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Abstract

In this paper we present an approximation method of curves by a
new type of spline functions called fairness cubic splines from a given La-
grangian data set under fairness constraints. An approximating problem
of curves is obtained by minimizing a quadratic functional in a para-
metric space of cubic splines. This method is justified by a convergence
result and an analysis of some numerical and graphical examples.
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1 Introduction

In Geology and Structural Geology the reconstruction of a curve or surface
from a scattered data set is a commonly encountered problem. The theory of
Dm–splines over an open bounded set has been introduced at the first time by
M. Attéia [2]. By following the same idea of R. Arcangéli, we have enriched
this theory and extended it to the variational spline functions [8] where the
early works are therein.

Several works have used the variational approach specifically minimizing
some fairness functional (see for example [5], likewise these functional also can
represent the flexed energy of a thin plate [4]) on a finite element space making
the most of the suitable properties of this space (see [7] and [9]) in order to
simplify both characterization and computation of the solution. So we have
planned to resolve in this work a variational approach problem on a finite di-
mensional space that is not a finite element one. This is why we focus in this
paper our interest to minimize a similar fairness functional on a space of cubic
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spline functions that of course is not a finite element one. The resulting func-
tion is called a fairness cubic spline. We study some characterization of this
function and we shall express it as a linear combination of the basis functions
of a parametric space of cubic splines. Moreover, under adequate hypotheses
we prove that such fairness cubic spline converges to a given function from
what are proceeding the data.

We present a numerical and graphical example in order to show the effec-
tiveness and the validity of the method of this paper. We remark that this
work can be considered as an analogous case of the generic problem presented
in [9]. But in this occasion–as mentioned above–we have used an other space
that is not a finite element one in order to reach a great order of smoothness
and to obtain a pleasing shape.

Some fields of applications of this problem can appear in Earth sciences,
specially in Geology and Geophysics, as long as CAD and CAGD etc ...

The remainder of this paper is organised as follows. In Section 2, we briefly
recall some preliminary notations and results. Section 3 is devoted to state
the approximation problem and to present a method to solve it. In Section 4,
we compute the resulting function, while convergence’s Theorem is proved in
Section 5. In Section 6 some numerical and graphical examples are given.

2 Notations and preliminaries

We denote by 〈 · 〉 and 〈 · , · 〉, respectively, the Euclidean norm and inner
product in R

p, with p ∈ N
∗, and for any real interval I = (a, b) with a < b

let H3(I ; Rp) be the usual Sobolev space of (classes of) functions u belong to
L2(I ; Rp), together with all their derivative dβu, in the distribution sense, of
order β ≤ 3. This space is equipped with the norm

‖u‖ =

(∑
β≤3

∫
I

〈
dβu(x)

〉2
dx

)1/2

,

the semi–norms

|u|� =

(∑
β=�

∫
I

〈
dβu(x)

〉2
dx

)1/2

, 0 ≤ � ≤ 3,

and the corresponding inner semi–products

(u, v)� =
∑
β=�

∫
I

〈
dβu(x), dβv(x)

〉
dx, 0 ≤ � ≤ 3.
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Let R
m,p be the space of real matrices of m lines and p columns equipped

with the inner product

〈A, B〉m,p =

m∑
i=1

p∑
j=1

aij bij

with A = (aij) 1≤i≤m
1≤j≤p

, B = (bij) 1≤i≤m
1≤j≤p

and the corresponding norm

〈A〉m,p =

(
m∑

i=1

p∑
j=1

(aij)
2

)1/2

.

Moreover, for any n ∈ N
∗ let Tn = {x0, ..., xn} be a subset of distinct points

of [a, b], with a = x0 ≤ x1 < . . . < xn−1 ≤ xn = b. We denote S3(Tn) the space
of cubic spline functions given by

S3(Tn) =
{
s ∈ C2([a, b]) | s|[xi−1,xi] ∈ P3[xi−1, xi], i = 1, ..., n

}
,

where P3[xi−1, xi] is the restriction on [xi−1, xi] of the vectorial space of real
polynomials of degree ≤ 3. We have that S3(Tn) is a Hilbert subspace of
H3(I) = H3(I ; R) equipped with the same norm, semi–norm and inner semi–
product of H3(I).

Finally, for any n ∈ N
∗ we define the space of parametric cubic spline

functions Vn = (S3(Tn))p constructed from S3(Tn) which verifies

Vn ⊂ H3(I ; Rp) ∩ C2([a, b]; Rp). (2.1)

3 Fairness cubic spline

Let Υ0 ⊂ R
p be a curve defined by a parameterization f belonging to H3(I ; Rp).

For each m ∈ N
∗ let Am = {a1, . . . , am} be a subset of distinct points of [a, b]

such that

sup
x∈I

min
i=1,... ,m

|x − ai| = o

(
1

m

)
, m → +∞, (3.1)

and we suppose that the set Am contains a P2(I ; Rp)–unisolvent subset (see
[3]).

Now, we consider the following problem: Find an approximating curve Υ
of Υ0 from the data points {f(a) | a ∈ Am} parameterized by a function σ of
Vn that minimizes a certain functional in Vn.

For any n, m ∈ N
∗ with m ≥ 3 and τ = (τ1, τ2, τ3) ∈ R

3 with τ1, τ2

belonging to R+ and τ3 > 0, let Jm
τ be the functional defined on H3(I ; Rp) by

Jm
τ (v) =

m∑
i=1

〈v(ai) − f(ai)〉2 +
3∑

j=1

τj |v|2j ·
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Remark 3.1. The first term of Jm
τ (v) indicates how well v approaches f in

a least discrete squares sense. The second term can represent some different
conditions as for example: Fairness conditions (see [5] and [7]), a classical
smoothness measure (see [1]) etc..., while the parameter vector τ weights the
importance given to each condition.

Then, for any n ∈ N
∗ and any m ≥ 3 we consider the following minimization

problem: Find σn,m
τ such that{

σn,m
τ ∈ Vn,

∀v ∈ Vn, Jm
τ (σn,m

τ ) ≤ Jm
τ (v).

(3.2)

Theorem 3.1. The problem (3.2) has a unique solution, called fairness cubic
spline in Vn relative to Am and τ , which is also the unique solution of the
following variational problem: Find σn,m

τ such that⎧⎨⎩
σn,m

τ ∈ Vn,

∀v ∈ Vn,
m∑

i=1

〈σn,m
τ (ai), v(ai)〉 +

3∑
j=1

τj(σ
n,m
τ , v)j =

m∑
i=1

〈f(ai), v(ai)〉 ·

Proof. Taking into account (2.1) and that the following norm

v 
−→ [[v]] =

(
m∑

i=1

〈v(ai)〉2 +
3∑

j=1

τj |v|2j
)1/2

is equivalent in Vn to the norm ‖ · ‖, one easily checks that the symmetric
bilinear ã : Vn × Vn −→ R given by

ã(u, v) =
m∑

i=1

〈u(ai), v(ai)〉 +
3∑

j=1

τj(u, v)j

is a continuous and Vn–elliptic. Likewise, the linear form

ϕ : v ∈ Vn 
−→ ϕ(v) =
m∑

i=1

〈f(ai), v(ai)〉

is continuous. The result is then a consequence of the Lax–Milgram Lemma
(see [3]).

4 Computation

Now well, we are going to show how to obtain in practice any fairness cubic
spline. The σn,m

τ ([a, b]) set for n ∈ N
∗ with m ≥ 3 and a given value of the

parameter vector τ provides a solution for our problem.
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For any n ∈ N
∗ it is known that dim S3(Tn) = n + 3. We consider

{w1, . . . , wn+3} a basis of the space S3(Tn) and {e1, . . . , ep} the canonical one
of R

p. Then, the family {v1, . . . , vZ} is a basis of Vn with Z = p (n + 3) and

∀i = 1, . . . , n + 3, ∀� = 1, . . . , p, j = p(i − 1) + �, vj = wie�.

Thus, σn,m
τ can be written as σn,m

τ =
Z∑

i=1

αivi, with αi ∈ R, for i = 1, . . . , Z.

Applying Theorem 3.1 we obtain a linear system of order Z as follows

C α = b (4.1)

with

C = (cij)1≤i,j≤Z ,

α = (αi)1≤i≤Z,

b = (b1, . . . , bZ)T ,

where for i, j = 1, . . . , Z we have⎧⎪⎪⎨⎪⎪⎩
cij =

m∑
k=1

〈vi(ak), vj(ak)〉 +
3∑

r=1

τr (vi, vj)r ,

bj =
m∑

k=1

〈f(ak), vj(ak)〉 .

Let L be the Lagrangian operator defined from H3(I, Rp) into R
m,p by

Lv =
m∑

i=1

v(ai).

In this case the coefficients of the matrix C are given by

cij = 〈Lvi, Lvj〉m,p +
3∑

r=1

τr (vi, vj)r , ∀i, j = 1, . . . , Z.

Finally, we point out the following result.

Proposition 4.1. The matrix C is symmetric, positive definite and of band
type.

Proof. Obviously the matrix C is symmetric.
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Let now x = (x1, . . . , xZ)T ∈ R
Z , we have

xT C x =
Z∑

i,j=1

xicijxj

=
Z∑

i,j=1

xi

(
〈Lvi, Lvj〉m,p +

3∑
r=1

τr (vi, vj)r

)
xj

=

〈
L

(
Z∑

i=1

xivi

)
, L

(
Z∑

j=1

xjvj

)〉
m,p

+
3∑

r=1

τr

(
Z∑

i=1

xivi,
Z∑

j=1

xjvj

)
r

=

〈
L

(
Z∑

i=1

xivi

)〉2

m,p

+
3∑

r=1

τr

∣∣∣∣ Z∑
i=1

xivi

∣∣∣∣2
r

≥ 0.

Let w =
Z∑

i=1

xivi and we suppose that xT C xT = 0 then one has

〈Lw〉2m,p +
3∑

i=1

τi |w|2i = 0.

Hence, [[ w ]]2 = 0 that implies w = 0 (where [[ · ]] designs the norm defined
in the proof of Theorem 3.1).

Moreover, for the independent linearity of the family {vi}1≤i≤Z . Conse-
quently x = 0 and C is positive definite.

Finally, the matrix C is of band type because for each i = 1, . . . , Z the
function vi has a local support.

To compute in practice the coefficients of the linear system (4.1), we sim-
plify such linear system using the notations

A =

(
m∑

k=1

vi(ak)

)
1≤i≤Z

,

B = (Bs)1≤s≤3 =
(
((vi, vj)s)1≤i,j≤Z

)
1≤s≤3

,

f̂ =
m∑

k=1

f(ak),

hence the system (4.1) is equivalent to(
A AT + τT B

)
α = A f̂.

5 Convergence

Under adequate conditions, we are going to show that the fairness cubic spline
in Vn relative to Am and τ converges to f when m tends to +∞.
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To do this, let f be a function of H3(I ; Rp) and σn,m
τ be the fairness cubic

spline in Vn corresponding to the data given from f .

Theorem 5.1. Suppose that the hypotheses (2.1), (3.1) hold and that

∀i = 1, 2, τi = o(τ3), m → +∞, (5.1)

and
m

τ3 n3
= o(1), m → +∞. (5.2)

Then, one has

lim
m→+∞

‖f − σn,m
τ ‖3 = 0.

Proof. Step 1. First, let s be a parametric cubic spline function of Vn interpo-
lating f on the knots x0, . . . , xn such that s′′(x0) = f ′′(x0) and s′′(xn) = f ′′(xn)
, then we have Jm

τ (σn,m
τ ) ≤ Jm

τ (s) which implies that

|σn,m
τ |23 ≤ 1

τ3

m∑
i=1

〈s(ai) − f(ai)〉2 +
τ1

τ3
|s|21 +

τ2

τ3
|s|22 + |s|23 .

From the properties of the function s it follows that |s|22 ≤ |f |22 (see for
example [6]) and

|s|21 ≤ |s − f |21 + |f |21 =

∫ b

a

(s′ − f ′)2dx + |f |21

≤ (b − a)2

n
|f |22 + |f |21 .

Furthermore, as the function s′′′(x) is a constant Ci in each sub-interval [xi−1, xi]
for i = 1, . . . , n, then we have∫ b

a

f ′′′(x)2dx =

∫ b

a

s′′′(x)2dx +

∫ b

a

E ′′′(x)2dx + 2

∫ b

a

E ′′′(x) s′′′(x)dx (5.3)

where E(x) = f(x) − s(x), but we have that∫ b

a

E ′′′(x) s′′′(x)dx =
n−1∑
i=0

Ci (E
′′(xi+1) − E ′′(xi)) .

It follows that

min
0≤i≤n−1

Ci

n−1∑
i=0

(E ′′(xi+1) − E ′′(xi)) ≤
∫ b

a

E ′′′(x) s′′′(x)dx

≤ max
0≤i≤n−1

Ci

n−1∑
i=0

(E ′′(xi+1) − E ′′(xi)) .
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As
n−1∑
i=0

(E ′′(xi+1) − E ′′(xi)) = E ′′(xn) − E ′′(x0) = 0 then we deduce that

∫ b

a

E ′′′(x) s′′′(x)dx = 0.

Since, from (5.3) one has

|s|23 ≤ |f |23 . (5.4)

Likewise, for one dimension it is known, for all j = 1, . . . , p, that

|(pj ◦ s)(ai) − (pj ◦ f)(ai)| ≤
(

1

n

)3/2 (∫ b

a

((pj ◦ f ′′)(t))2dt

)1/2

where pj , for j = 1, . . . , p, is the j-th canonical projection from R
p into R. So,

we obtain that

m∑
i=1

〈s(ai) − f(ai)〉2 ≤ m p

n3
|f |22.

Then, we have

|σn,m
τ |23 ≤ m p

τ3 n3
|f |22 +

τ1

τ3

(
(b − a)2

n
|f |22 + |f |21

)
+

τ2

τ3
|f |22 + |f |23. (5.5)

Hence, from (5.1), (5.2) and (5.5) we deduced that there exist a constant C > 0
and M ∈ N such that

|σn,m
τ | ≤ C, ∀m ≥ M.

We conclude that the family (σn,m
τ )m∈�∗ is bounded in Vn. It follows that

there exists a sub-sequence
(
σnl,ml

τl

)
l∈�, with τl = τ (ml), lim

l→+∞
ml = +∞, and

an element f∗ ∈ H3(I ; Rp) such that

σn,m
τl

converges weakly to f∗ in H3(I ; Rp). (5.6)

Step 2. Let us now prove that f∗ = f .
We suppose that f∗ �= f . From the continuous injection of H3(I ; Rp) into

C2([a, b]; Rp) it follows that there exists θ > 0 and an open sub-interval J of I
such that

∀x ∈ J, 〈f∗(x) − f(x)〉 > θ.

As such injection is also compact then from (5.6) we obtain

∃l0 ∈ N, ∀l ≥ l0, ∀x ∈ J,
〈
σnl,ml

τl
(x) − f∗(x)

〉 ≤ θ

2
·
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Hence, for all l ≥ l0 and x ∈ J we have〈
σnl,ml

τl
(x) − f(x)

〉 ≥ 〈f∗(x) − f(x)〉 − 〈σnl,ml
τl

(x) − f∗(x)
〉

>
θ

2
· (5.7)

Now well, for l sufficiently great and using (2.1) we deduce that there exists
a point aml

∈ Am ∩ J such that〈
σnl,ml

τl
(aml

) − f(aml
)
〉

= o(1), l → +∞,

which is a contradiction with (5.7). Consequently f∗ = f .
Step 3. As H3(I ; Rp) is compactly injected in H2(I ; Rp), using (5.6) and
taking into account that f∗ = f we have

f = lim
l→+∞

σnl,ml
τl

in H2(I ; Rp).

Then, one has

lim
l→+∞

((σnl,ml
τl

, f))2 = ‖f‖2
2 . (5.8)

Using again (5.6) and that f∗ = f we obtain

lim
l→+∞

(σnl,ml
τl

, f)3 = lim
l→+∞

(
((σnl,ml

τl
, f))3 − lim

l→+∞
((σnl,ml

τl
, f))2

)
= |f |23 . (5.9)

Moreover, for all l ∈ N we have∣∣σnl,ml
τl

− f
∣∣2
3

=
∣∣σnl,ml

τl

∣∣2
3
+ |f |23 − 2(σnl,ml

τl
, f)3

we deduce from (5.9) together with (5.4) that

lim
l→+∞

∣∣σnl,ml
τl

− f
∣∣
3

= 0

which implies with (5.8) that

lim
l→+∞

∥∥σnl,ml
τl

− f
∥∥

3
= 0.

Step 4. Finally, by reasoning with reduction to absurd we prove that the
result is true. To do this, we suppose that it is false, so there exists a real
number γ > 0 and the following sequences (nl′)l′∈�, (ml′)l′∈� and (τl′)l′∈� with
lim

l′→+∞
ml′ = +∞ such that∥∥∥σnl′ ,ml′

τl′ − f
∥∥∥

3
≥ γ, ∀l′ ∈ N. (5.10)

Now well, the sequence
(
σ

nl′ ,ml′
τl′

)
l′∈� is bounded in Vn. Hence, by following

the same way of the Steps 1), 2) and 3) we deduce that from such sequence
we can extract a sub-sequence that converges towards f , which produces a
contradiction with (5.10).

Remark 5.1. We denote that when m tends to +∞ then from (5.2) it follows
that n also tends to +∞. This is the reason that we have’nt put for the
convergence result that both n and m tend to +∞.
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6 Numerical and graphical example

In order to test the smoothness method we consider the following example:

Let Υ0 be a curve parameterized by the function f : (0, 1) → R
2 defined

by

f(x) =
(
Exp{πx

2
} Cos(5πx),Exp{πx

2
} Sin(5πx)

)
.

The graph of this function appears in Figure 1.
We have computed an approximating curve Υ of Υ0 parameterized by a

fairness cubic spline from a set of m scattered points of [0, 1]. Likewise, we
have taken n = 30 so dimS3(Tn) = 33 and dim Vn = 66 which is the order of
the system linear given in (4.1).

Graphically, for n = 30 and τ = (10−4, 10−7, 10−9) Figure 2 shows the
graphs of m = 75 arbitrary points of the curve Υ0 and an approximating curve
Υ of these points parameterized by the fairness cubic spline σn,m

τ .

-4 -2 0 2
-3

-2

-1

0

1

2

3

4

Figure 1: The graph of Υ0.

We conclude graphically from Figure 2 that the approximating curve Υ is
similar to the original one Υ0.

For n, m ∈ N and τ ∈ R
3, with τ1 ≥ 0, τ2 ≥ 0 and τ3 > 0, we have

computed an estimation of the relative error by

Er =

1000∑
i=1

〈f(ai) − σn,m
τ (ai)〉

1000

where ai are arbitrary points of the interval I . So, for the data given for Vn,
m = 75 and for τ = (10−4, 10−4, 10−7), we have computed Table 1 which
shows the effect of the number of data points in the estimation of Er.
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Figure 2: The graph of an approximating curve Υ of Υ0 from m = 75 arbitrary
points of Υ0 parameterized by the fairness cubic spline for n = 30 and τ =
(10−4, 10−7, 10−9).

m Er

15 2.20263
25 1.60455 × 10−2

50 1.41512 × 10−2

75 2.78664 × 10−3

150 2.26171 × 10−4

Table 1: Influence on Er of the points(m).

Let us give here some numerical interpretation of each terms of fairness.
To this end, for n = 30, m = 150 and fixed value τ3 = 10−9 (it means that
we treat to preserve the same degree of approximation Er), we have computed
Table 2 which shows the effect of the variation of τ1 produced in the value of
the estimation of the length of the approximating curve. To do this, we have
fixed τ2 = 0 and we have taken some distinct values of τ1 which is associated
to the minimization of the semi–norm | · |1,(a,b),�2. Hence, we observe that the
estimation of the curve length, denoted by LC, is a decrease function of τ1,
which justifies the interpretation given in Remark 3.1.

Table 3 shows the effect of the variation of τ2 produced in the value of the
estimation of the curvature of the approximating curve. To do this, we have
fixed τ1 = 0 and we have taken some distinct values of τ2 which is associated
to the minimization of the semi–norm | · |2,(a,b),�2. Hence, we observe that the
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τ1 LC Er

8 × 10−2 31.5475 3.28436 × 10−1

1 × 10−1 30.4715 3.9954 × 10−1

2 × 10−1 26.2314 6.43437 × 10−1

3 × 10−1 23.1503 8.44617 × 10−1

Table 2: Influence on LC of τ1.

estimation of the curvature, denoted by CU, is a decrease function of τ2, which
justifies the interpretation given in Remark 3.1.

τ2 CU Er

3 × 10−2 6.30333 2.01639
5 × 10−2 2.41021 2.0819
6 × 10−2 0.853592 2.18999

Table 3: Influence on CU of τ2.

Now, in order to analyze our smoothing method, we compare it with the
least square one. To this end, for n = 30 and m = 150 points we present the
following results:

1. The problem of only least square, it means that τ = (0, 0, 0), we obtain
the following estimations Er = 2.33781×10−4 , LC = 38.29 and CU = 0.501939
of the approximating curve of Υ0 which graph appears in Figure 3 (left side).

2. Our problem, for example τ = (10−7, 10−7, 10−9), we obtain the following
estimations Er = 1.87622 × 10−4, LC = 38.2944 and CU = 0.501836 of the
approximation curve parameterized by a fairness cubic spline which graph
appears in Figure 3 (right side).

Conclusion: Obviously, when we impose more conditions to any problem of
minimization then its approximating method can lose its concept. But, if we
observe the results given in Tables 2 and 3 (imposing the fairness constraint),
we observe that the estimations of the values LC and CU of the approximating
curve are minimized, that test the validity between the theory (Remark 3.1)
and practice. Moreover, from the comparison of our method with the classical
least square one, specially the values estimated and both graphs of Figure 3
are very similar, from what we conclude that our approximation method with
fairness constraint presented in this paper is well as an other one.

Acknowledgements. This work has been supported by the Junta de An-
dalućıa (Research Group FQM/191).
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Figure 3: An approximating curve of Υ0 parameterized by the fairness cubic
spline for τ = (0, 0, 0), with only a least square, (left side). An other one
parameterized by the fairness cubic spline for τ = (10−7, 10−9, 10−9), i.e. with
fairness constraint, (right side).
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