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Abstract 

Langenberg and Srinivasan (1981) proposed two procedures for the choice 

between two medical treatments. They assumed that there is a time lag between 

the administration of the treatments and the availability of the responses. The two 

procedures are suggested for dealing with patients who arrive during the waiting 

period, caused by the lag, between the trial and treatment stages of the model . 

They assumed that the responses to the treatments are normally distributed with 

unknown means and a common known variance . This model is modified by 

considering the survival time resulting in using the treatments are exponentially 

distributed. The relative performance of the procedures in the Bayesian 

framework  is  discussed. 
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1. Introduction  

Colton (1963) suggested a model for clinical trials that is appropriate in 

certain situations where two competing treatments for the same disease are being 

compared . The central assumption in the model is that there exists a known finite 

patient horizon , N, representing the total number of patients who will ever be 

receiving one of the two treatments under study . A decision rule , according to 

the simplest version of the model, consists of the ‘trial stage’ when  n patients are 

assigned to each of the two treatments, leading to the choice of one of the 

treatments as the better and the ‘treatment stage’ when the remaining N-2n 

patients receive the treatment so chosen. The problem of clinical trials then is the 

determination of optimal decision rules (i.e., optimal n), optimality being defined 

in terms of appropriate loss functions . In this paper Colton assumed that the 

response to treatment i, i= 1,2, is normally distributed with unknown mean 

iθ and known variance and that its quality is characterized by iθ , so that the 

treatment with the larger mean is considered the better. Also, let the treatment 

with the larger observed sample mean be chosen as the better at the end of the trial 

stage . 

In the context of clinical trials it is reasonable to suppose that the only loss is 

the ethical loss incurred in treating a patient with the inferior treatment. 

Optimality may therefore be defined in terms of the expected regret , R, which 

represents the difference between the total expected response if one were to treat 

all the N patients with the better treatment and the expected response achieved by 

following a decision rule. In our case it turns out that 1θ and 2θ enter R only 

through the true difference between the treatments 21 θθθ −= . 
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An important assumption implicit in the Colton model is that the response to 

the treatments is instantaneous, or that there is no lag time between the treatment 

of the patients during the trial stage and the availability of all the treatment results.  

Langenberg and Srinivasan(1981) assumed that the response to the treatment is 

often delayed , causing a ‘waiting period’ between the two stages, and an 

accumulation of new patients who have to be  treated before the beginning of the 

treatment stage. The allocation of treatments to these patients is an important 

issue, especially when their number is large relative to N . See Anderson (1964), 

Choi and Clark (1970), Nomachi (1976), Mady (2000), Lee and Choi (1999) and 

Williamson and Sung (1998) for some work with delayed observations in 

sequential analysis . 

Langenberg and Srinivasan incorporated the assumption of delayed response 

into the Colton model and examined some Bayes optimal procedures for dealing 

with the patients who arrive during the waiting period. Langenberg and 

Srinivasan’s procedures are  described below. This article presents an alternative 

view of the paper of Langenberg and Srinivasan. The modification we shall 

investigate is that the survival time of patient receiving the treatment i is 

exponentially distributed with unknown mean iθ . Also, we shall present a 

special case when one treatment mean is already known. 

 

2. Statement of the Problem 

We shall assume that  

(i) patients arrive sequentially, one per unit time , and are to be assigned to one of 

the two treatments, and  
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(ii) there is a delay of T time units (T is taken to be an even integer for 

convenience) in obtaining the response to either treatment. 

Two procedures for treating the T patients who arrive during the waiting 

period will now be investigated . 

For the two procedures described below , the trial stage consists of the first 2n 

patients to arrive , with n patients assigned to each of the two treatments randomly 

within pairs , the treatment stage consists of the  N-2n-T  patients arriving after 

the waiting period, who are given the treatment with the larger sample mean based 

on the observations made during the trial stage.  

It is assumed that we obtain a quantitative measure of response to each 

individual . The survival time of an individual receive treatment i (i=1,2) is 

assumed to be exponentially distributed with unknown mean θ i . We assume that 

higher survival time is associated with better effect. Then, letting 21 θθθ −= , 

we should like to select treatment 1 if θ is positive and treatment  2  if  θ is 

negative. 

The treatment allocations during the waiting period are as follows: 

Procedure 1. The patients are assigned randomly within pairs as they arrive, to the 

two treatments T/2 to each. 

Procedure 2. All the T patients are assigned to that treatment with the larger 

sample mean based on the  n-T/2  available observations on each treatment from 

the trial stage. 

Note that Procedure 2 is meaningful only when 2/1≥n , while there are no 
such restrictions on procedure 1. Also , when T = 0 both procedures lead to a 
decision rule with the delay phase omitted. We shall now derive the Bayes 
optimal value of n for the two procedures.   
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In Procedure 1 , let Pr(inf.) denote the probability that the inferior treatment 
( i.e., treatment  1 if θ < 0, and treatment  2 if  0θ ≥  ) is chosen as the better 
on the basis of the n observations on each treatment  available at the end of the 
waiting period, that is, Pr(inf.) = F1( 12 θ/θ ), where F1 denotes the  cumulative 
distribution function of Fisher,s F with 2n and 2n degrees of freedom. The 
expected regret function for Procedure 1 can be given by  

 

1R = Nθ [P + t/2 + (1-2P- t) Pr (inf.)],                                                     (1) 

 

where P= n/N  and  t= T/N.  

Averaging R1 over the prior distributions of 1θ and 2θ  (assume that  

0,0θ,eθ
(n)
λ)(θf i

λθ1-n
i

n
i

i
ii >>

Γ
= −

iλ  ) we get  

 

        ].t)/λ-2P-(12P)/1-(1/)2/(P[PNR 1211 ++= λλt                    (2) 

 

The value P which minimizes the right hand side of (2), that is the optimal P ( P is 
the only value that minimizes equation (2))  for Procedure 1, will be denoted by p1  
and is easily seen to be  

 

).3λ(λ4/]tλ3t)(4[λ(t)pp 211211 +−−==                                       (3) 

 

The optimal average regret , denoted by *
1R , is obtained by substituting  P = p1  

in  (2). 

In Procedure 2, let P2 and P3 denote the probabilities of choosing the inferior 
treatment based , respectively, on the n-T/2 observations available on each of the 
two treatments at the end of the trial stage and the n such observations available at 
the end of the waiting period. Clearly , then P2= F2 ( 12 θ/θ ), where F2 denotes 
the cumulative distribution function of Fisher,s F  with 2(n-T/2) , 2(n-T/2) degrees  
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of freedom and P3= F3 ( 12 θ/θ ), where F3 denotes the cumulative distribution 
function of Fisher,s  F  with 2n , 2n degrees of freedom. 

The expected regret function for Procedure 2 is given by 

 

2R = Nθ [P + tP2 + (1-2P- t) P3],                                                             (4) 

 

and the Bayes average regret is  

 

].)/λt2P()/1(3/[-PNR 1
2

21
2

2 −++= λλ                                      (5) 

 

The optimal value P say p2  which minimizes 2R  with respect to P is given by 

 

 )3λ(λ/λp 2122 += .                                                                               (6) 
 
We shall denote the average regret corresponding to  P = p2  by 

*
2R . 

Note that t has no effect on R2 .Comparing (3) and (6) we see that  p2 = p1  when   
t =0  and consequently, equations (2) and (5) will be coincident. 
 

Numerical results on the relative performance of the two procedures are 
presented for selected values of t. Note that , since n ≥ T/2 and 2n +T ≤ N, we 
have t≤ 1/2, hence  we have included t values only up to 1/2. The most striking 
feature in Table 1 is the uniform superiority of Procedure 1.The percentage 
increase in 2R′  over 1R′ , (where /NRR *

ii =′ ) given in the last column for each t >0  
shows that superiority could be quite pronounced. The results indicate that the 
reduction in regret afforded by Procedure 1 is strongly dependent upon N, 

21 ,λλ and the delay. The improvement in performance of Procedure 1 should 
be taken into consideration plus the simplicity of it. Note also that 1R′ decreases 
with t for any pair of  21 λandλ . The table indicates that Procedure 1 has the 

advantage of shorter experimental stage for all N, t and ( 21 ,λλ ). 
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Table 1.  Relative performance of the two procedures * 

 

 
t = 0 t = 0.1 t = 0.2  

1λ
 

2λ P1 
iR′  P1 

1R′  I P1 
1R′  I 

2 2 
3 
4 
5 

0.25 
0.2727 
0.2857 
0.2941 

0.125 
0.1364 
0.1429 
0.1471 

0.225 
0.2477 
0.2607 
0.2691 

0.1013 
0.1125 
0.119 

0.1231 

0.23 
0.21 
0.20 
0.19 

0.2 
0.2273 
0.2357 
0.2441 

0.08 
0.0909 
0.0973 
0.1013 

0.56 
0.50 
0.47 
0.45 

3 2 
3 
4 
5 

0.2222 
0.25 

0.2667 
0.2778 

0.0741 
0.0833 
0.0889 
0.0926 

0.1972 
0.225 

0.2417 
0.2528 

0.0583 
0.0675 
0.073 

0.0767 

0.27 
0.23 
0.22 
0.21 

0.1722 
0.2 

0.2167 
0.2278 

0.0445 
0.0533 
0.0587 
0.0623 

0.67 
0.56 
0.51 
0.49 

4 2 
3 
4 
5 

0.2 
0.2306 
0.25 

0.2727 

0.05 
0.0577 
0.0625 
0.0657 

0.175 
0.2058 
0.225 

0.2382 

0.0383 
0.0459 
0.0563 
0.0539 

0.31 
0.26 
0.11 
0.22 

0.15 
0.1808 

0.2 
0.2132 

0.0281 
0.0354 
0.04 

0.0431 

0.78 
0.63 
0.56 
0.52 

5 2 
3 
4 
5 

0.1818 
0.2143 
0.2353 
0.25 

0.0364 
0.0429 
0.0471 
0.05 

0.1568 
0.1893 
0.2103 
0.225 

0.0271 
0.0334 
0.0376 
0.0405 

0.34 
0.28 
0.25 
0.23 

0.1318 
0.1643 
0.1853 

0.2 

0.0191 
0.0252 
0.0292 
0.032 

0.91 
0.70 
0.61 
0.56 
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            t = 0.3 t = 0.4 t = 0.5  

1λ
 

2λ P1 
1R′  I P1 

1R′  I P1 
1R′  I 

2 2 
3 
4 
5 

0.175 
0.1977 
0.2107 
0.2191 

0.0613 
0.0717 
0.0777 
0.0817 

1.04 
0.90 
0.84 
0.80 

0.15 
0.1727 
0.1857 
0.1941 

0.045 
0.0547 
0.0558 
0.064 

1.78 
1.49 
1.56 
1.30 

0.125 
0.1477 
0.1607 
0.1691 

0.0313 
0.04 
0.045 

0.0487 

2.99 
2.41 
2.18 
2.02 

3 2 
3 
4 
5 

0.1472 
0.175 

0.1917 
0.2028 

0.0325 
0.0409 
0.046 

0.0493 

1.28 
1.04 
0.93 
0.88 

0.1222 
0.15 

0.1667 
0.1778 

0.0224 
0.03 

0.0347 
0.038 

2.31 
1.78 
1.56 
1.43 

0.0972 
0.125 

0.1417 
0.1528 

0.0142 
0.0208 
0.0251 
0.028 

4.22 
3.00 
2.54 
2.31 

4 2 
3 
4 
5 

0.125 
0.1558 
0.175 

0.1882 

0.0195 
0.0263 
0.0307 
0.0336 

1.56 
1.19 
1.04 
0.96 

0.1 
0.1308 
0.15 

0.1632 

0.0125 
0.0185 
0.0225 
0.0253 

3.00 
2.12 
1.78 
1.60 

0.075 
0.1058 
0.125 

0.1382 

0.007 
0.0122 
0.0156 
0.0182 

6.14 
3.73 
3.01 
2.61 

5 2 
3 
4 
5 

0.1068 
0.1393 
0.1603 
0.175 

0.0126 
0.0181 
0.0218 
0.0245 

1.89 
1.37 
1.16 
1.04 

0.0818 
0.1143 
0.1353 
0.15 

0.0074 
0.0122 
0.0155 
0.018 

3.92 
2.52 
2.04 
1.78 

0.0568 
0.0892 
0.1042 
0.125 

0.0062 
0.0075 
0.0104 
0.0125 

4.87 
4.72 
3.53 
3.00 

 
* iR′= /NR*

i  , I denotes the percentage increase in 2R′ over 1R′ . 
 
 

3. The Case when One Population Mean is Already Known 
The above procedures may be easier in the case when one population mean 

is already known )βθ( 2 =  , and it is desired to decide whether or not to change to 
the alternative population . 

The trial stage consists of the first n patients assigned to the first treatment, 
the treatment stage consists of N-n-T patients arriving after the waiting period, 
who are given the treatment with the larger parameter based on the observations 
made during the trial stage . The treatment allocations during the waiting period 
using Procedures 1 and 2 outlined in section 2 . We shall now derive the Bayes 
optimal value of n for the two procedures. 

In Procedure 1, let Pr(inf.) denote the probability that the inferior treatment 
is chosen as the better on the basis of the n observations on the first treatment, that 
is Pr(inf.) = F ( )1θ/β2N , where F denotes the chi-square cumulative distribution 
function with 2n degrees of freedom. 
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The expected regret function for Procedure 1 can be given by 

 

 R1 = N θ  [(P+t)/2 + (1-P-t) Pr(inf.) ],      βθθ 1−= .                                 (7)  

 

Averaging R1 over the prior distribution of 1θ  (recall that 
,)0θ,0λ(n),/eθλ)(θf 11

θλ1n
1

n
11

11 >>Γ= −−  we get 

 

t)/2].(P3[2β)λ(NP/R 11 +−−=                                                                 (8) 

 

The value P which minimizes the right hand side of (8), will be denoted by p1 (t) 
and is easily seen to be 

 

          p1(t) = [ N (4- 3t) + βλ3 1 ] / 6N .                                                               (9) 

The optimal average regret, denoted by *
1R , is obtained by substituting P = p1 (t) 

in (8). 

In Procedure 2, Let P1 and P3 denote the probabilities of choosing the 
inferior treatment based, respectively, on the n-T observations on the first 
treatment (with parameter 1θ ) at the end of the trial stage and the n observations 
on the first treatment at the end of the waiting period. Clearly , then 

P3 =Pr(inf.) =φ (n)  and    P1= φ (n-T). 

The expected regret function for Procedure 2 is given by 

 

 R2  =Nθ  [P/2 + t P1 + (1-P-t) P3],                                                          (10) 

and the Bayes average regret is 

  

 .]βλt)/(PN[2t] 3P/2 -t)-[2(1β]λNP/[R 112 −−+−=                     (11) 

The optimal value P, say p2 is obtained by minimizing 2R with respect to P and  
is easily seen to be 
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  .6N/β)λ3N4(p 12 +=                                                                       (12) 
 
We shall denote the average regret corresponding to  P = p2  by *

2R  .  

Note that p2 ( the optimal value for Procedure 2) is the same as p1(t) (the optimal 
value for Procedure 1) when t = 0 and consequently, equations (8) and (11) will be 
coincident. 

 
It is clear from (9) that p1 (t) is a decreasing function of  t . We have thus  

shown that for any given ( 21 ,λλ ), Procedure 1 is superior to Procedure 2 for all 
values of t, where p2 is independent of t . It seems that Procedure 1 is superior 
uniformly in t. 
 
        Numerical results on the relative performance of the two procedures are 
presented for selected values of t. Note that since  n≥ T  and  n+T≤ N , we have 
 t ≤1/2, hence we have included t values only up to 1/2 . The most striking feature 
in Table 2 is the uniform superiority of Procedure 1. The percentage increase 

2R′ over 1R′  , given in the last column for each t > 0 , shows that this superiority 
could be quite pronounced. The results indicate that the reduction in regret 
afforded by Procedure 1 is strongly dependent upon 21 , λλ and the delay. The 
improvement in performance of Procedure 1 should be taken into consideration 
plus the simplicity of it. Note also that 1R′  decreases with t for any pair of  

( 21 ,λλ ) but  2R′ decreases with any pair of ( 21 ,λλ ) for any t. The table 
indicates that Procedure 1 has the advantage of a shorter experiment stage for all 
N , t and ( 21 ,λλ ). 
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Table 2.  Relative performance of the two procedures (N=100) *     

t = 0 t = 0.1 t = 0.2  
1λ

 
β  

P1 iR′  P1 1R′  I P1 1R′  I 

2 2 
3 
4 
5 

0.6867 
0.6967 
0.7067 
0.7167 

0.3137 
0.3040 
0.2945 
0.2849 

0.6367 
0.6467 
0.6567 
0.6667 

0.2670 
0.2581 
0.2494 
0.2408 

0.18 
0.18 
0.18 
0.18 

0.5867 
0.5967 
0.6067 
0.6167 

0.2241 
0.2160 
0.2080 
0.2002 

0.41 
0.41 
0.42 
0.42 

3 2 
3 
4 
5 

0.6967 
0.7117 
0.7267 
0.7417 

0.2027 
0.1931 
0.1840 
0.1749 

0.6467 
0.6617 
0.6767 
0.6917 

0.1721 
0.1634 
0.1545 
0.1467 

0.18 
0.18 
0.19 
0.19 

0.5967 
0.6117 
0.6267 
0.6417 

0.1440 
0.1361 
0.1284 
0.1209 

0.41 
0.42 
0.43 
0.45 

4 2 
3 
4 
5 

0.7067 
0.7267 
0.7467 
0.7667 

0.1473 
0.1380 
0.1291 
0.1204 

0.6567 
0.6617 
0.6967 
0.7167 

0.1247 
0.1161 
0.1080 
0.1001 

0.18 
0.19 
0.20 
0.20 

0.6067 
0.6267 
0.6467 
0.6667 

0.1040 
0.0963 
0.0888 
0.0817 

0.42 
0.43 
0.45 
0.47 

5 2 
3 
4 
5 

0.7167 
0.7417 
0.7667 
0.7917 

0.1141 
0.1055 
0.0963 
0.0880 

0.6667 
0.6917 
0.7167 
0.7417 

0.0963 
0.0880 
0.0801 
0.0725 

0.19 
0.19 
0.20 
0.21 

0.6167 
0.6417 
0.6667 
0.6917 

0.0801 
0.0725 
0.0653 
0.0585 

0.42 
0.45 
0.48 
0.50 

 
            t = 0.3 t = 0.4 t = 0.5  

1λ  
 
β  

P1 1R′  I P1 1R′  I P1 1R′  I 

2 2 
3 
4 
5 

0.5367 
0.5467 
0.5567 
0.5667 

0.1850 
0.1776 
0.1704 
0.1633 

0.70 
0.71 
0.53 
0.74 

0.4867 
0.4967 
0.5067 
0.5167 

0.1496 
0.1430 
0.1365 
0.1302 

1.10 
1.13 
1.16 
1.19 

0.4367 
0.4467 
0.4567 
0.4667 

0.1180 
0.1121 
0.1064 
0.1008 

1.66 
1.71 
1.77 
1.83 

3 2 
3 
4 
5 

0.5467 
0.5617 
0.5767 
0.5917 

0.1184 
0.1112 
0.1043 
0.0975 

0.72 
0.74 
0.76 
0.79 

0.4967 
0.5117 
0.5267 
0.5417 

0.0953 
0.0889 
0.0827 
0.0767 

1.13 
1.17 
1.22 
1.28 

0.4467 
0.4617 
0.4767 
0.4917 

0.0748 
0.0691 
0.0636 
0.0584 

1.71 
1.79 
1.89 
1.99 

4 2 
3 
4 
5 

0.5567 
0.5767 
0.5967 
0.6167 

0.0852 
0.0782 
0.0715 
0.0651 

0.73 
0.76 
0.81 
0.85 

0.5067 
0.5267 
0.5467 
0.5667 

0.0683 
0.0620 
0.0561 
0.05040 

1.16 
1.23 
1.30 
1.39 

0.4567 
0.4767 
0.4967 
0.5167 

0.0532 
0.0477 
0.0425 
0.0396 

1.77 
1.89 
2.04 
2.04 

5 2 
3 
4 
5 

0.5667 
0.5917 
0.6167 
0.6417 

0.0653 
0.0585 
0.0521 
0.0460 

0.75 
0.79 
0.85 
0.91 

0.5167 
0.5417 
0.5667 
0.5917 

0.0546 
0.0460 
0.0403 
0.0350 

1.09 
1.28 
1.39 
1.51 

0.4667 
0.4917 
0.5167 
0.5417 

0.0403 
0.0305 
0.0317 
0.0292 

1.83 
2.45 
2.04 
2.01 

* iR′= *
iR /N , I denotes the percentage increase in 2R′ over 1R′ . 
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Table 2. (continued)  ( N = 500) 
t = 0 t = 0.1 t = 0.2  

1λ
 
β

 P1 iR′  P1 1R′  I P1 1R′  I 

2 2 
3 
4 
5 

0.6707 
0.6727 
0.6747 
0.6767 

0.2960 
0.2940 
0.2921 
0.2901 

0.6207 
0.6227 
0.6247 
0.6267 

0.2815 
0.2797 
0.2779 
0.2760 

0.05 
0.05 
0.05 
0.05 

0.5707 
0.5727 
0.5747 
0.5767 

0.2375 
0.2357 
0.2341 
0.2324 

0.25 
0.25 
0.25 
0.25 

3 2 
3 
4 
5 

0.6727 
0.6757 
0.6787 
0.6817 

0.2169 
0.2163 
0.2143 
0.2123 

0.6227 
0.6257 
0.6287 
0.6317 

0.1865 
0.1846 
0.1828 
0.1810 

0.16 
0.17 
0.17 
0.17 

0.5727 
0.5757 
0.5787 
0.5817 

0.1572 
0.1555 
0.1538 
0.1522 

0.38 
0.39 
0.39 
0.39 

4 2 
3 
4 
5 

0.6747 
0.6787 
0.6827 
0.6867 

0.1627 
0.1607 
0.1588 
0.1568 

0.6247 
0.6287 
0.6327 
0.6367 

0.1389 
0.1371 
0.1353 
0.1335 

0.17 
0.17 
0.17 
0.17 

0.5747 
0.5787 
0.5827 
0.5867 

0.1170 
0.1154 
0.1137 
0.1121 

0.39 
0.39 
0.40 
0.40 

5 2 
3 
4 
5 

0.6767 
0.6817 
0.6867 
0.6917 

0.1294 
0.1274 
0.1255 
0.1235 

0.6267 
0.6317 
0.6367 
0.6417 

0.1104 
0.1086 
0.1068 
0.1050 

0.17 
0.17 
0.18 
0.18 

0.5767 
0.5817 
0.5867 
0.5917 

0.0930 
0.0913 
0.0897 
0.0880 

0.39 
0.40 
0.40 
0.40 

 
            t = 0.3 t = 0.4 t = 0.5   

1λ  
 
β  

P1 1R′  I P1 1R′  I P1 1R′  I 

2 2 
3 
4 
5 

0.5207 
0.5227 
0.5247 
0.5267 

0.1971 
0.1956 
0.1941 
0.1925 

0.50 
0.50 
0.50 
0.51 

0.4707 
0.4727 
0.4747 
0.4767 

0.1606 
0.1592 
0.1577 
0.1564 

0.84 
0.85 
0.85 
0.85 

0.4207 
0.4227 
0.4247 
0.4267 

0.1277 
0.1265 
0.1253 
0.1240 

1.32 
1.32 
1.33 
1.34 

3 2 
3 
4 
5 

0.5227 
0.5257 
0.5287 
0.5317 

0.1304 
0.1289 
0.1274 
0.1258 

0.66 
0.68 
0.68 
0.69 

0.4727 
0.4757 
0.4787 
0.4817 

0.1061 
0.1047 
0.1034 
0.1020 

1.04 
1.07 
1.07 
1.08 

0.4227 
0.4257 
0.4287 
0.4317 

0.0843 
0.0831 
0.0819 
0.0807 

1.57 
1.60 
1.62 
1.63 

4 2 
3 
4 
5 

0.5247 
0.5287 
0.5327 
0.5367 

0.0970 
0.0955 
0.0932 
0.0925 

0.68 
0.68 
0.70 
0.70 

0.4747 
0.4787 
0.4727 
0.4867 

0.789 
0.0775 
0.0762 
0.0748 

1.06 
1.07 
1.08 
1.10 

0.4247 
0.4287 
0.4327 
0.4367 

0.0626 
0.0614 
0.0611 
0.0590 

1.60 
1.62 
1.60 
1.66 

5 2 
3 
4 
5 

0.5267 
0.5317 
0.5367 
0.5417 

0.0770 
0.0755 
0.0740 
0.0725 

0.68 
0.69 
0.70 
0.70 

0.4767 
0.4817 
0.4827 
0.4917 

0.0626 
0.0612 
0.0599 
0.0585 

1.07 
1.08 
1.10 
1.11 

0.4267 
0.4317 
0.4367 
0.4417 

0.0496 
0.0484 
0.0472 
0.0460 

1.61 
1.63 
1.66 
1.68 
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* iR′= *

iR /N , I denotes the percentage increase in 2R′ over 1R′ . 
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