables,

the phase fields ϕ1, ..., ϕM , are ascribed. The balance equations for mass,

momentum and energy are taken in the classical forms

ρ̇+ ρ∇ · v = 0, (3.1)

ρv̇ = ∇ ·T + ρb, (3.2)

ρė = T · L −∇ · q + ρr. (3.3)

The fields ϕ1, ..., ϕM are identified with the ratios (concentrations) ρ1/ρ, ...,

ρM/ρ of the mass density of the pertinent phase over the mass density of the

body. Owing to the constraint

M∑
α=1

ϕα = 1

we can regard one of the phase fields, say ϕM , as determined by the other ones.

Hence we regard

ϕ = (ϕ1, ..., ϕM−1)

as the set of indipendent phase fields. The single phases are regarded as

reacting constituents. The continuity equation for the α-th constituent can be

written as

ρϕ̇α = −∇ · jα + τα, α = 1, ...,M − 1, (3.4)

where jα is the diffusion flux (of constituent α) and τα is the mass supply due

to the phase transition.

The nonlocal description inherent in the phase field model suggests that

the entropy flux is not merely the ratio q/θ of the heat flux q over the absolute

temperature θ. Hence we assume the existence of an entropy density function

η and an entropy flux q/θ + k, on Ω × IR. They enter the second law of

thermodynamics, in differential form, as follows.

Second law. The inequality

ρη̇ ≥ −∇ · (q
θ

+ k) +
ρr

θ
(3.5)

hold, at each point x ∈ Ω and time t ∈ IR, for all fields Λ = (ρ,v,T, e,q, θ,k,b, r),

of x and t, compatible with the balance equations (3.1)-(3.3) and (3.4).
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The extra-flux k is regarded as unknown and has to be determined so that

the second law holds. It is subject to the boundary condition

k · n|∂Ω = 0

so that the second law for the whole body takes the standard form

d

dt

∫
Ω

ρη dv ≥ −
∫

∂Ω

q

θ
· n da+

∫
Ω

ρr

θ
dv.

Letting ψ = e− θη we can write the inequality (3.5) in the form

−ρ(ψ̇ + ηθ̇) + T · L− 1

θ
q · ∇θ + θ∇ · k ≥ 0. (3.6)

The constitutive properties of the material are expressed by choosing

Γ = (ρ, θ, ϕ,∇ρ,∇θ,∇ϕ,∇∇ρ,∇∇θ,∇∇ϕ,∇∇∇ρ,∇∇∇θ,∇∇∇ϕ)

as the set of independent variables. Hence we let T,q, ψ, η,k, in (3.6), be

functions of Γ.

Remark 1. If ϕ is not a concentration or a set of concentrations then we

formally let jα = 0, write (3.4) as

ϕ̇α = Φα(Γ)

and regard Φα (formally Φα = τα/ρ) as the evolution functions to be deter-

mined as is the case for materials with internal variables [5].

3.1 Thermodynamic restrictions

The relations (2.6)-(2.8) are now applied to prove the following statement.

Proposition 1. The functions ψ(Γ), η(Γ),T(Γ),q(Γ),k(Γ) are compatible

with the second law in the form (3.6) if and only if

η = −ψθ, (3.7)

ψ = ψ(ρ, θ, ϕ,∇ϕ), (3.8)

T = −ρ2ψρ1 − ρ
∑

α

∇ϕα ⊗ ψ∇ϕα , (3.9)

−ρ
∑

α

ψϕαϕ̇α − ρ
∑

α

ψ∇ϕα · ∇ϕ̇α − 1

θ
q · ∇θ + θ∇ · k ≥ 0. (3.10)
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Proof. We evaluate ψ̇ through the chain rule for ψ(Γ), replace ρ̇ with −ρ∇ · v
in view of (3.1), and apply (2.6) and (2.7) with g = ϕα. Hence we can write
(3.6) as

−ρ(ψθ + η)θ̇ + (T + ρ2ψρ1) · L − ρ
∑
α

ψϕαϕ̇α − 1
θ
q · ∇θ + θ∇ · k

−ρψ∇ρ · ∇̇ρ− ρψ∇∇ρ · ˙∇∇ρ− ρψ∇∇∇ρ · ˙∇∇∇ρ
−ρψ∇θ · ∇̇θ − ρψ∇∇θ · ˙∇∇θ − ρψ∇∇∇θ · ˙∇∇∇θ

−
∑
α

ρψ∇ϕα · ˙∇ϕα − ρ
∑
α

ψ∇∇ϕα · ˙∇∇ϕα − ρ
∑
α

ψ∇∇∇ϕα · ˙∇∇∇ϕα ≥ 0. (3.11)

The values of θ̇, ∇̇θ, ˙∇∇θ, ˙∇∇∇θ occur linearly and can be taken arbitrarily.

This implies that (3.11) holds only if ψ is independent of ∇θ,∇∇θ,∇∇∇θ and

(3.7) holds. Now by (2.7) and (2.8) applied to g = ϕα we see that

˙∇∇ϕα = −(∇∇vp)∂pϕα + ..., ˙∇∇∇ϕα = −(∇∇∇vp)∂pϕα + ...,

the dots denoting the remaining terms. Also, by (3.1) and (2.6)-(2.8) we can

write

∇̇ρ = ∇ρ̇− LT∇ρ = −(∇ρ)(∇ · v) − ρ∇(∇ · v) − LT∇ρ,
˙∇∇ρ = −ρ∇∇(∇ · v) + ..., ˙∇∇∇ρ = −ρ∇∇∇(∇ · v) + ... .

The arbitrariness and linearity of ∇∇v, ∇∇∇v and ∇∇∇∇v allow us to

conclude that (3.11) holds only if (3.8) holds. Apply (2.6) to g = ϕα whence

˙∇ϕα = ∇ϕ̇α − LT∇ϕα.

Substitution in the inequality (3.11) gives

(T + ρ2ψρ1 + ρ
∑

α

∇ϕα ⊗ ψ∇ϕα) · L− ρ
∑

α

ψϕαϕ̇α − ρ
∑

α

ψ∇ϕα · ∇ϕ̇α

−1

θ
q · ∇θ + θ∇ · k ≥ 0.

The arbitrariness and linearity of L requires that (3.9) hold. The remaining

inequality is just (3.10).

Conversely, the validity of (3.7) to (3.10) is sufficient for the validity of

(3.6). �

The inequality (3.10) involves ϕ̇α and ∇ϕ̇α. To satisfy the constraints (3.4)

we might replace ϕ̇α with (τα −∇ · jα)/ρ and proceed accordingly. However,

the evaluation of ∇ · jα, ∇(∇ · jα) and ∇ · k leads to a cumbersome relation.
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Alternatively, we can reduce the order of differentiation by observing that

(3.10), for smooth functions, is equivalent to

∇ · (θk − ρ
∑

α

ψ∇ϕαϕ̇α +
∑

α

[∇ · (ρψ∇ϕα) − ρψϕα ]ϕ̇α − k · ∇θ − 1

θ
q · ∇θ ≥ 0.

Hence we can rewrite the left-hand side by inserting the zero quantity

−∇ ·
∑

α

λαθjα + θ
∑

α

jα · ∇λα + θ
∑

α

λα∇ · jα + (
∑

α

λαjα) · ∇θ

where λ1, ..., λM−1 are as yet arbitrary functions of Γ. As a consequence (3.10)

is equivalent to

∇ · (θk − ρ
∑

α

ψ∇ϕαϕ̇α − θ
∑

α

λαjα) − (k −
∑

α

λαjα) · ∇θ − 1

θ
q · ∇θ

+
∑

α

[∇ · (ρψ∇ϕα) − ρψϕα ]ϕ̇α + θ
∑

α

jα · ∇λα + θ
∑

α

λα∇ · jα ≥ 0.(3.12)

Let

w = θk − ρ
∑

α

ψ∇ϕαϕ̇α − θ
∑

α

λαjα.

Since

∇ · w −
∑

α

ξα∇ · jα = (
∂w

∂Γ
−

∑
α

ξα
∂jα
∂Γ

) · ∇Γ,

an inspection of (3.12) leads to an involved set of relations between the compo-

nents of ∂w/∂Γ and ∂jα/∂Γ. For definiteness we prefer to determine a simple

set of conditions which guarantee the validity of (3.10).

Letting

γα :=
ρ

θ
ψϕα −∇ · (ρ

θ
ψ∇ϕα) (3.13)

we can prove the following statement.

Proposition 2. The inequality (3.10) holds if

k =
ρ

θ

∑
α

ψ∇ϕαϕ̇α − 1

ρ

∑
α

γαjα, (3.14)

1

ρ

∑
α

γατα +
∑

α

jα · ∇(γα/ρ) +
1

θ2
q · ∇θ ≤ 0. (3.15)

Proof. Let w = 0 whence

k =
ρ

θ

∑
α

ψ∇ϕαϕ̇α +
∑

α

λαjα. (3.16)
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Since

k −
∑

α

λαjα =
ρ

θ

∑
α

ψ∇ϕαϕ̇α

then
∑

α

[∇ · (ρψ∇ϕα) − ρψϕα ]ϕ̇α − (k −
∑

α

λαjα) · ∇θ

=
∑

α

[∇ · (ρψ∇ϕα) − ρψϕα − ρ

θ

∑
α

ψ∇ϕα · ∇θ]ϕ̇α

= −θ
∑

α

[
ρ

θ
ψϕα −∇ · (ρ

θ
ψ∇ϕα)]ϕ̇α.

Hence, by means of (3.4) and (3.13) we can write (3.12) in the form

−1

ρ

∑
α

γα(τα −∇ · jα) +
∑

α

jα · ∇λα +
∑

α

λα∇ · jα − 1

θ2
q · ∇θ ≥ 0. (3.17)

We now take advantage of the freedom in choosing λα to get rid of ∇· jα. Such

is the case if we let

λα = −1

ρ
γα.

As a consequence, (3.16) and (3.17) become (3.14) and (3.15). �

In conclusion, we regard the thermodynamic restrictions, on functions of Γ,

as the relations (3.7), (3.8), (3.9), (3.14), (3.15). The inequality (3.15) may be

interpreted by viewing the left-hand side as the expression of dissipation (to

within the sign). More restrictive conditions, and interpretations, follow by re-

quiring that each term, for each α, has the appropriate sign. This requirement

provides

γατα ≤ 0, jα · ∇(γα/ρ) ≤ 0, q · ∇θ ≤ 0. (3.18)

This means that the mass supply τα is opposite to γα and the diffusion flux

jα is opposite to ∇(γα/ρ), for any value of Γ. Of course, q · ∇θ ≤ 0 is the

standard inequality of heat conduction.

Remark 2. For more involved Γ it may be difficult to prove (3.8). Models

might be established by assuming (3.8) and hence deriving the restrictions for

the other constitutive functions.

4 Evolution equations

Though we might argue on the inequality (3.15) thus obtaining more general

models, for simplicity we restrict attention to the more severe inequalities

(3.18).
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The first two inequalities imply that

τα = −fα(Γ)γα, (4.1)

jα = −Jα(Γ)∇(γα/ρ), (4.2)

where fα and Jα are positive valued functions; for anisotropic materials Jα is

formally replaced by a positive valued tensor Jα. Both τα and jα are governed

by γα. By (3.13), γα can be viewed as the variational derivative δΨ̃/δϕα of an

appropriate functional Ψ̃. For, since the free energy ψ is independent of ∂tϕα

then letting

Ψ̃[Γ] =

∫
Ω

ρ

θ
ψ(Γ)dv

we have
δΨ̃

δϕα

= γα.

The functional Ψ̃ is 1/θ times the free energy of the whole body if the tem-

perature θ is uniform, ∇θ = 0. In the literature such a functional is named

rescaled free energy. We have thus obtained that in non-isothermal conditions

(∇θ �= 0) the supplies {τα} and the diffusion fluxes {jα} are governed by the

rescaled free energy. Such a free energy is considered in [3] by following the

lines of [2].

By (3.8) and (3.13) we have

γα = (ρ, θ, ϕ,∇ρ,∇θ,∇ϕ,∇∇ϕ)

whence

τα −∇ · jα = φα(Γ).

For definiteness, let fα and Jα be constants and, to save writing, restrict at-

tention to two-phase bodies. Hence we write

τ = −νγ,

j = −κ∇(γ/ρ)

where ν and κ are constants. Also, let

ψ = ψ̂(ρ, θ, ϕ) +
θ

2ρ
ε|∇ϕ|2.

Hence we have

γ =
ρ

θ
ψ̂ϕ − εΔϕ
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and

j = −κ[∇(
1

θ
ψ̂ϕ) − ε∇(

1

ρ
Δϕ)].

The evolution, or continuity, equation (3.4) becomes

ϕ̇ = −ν(1
θ
ψ̂ϕ − ε

ρ
Δϕ) − κ

ρ
Δ(

1

θ
ψ̂ϕ − ε

ρ
Δϕ). (4.3)

Equation (4.3) may be viewed as the simplest evolution equation which gen-

eralizes both the GL equation and the CH equation at the same time. Indeed,

let ρ and θ be constants. If κ = 0 then (4.3) reduces to (1.1). If, instead, ν = 0

then (4.3) reduces to (1.2).

By the definition (3.13) we see that γ equals ρψϕ/θ up to the divergence

of ρψϕ/θ. The divergence arises because of the occurrence of ∇ϕ̇. The factor

1/θ arises from the occurrence of k · ∇θ. Hence γ is the improvement, in the

present approach, of the term ρψϕ which is usually regarded or defined as the

chemical potential.

5 Relations to other models

There are a few approaches to phase transitions in materials with multiple

phases. Among them we mention [8]. Though the scheme is rather different,

there are results similar to the present ones. In particular the extra entropy

flux is shown to be a linear combination of the diffusion fluxes jα and of the

time derivatives ϕ̇α, though the diffusion is ascribed to the constituents and

not to the single phases.

Again, restrict attention formally to two-phase bodies and comment briefly

on other approaches. There are papers where the free energy (Ginzburg-

Landau) functional Ψ is the basic notion and the equilibrium is characterized

by the vanishing of the variational derivative δΨ/δϕ. Upon the view, or the

assumption, that δΨ/δϕ is a generalized thermodynamic force, the evolution

is assumed to be governed by an equation

βϕ̇α =
δΨ

δϕα
,

where β is an appropriate constant. This view is applied e.g. in [15, 16, 9].

Though by different schemes, many papers provide an evolution equation

through the identical validity of the second law. Wang et al [18] require that

the entropy-production functional be positive for any sub-region of the body.
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Hence they find the form of the extra entropy flux and an admissible evolution

equation.

Alt and Pawlow [2] identify the order parameter with the concentration

and hence account for the continuity equation but, deliberately, disregard the

mass supply. They find that the entropy production is non-negative if the

extra entropy flux is μj/θ, μ being the chemical potential. This agrees with

the term γj/ρ in (3.14) in that

1

ρ
γ =

1

θ
ψϕ − 1

ρ
∇ · (ρ

θ
ψ∇ϕ).

Owing to the wide literature on the subject, it is worth mentioning the

approach involving microforces (see, e.g., [7, 10, 6]). In essence, there is an

equilibrium condition between a scalar body force (density) π and a surface

vector force ξ,

π + ∇ · ξ = 0.

Roughly, once ξ is proved to be equal to ψ∇ϕ then a dependence of π on ϕ̇

results in the evolution equation. The rescaling effect does not occur [13].

6 Conclusions

The order parameter ϕ is viewed as the set of concentrations {ϕα} associ-

ated with a multiphase material. Hence ϕ is required to obey the continuity

equations

ρϕ̇α = −∇ · jα + τα

which can be viewed as the evolution equations for {ϕα}. These equations are

operative once we specify the diffusion fluxes {jα} and the mass supplies {τα}.
The thermodynamic analysis shows that the fluxes jα and the supplies τα are

allowed if the inequality (3.15) holds. For definiteness, (4.1) and (4.2) are

constitutive functions compatible with thermodynamics. Since γα = δΨ̃/δϕα

then the whole model turns out to be characterized by the choice of the free

energy density ψ(ρ, θ, ϕ,∇ϕ).

The results apply also when ϕ is not a set of concentrations. In such cases

the evolution equations are taken in the form

ϕ̇α = φα(Γ),

and the pertinent results are recovered by letting jα = 0 and τα = φα/ρ.
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The GL and CH equations are obtained as linear approximations of the

continuity equations. Indeed, the GL equation follows by letting jα = 0, the

CH equation by letting τα = 0.

The identity (2.5), which expresses ˙∇...∇g in terms of ∇...∇ġ, and the

remaining terms, has been essential in the thermodynamic analysis.
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[6] M. Frémond, Non-smooth Thermomechanics, Springer, Berlin, 2001.

[7] E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase

transitions based on an order parameter, Physica D 68 (1993) 326-343.

[8] H. Garcke, B. Nestler and B. Stinner, A diffuse interface model for alloys

with multiple components and phases, SIAM J. Appl. Math. 64 (2004)

775-799.

[9] M. Grasselli and H.G. Rolstein, Hyperbolic phase-field dynamics with

memory, J. Math. Anal. Appl. 261 (2001) 205-230.



Unified approach to evolution equations 353

[10] M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations

based on a microforce balance, Physica D 92 (1996) 178-192.

[11] M.E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and
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