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Inequalities for Eigenvalues of Biharmonic
Operator in Weighted Sobolev Space
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Abstract : This paper considers the eigenvalue problem for the biharmonic equation A u —
ww( x )u = 0 in weighted Sobolev space Wy”( 2,u( x) ), u = 0 on 92, where 2 C R" is
a bounded smooth domain, w( x ) € L*( (2) is also bounded. For m = 2, three estimates
of the eigenvalues ., i = 1,:-+,n are obtained.
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1 Introduction
Let 2 be a bounded domain in R™ with smooth boundary. By [ 1 ], we know the first n + 1
eigenvalues for the problem

ANu-pu=0 inf, uzal=0 on d{ (1)
on
satisfy the inequality
n //'L' m2n3/2 n

12
;Mn+1_Mi28(m+2) ;Mi) : (2)
For the first two eigenvalues we have the stronger bound
w, <7.103u, (inR*), w, <4792 u, (inR).
For the case m = 2, Payne, Polya and Weinberger [ 4 ] obtained upper estimates, independ-

ent of the domain, for eigenvalues of Laplacian operator. G. N. Hile and R. Z. Yeh pursued the
following estimates. For equation ( 1 ) and they derived the explicit bound for the ( n + 1 )th eigen-

value

8<m+2) n n

P S g+ 5 o) Z Vi) (3)

i=
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Next, they further obtained the estimates for some o > 0

,u,m$(1+0'),un+q(0)MTm)iui, (4)

where ¢( o) = [(14—70)3] 1/2, M(m) = 332\/37m1( m+2)7"
o

It is well known that the biharmonic equation in ( 1 ) has a strong physics background, but it
is a more ideal model abstracted from the physical phenomena. Generally speaking, the weighted
biharmonic equation, A’u — u w( x Ju = 0, with weighted function w( x ) should reflect much more
physical phenomena. Therefore, in this paper, we reconsider equation system ( 1 ) in weighted
Sobolev space, that is,

Azu—,uw(x)uzo in 2, uzg%:() on 9f2, (5)

here w( x) e L*( ), and it is bounded by0 < 1/a < wlx) < b

Obviously, whenu( x ) = 1, problem (5 ) is just problem ( 1 ). Hence this paper is a gener-
alization of ( 1 ).

By similar methods, we derive analogues of ( 3 ) and (4 ) and obtain the bound

8a’b (m +2 )«
Mn‘l-l g Mll +TZM1' (6>
i=1

Form=2,n=>=1, constanto > 0,

oo <(1 +0)u, +abgl o) M(nm) - (7)
=1
(7 ) yields a sharper bound than ( 6 ) if some optimal ¢ is chosen.
Although we still use the Raleigh formula in variation method like the one in ( 1), but it is

more complicated in the estimates and derivations, especially in the second part, i.e., §3.

2 Inequalities for u,
Let 2be a bounded domain in R", m = 2, with boundary d(2, wix) e L°(N), 1/a <

w( x ) < b. Let eigenvalues of

Azu—,uw(x)uzo in (2, u:gl:O on {2
n

be designated by

0 <p sm s sp, s
with corresponding eigenfunctions u, ,u,,**,u,, ", providing

fuuw(x)—ﬁ i,y =12,
0

i
In this section we have the main result as follows.

Theorem 1 Form = 2 andn = 1, for the ( n + 1 )th eigenvalue of ( 5) we have

2
Mn+lsl‘l‘n+8ab(m+2>z (8)
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Proof Following Payne, Polya and Weinberger *’ we consider the n trial functions
¢, = xu; — Z}aijuj, 1 =1,2,,n,
=
where x = (x,,x,,°**,x, ) € R", and the constant a,; are defined by
a; = jnxluiuj’ i,j =1,2,,n.
It is easy to check

J’Qd’iu_,-“)( x) =0, fnqb,zW( x) = Lxluiqbiw( % ).

o
Then each ¢, is orthogonal tou, ,u,, **,u,. Moreover, since ¢; = (;il = 0 on (2, by the Ra-
leigh formula in variation method, we have
[o8%¢,
Py S—, i =1,2,,n. (9)
[orul )
Now,
fﬁbLAzd)i =J4%[A2( X ) - Z g, wl x)] =
J=
fqb,;[xlAzui +4Au, 1= Mifqb?w( x) + 4fqbiAuixl. (10)

After substituting ( 10 ) into ( 9 ) and summing over i we have

Mn+12f¢?w(x)$ iulf¢?w(x>+4ijd)lA Wiy, (11)

Not losing generality, we make the assumption that

X[ =31

This equality can be made to hold by rotating the coordinate system in R™. Suppose, for example,

2k =1,2,-,m. (12)

that ( 12 ) does not hold, and that x, and x denote two coordinate directions such that

n 2 1 n n 2
quix <7ZJ"VLL,-‘2<2I“L{-
=1 ! m i3 ' = !
Then we may make a rotation of the x, — x, plane until the equal sign in the above inequality is

achieved. This operation can be repeated until ( 12 ) holds for all values of k.

We pause to make a few technical calculations. Let us define

B n B m + 2 n 2
Ji = ;fd’:A Wiy, » J = m ;j‘ Vui‘ .
Lemma 1 The quantities J, and J satisfy
(i)J, =17,

Gi) J* < anl(m +2)/2m)1° X s
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(i ) n*(m +2)/( 8ab®) < szqbfw( ).
by
Proof of Lemma 1. (i) We have
= ijluiAuL z Uqu U,
= =1
The last term above vanishes since a; = a;, and by
fu_,-A Uy, = - f wA u, .
As for the first term, we show by integration by parts that
jxluiA u,, = JA( XU, )um = f( A u; +2u,, )uixl =
f(xAu)u+2f ixy fxluiAuixl+f\Vui\2+2fufxl.
Then, by (12 ) we have
fultl] = ']'
(i ) By the Schwarz inequality we have
+2 +2 -
]2_(m )(zj_uAu) =(m )( j)(Zf(Aui)Z).
i=1
Moreover,
2 _ 2 . 1 2 _
fui = fulw(x) wi(x) = afuiw(x) =a,
f(A u, )’ = juiA2 u; =,LLLJ'ufw(x) =W,
Then,
7 < na(m + 2) ZM
2m i=1 '
(i ) Let us compute
ZJ¢1 ixy ZJ’x u; txl z zjf / L"f] (13>
We have, by integration by parts,
jx ulul’(l = 2 f j ] ”‘l == f uiu’jx]‘
Since a; = a;, the last term of ( 13 ) vanishes, and we obtain
n B L n 2
;f‘b;um Y ;Ju, (14)

Hence, upon squaring and applying ( 12 ) we have

A3 ) = (3 fa) (3 fo) = (5 J00) (525

We still have

J)
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ju,z = fu?w(x)ﬁ?%,
fd),z = afd)?w(x).

By the above three inequalities, we finally get
2 n
n’(m+2) 2
L :
P E \J;fqblw(x)
which completes the proof of Lemma 1.

Returning now to ( 11 ), if we replace u; by u, , then in view of Lemma 1 we have

(oo~ ) Y, [0 ) < 40 (15)
i=1
Combining ( ii ) with ( iii ) in Lemma 1 yields

128 ) (3 fouco) (16)

Substituting ( 16 ) into ( 15 ) yields
8(m +2)a’h’ <
Mot S M, + i ;,Uﬁ-
The proof of Theorem 1 is now completed.
Remark. When w( x ) = 1, the result of [ 3 | follows from our Theorem 1.
Now we obtain a stronger result than Theorem 1 by a somewhat more lengthy argument.
Theorem 2  For the first n + 1 eigenvalues of (5 ), when m =2 and n = 1 we have the im-

plicit bound

n «/:UT _ m2n3? ( n )71/2 (17)
i=1 My — My /8(m+2)( ab )3/2 l~=1'ui ’
and the explicit bound

8m +2 )N ab)?, &

Moy S M, + 2,32 (Z,u,l) |/2( Z l_l/z)‘ (18)

m izi

Inequality ( 17 ) is stronger than ( 18 ), and both are stronger than ( 8 ).
Proof We return again to ( 11 ) but instead of replacing each u; by u, , we introduce a new

parameter o, & > ,, and write

Mn+1if¢fw(x)<aijqb )+Z(,ul—ajd>w( ) +4]. (19)

i+1

We also apply the Cauchy inequality to ( 14 ), and set A = Z f u; , obtaining for any § > 0,
ZId)ium $%2(0'—,LL[)J'¢W( )+*2(0’ wi )" f
i=1 i=1

8 < ) a L i
7;(0_/1’1'>Jd)il(1(x>+%;<0'—,u,i> Juixl‘ (20)

Now we use trial functions ¢, , based on x, instead of x, , fork = 1,2,:-,m, and obtain inequali-

A

$
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ties analogous to ( 19 ) and ( 20 ) of the type
(o =) Y [dhul ) < ¥ (= e [¢hul ) +4], k= 1.2,m  (21)
= =

A<6Y (a-pu)|druw(x)+6" aY(a—pu)" | u, k=12,-,m (22)
k
i=1 i=1

( Because of ( 12 ) and its consequence ( i) of Lemma 1, the quantity J is the same for each value

of k. ) We sum each of ( 21 ) and ( 22 ) over k, denoting

S=3 3 [pladx), T=3F F(a-u)[thux)
=1 i =i
to obtain the inequalities

(o —a)S +T<4mj, (23)

2. a. (24)

mA <ol +5"' Y (a-p)"'[| v,
i=1

j\Vui ’ =f—ui(Aui)$(fuf)l/z(f(A ui)z)

we setA; = f u;, then A = Z A;, and the above estimate could be written as

i=1
[1our <4 Ja

which, when applied to ( 24 ), yields

Noticing
12

n

Ai,“i

mA<8T+8"'Y "+ a (25)
; a - M
The right side of this inequality is minimized by choosing
12
S = T-1/2( 2 A, v (26)
i1 o~ M
From ( ii ) of Lemma 1 we also have
S A5 £
i=1
Thus upon substituting ( 26 ) and ( 27 ) into ( 23 ) we arrive at inequality
n 242 n -1
(M,Hl—a)5<2mm+z)(zﬂi)m_%(zﬂ ca, (28)
i=1 i=1 0T My

Recall that « is restricted so that & > u,, we choose a as a so that the right side of ( 28 ) is zero.
Hence the left side must be nonpositive, i.e., ay = u,,,. Therefore,
n /AM m2A3/2 n 2
a = . . (29)
;Mn+l - M 8<m+2)( ;#l)
Since the right side of ( 28 ) is a monotone decreasing function of o on ( u, , % ) from a positive

number to — o , such a number «, exists and, in fact, it is unique. By the obvious estimates

n
< a, —

b

<A

N

A< an,

1
b
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we obtain the inequality from ( 29 )

n 2. 372 n
VMR mn

“12
;/’LHH M /8<m+2)( ab)3/2( ZM;) .

i=1

It yields ( 17 ).

Inequality ( 18 ) is derived from ( 17 ) by replacing each u, with , in the denominators of the
left — hand side, and then solving foru,,,. Inequality ( 8 ) is obtained from ( 18 ) by noting that
. - 12
S < $u)”

i= =y
Thus the proof of Theorem 2 is complete.
Remark. When w( x) = 1 the corresponding results to (17 ) and (18 ) in [ 3 ] are ob-

tained.

3 Stronger inequalities for low eigenvalues

For the eigenvalues of (5), whenm =2, n=1, and any constant g > 0 we have

o < (1 + 0, +q(a)'%m)'abz,ui <1 +0+q¢ o)M mably,, (30)
where
q(0)=[<1t%>3]1/2, M<m>=?£m'(m+2>'/2. (31)

Proof. We begin again with inequality ( 11 ), apply (i) of Lemma 1, and introduce a real

parameter 3 to obtain

o 2 [@7 ) < 3 [dhulx) +4C1 B, - 4B 1. (32)
= =1
We also introduce parametersa > 0, 7, >0, i =1,2,-:-,n, and apply Cauchys inequality to J,
to obtain

401 +B)J, =4(1 +,8)if— Vo, * V u, <

|| v,

ix]

2

iZTif‘ Ve [P +201+8)

n
i=1
n

>or[ - dad + 21+ BV Y7 fu,, 4w
i=1

i=1

i

(33)

Again by Cauchy? inequality and ( 10 ) we have
2 2Tif - P, AP, < 0'717'?J’¢? + 2 O'J'( A, ) <
= = =

Z( o'tla + ou, )fd)?W( x) +4al].

Substitute this expression into ( 33 ), then the resulting inequality goes into ( 32 ), and we get

Mo ZI‘b?w(x) = 2</-Li T ou; +0'_sz?‘1 )f‘bzzw(x) +
= i=1
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2(1 +'3)2i751f“m-ﬂA u, +4Co -B)J. (34)

by
In order to simplify ( 34 ) we choose each 7, so that
-1 2
(1+ou, +o '7ja =1,
where 7 is a new parameter. The conditions 7;,, o > O require that 7 > u,. In fact, we have

T>(1+0—)/‘Ln >Mn’

172 -172 .
TL-:[T—<1+0'>,LL,;]1/20' Ta s i =1,2,,n,

=T ==T1, >0

If we use trial functions ¢, based on x, instead of x, , inequality ( 34 ) has its counterpart
Most 2 fd)zsz( x) $7'2 J'd)lzkw( x) +
= =

2(1 +B>22751fumA w +4 o -p)J, k=1,2,-,m (35)

i=1

We sum these inequalities over k, using

lif U A uy = J( Au, ) = Wis

and obtain

n

(o =TI <AL+ Y 2 vdmo - pI. (36)

i=1

The counterpart of (iii ) of Lemma 1 for x, is

m+2
8

A<TY diur k=12,.m.
i
Summing over k leads to

8 =

i

du < J( diuw( x)) a = als,

1 k=1 i=1

n m n

. n
and using A = ——, we have

b

2
W-Z—zsajs. (37)

By restricting ¢ — 8 < 0 we can use ( 37 ) to eliminate J in ( 36 ), and then multiply by S to obtain

i=1

n . 2 -
(o =7)8 =201 +8)° > '%S+m7(m+2)n2'8Ta-s0.
i a

Therefore, we have a quadratic inequality in S of the form
6S* - 2£8 + < 0.
We can assert that
0<én,
because § < 0 and the quadratic equation x* — 2&x + 77 = 0 must have a real root. Thus
201 +B)'ab’ ( " ,u,i)z

m2<m+2)n2(ﬁ—0') — T

lu’n+1 -T =
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Since A B) =(1 + B )4/( B - o ) is minimized by taking 8 = (4¢ + 1 )/3, we substitute this val-

ue in the preceding inequality to obtain

2-MU+UPMY" &Y
3m* (m +2)n’ 2 '

i=1 T;
Since 7, =7, = *** = 1,, replacing each 7, by 7, in ( 38 ) and further eliminating 7, in favor of 7

(38)

Mot =7+

gives
2-4(1+g)ab’ & 2
Jlr =1+ 0,1 (39)
3’m’(m +2)n’ (;M) o
The right side of inequality ( 39 ) has the form
r+C7-B)",

l"LlH—l =7+

which is minimized by lettingr = /C +B > (1 + ¢ )it,. Substitution of this value of 7 into ( 39 )
gives the desired result ( 31 ). The weakened version of ( 31 ) is obtained by replacing each u, with
W, » thereby completing the proof of Theorem 3.

Now we show Theorem 3 is sharper than Theorem 1.

. . 2
For domains in R~ we have

w, < (1 +8a°b u,, ( by Theorem 1)
w, < (1 +8a”°67 ), , ( by Theorem 2 )
Mo < [1 +0'+q(a'>% /%ab]ﬂl- ( by Theorem 3 )

We choose ¢ = 0.5, then
8(ab )™ - [o-+q(a')% /%] = 8( ab)m[ab —«/9fgq(0'>]‘02

b -0 = 6,33 1
1_?(1(0)] 0_8[1_3'7_E > 0.

General comparisons between Theorem 3 and Theorems 1, 2 are difficult to make for general

8

m and n. We will compare Theorems 3 and 1 for some simple case theoretically. We compare the

two inequalities
8(m +2)d’h’

2 n?

m
Pt < L1+ 0 + abg( o )M m )1, (41)
Inequality ( 41 ) holds for all & > 0. Thus the best bound is obtained by choosing ¢ so that

I‘Ln+1 g 1 + (40)

the right — hand side is minimized. In general a closed form expression for optimal ¢ is difficult to
attain, since one is required to solve a cubic equation. We will show nevertheless that this optimal
o always yields a better bound in ( 41 ) than the bound ( 40 ).
Theorem 4 For all m = 2 inequality ( 41 ) is strictly sharper than ( 40 ) provided that the
optimal value of ¢ is chosen.
Proof. Let us denote
B.(o) =018 m+2)m?ab’ - M(m )q( o )abl.
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It must be shown that for some o we have B,( o) > 1.

First, because ab = 1, we have

B(o)=0"abl8(m +2)m™> - M m)g o)1 = abB (o),

here

B(a)=0c"18(m+2)m? - M m) o)l

One can show that after some lengthy computations that the maximum of B, ( o) occurs at

0'=5',,, = %(m+2)3m72—1

-1

where obviously o, > 0, and the corresponding maximum of B, ( ¢ ) in

B(o,)=m lm*+8m* +32m + 161,

then

B(o,)=abB (a,) > ab=1.

Thereby we complete the proof of Theorem 4.

(1]
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