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Abstract

In this paper, we are interested in discrete linear systems subject to
disturbances. The initial state being supposed unknown, the observer
constitutes a traditional estimator. In this work, and for an improve-
ment of the Luenberger observer, we establish that by an adequate
choice of the initial state observer one can act on the error which had
with the estimate, in the presence of disturbances. The results obtained
are illustrated through a numerical simulation.
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1 Introduction

Every time, that one of the parameters of a system is partially or completely
unknown, it becomes necessary to carry out the estimate of the state of this
last. It is in this context that D. Luenberger introduced and developed, for
the first time the observers theory [13], [14]. Fascinated by this new approach,
the scientists adapted it to different types of systems: discrete systems [5],
[15], [16]; stochastic systems [3]; time varying systems [1], [8] and hereditary
systems [7]; and disturbed systems [11], [12], [17], [20].
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2smahansaadi@hotmail.com



1632 M. Rachik et al

in spite of the important role played by the observers in the systems theory,
they remain of limited interest for a great class of systems. Indeed, since
the observer is by definition an asymptotic estimator of the state of origin,
means that information which it provides are only reliable after a long length
of time . Thus, the observers are not very interesting for the systems at short
duration of evolution, or for systems concerned with epidemiology, environment
or space navigation, where a delayed estimate of the state of the system can
have disastrous consequences.

To contribute to the resolution of this problem, we take interest in this
paper, in improving the performances of a discrete linear disturbed system,
described by the difference equation
Zo

with the corresponding disturbed output signal
Yi = C Z; -+ EEZ

where z; € R, v; € R™, y; € RY, d; € R” and d; € R” are respectively, the
state vector, the control vector, the output vector and the disturbance vectors.
Without loss of generality, we can assume that d; = d; (r’=r). If not, we
replace d; and d; by the new disturbance vector (;lvz = ( Ei ) and the matrices
D and E, respectively by the matrices D= ( D 0 ) and E = ( 0 K ) )
The disturbances (d;);>o that are liable to affect the system are supposed finite
age, that means (d;);>o € D where D = {(d;)i>0 : d; € R", and d; =0, Vi >
I'} with T a positive integer that indicate the age of disturbances. While A, B,
C, D and E are constant matrices of appropriate dimensions.

Our main objective, in this paper is to construct an observer of the system (1)
described by the equation

{Zi+1:in+pui+Hyi7 Vi >0 @)
20

where z; € RP is the state observer, F', P and H are matrices of suitable
dimensions, such that the estimate state converges towards T'z; (where T' €
L(R" RP)) with an assigned rate of convergence. More precisely, for given a
threshold of tolerance av = («);>0, and while supposing that the unknown state
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belongs to a convex polyhedron P we seek to verify the condition that we call
(o, P)-condition

|Tx; — zi]| <5 Vi>0 and Yx € P (3)

For T € L(R",RP), where (x;);>0 is the solution of the equation (1) corre-
sponding to the initialization xy = z.

In all the sequel of this paper, we will call an estimator (2) that verifies the
(o, P)-condition (3), an («, P)-observer.

In recent work [4], Rachik et al have presented a study of (a, P)-observers for
non disturbed linear systems (d; = 0, Vi > 0). they have characterized a class
M of initial states observer such that the estimator (2) with zy € M is an
(cv, P)-observer for the system (1) with (d; =0, Vi > 0).

As following this work, and taking into account the presence of disturbances
that result from the natural interaction which exists between a system and its
environment, we will be interested in this paper in the determination of the
couples (2o, (d;);>0) for which the estimator (2) is an (a, P)-observer for the
perturbed system (1). For that, we will fix 2y in an appropriate class, and for
this zp we will characterize the set of all disturbances (d;);>0 € D such that the
(e, P)-condition is checked. In other words we are interested in determining
the set

DZO(Od,P) = {(5 = (do,dl, ceey d[_l) € RTI/HTJZ'Z‘—ZZ‘H S (670 Vi 2 1, V$0 € P},

with adequate choice of z; This paper is organized as follows. In a first step,
using the hypothesis on the geometry of P, we show the existence of all a
class of (a,P)-observers. In a second step, we give a theoretical as well as
algorithmic characterization of the set D, (a, P).

finally, to illustrate the obtained results, a numerical simulation is given.

2 preliminary results

The observer (2) only uses known variables u and y, d being non measured.
the whole of all its matrices have to be properly defined, the objective of
this section is to show that the observer of Luenberger constitutes a good

asymptotic estimator of the system (1) and this for all disturbances (d;)i>o €
D.

Proposition 2.1 Equation (2) specifies an observer of the system (1) if the
following conditions hold ,
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1. TA-—FT=HC
2. P=1TB

3. F is asymptotically stable

Proof
Let e; = z; — T'xz; be the observer error , then for all ¢ > 0 we have,

Civ1 = Zit1 — TTipa
= Fe;+ (FT -TA+ HC)xi+ (P—-TB)u; + (HE —TD)d;

the conditions 1 and 2 yields
€iy1 = Fe; + (HE — TD)dZ
Which implies
e;=Fleg+ Y F/(HE—TD)d; ., Vi>1 (4)
j=1
As the disturbances are of finite age I , (i.e)
dj=0 Vj>1
then for ¢ > I + 1 we have

1 %
e;=F'eg+Y F/(HE-TD)d;+ » F/(HE-TD)d;_, (5

j=1 j=I+1

J/

-~
=0

Which implies ,

I
e; = F"'[F™ e+ Y F™(HE — TD)d; ] (6)

j=1
We deduce from condition 3 that
lim F'=0 so lim e; =0.
i—+00 i—+00

[
The design of state observers for disturbed systems has been treated also in
some previous papers, in particular in [6],[9],[10], [12], [18] and [19].
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3 improvement of the observer error

3.1 Problem Formulation

For the system (1), we are interested in determining T'z; based on the mea-
sured output y; and control signal u;. But, because of the presence of distur-
bances, and the fact of not knowing x(, we can not determinate the state T'z;
exactly. therefore, we use the observer (2) to estimate it, by imposing on the
error a tolerance threshold. The problem being addressed in this paper can be
formulated as follows
Let a@ = (ay)ien be a real and positive sequence, decreasing to 0 such that
1 > 0

the sequence (a?j_l)i>() is decreasing. (For example «; =
)iz

s €[1,+ocf; and oy = p', p<1.)

1
i1
1
UGSV
Given a convex and compact polyhedron P of R™ containing xy we aim to
determine among the class of finite age disturbances that are liable to affect
the system, those for which the observer error converges to 0 with assigned
speed a. More precisely we are concerned with the characterization of the set

DZO(Od,P) = {(5 = (do,dl, ceey d[_l) € RTI/HTJZ'Z — Zz” S (670 Vi 2 1 V$0 € P}

for an adequate choice of the initial state observer zy.
That means, if § € D,,(«, P) the observer (2) with initial state 2y is an («, P)-
observer of the system (1) affected by the vector disturbance 0.

3.2 Admissible set D, («,P)

We start this section with some technical results which will be used in the
sequel. Let us define, for zg € RP the functionals

Yy RT — RP

do I
5 = : — FI*Y(zg— Tao) + Y FT'(HE - TD)d;
dr—1 7=
and
Vizg - R’ — TRP
d() 3
5 = : — Fi(zg—Tx) + Y F'/(HE —TD)d;_1.

—
dr—1 J
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Then we deduce from (6)

DZO(Od,P) = {(5 = (do,dl, ceey d[_l) € RTI/H&H < (7R A4 > 1, V$0 S P}
= {(5 = (do,dl, ceey d[_l) S RTI/sz,;ro((s)H < (670 A4 > 1, V$0 S P}
= GNH.

Where

G={6=(do,di,....,dr—1) € R /||thiny(O)|| < i, Vie{l,... I} andVxy € P}.

H = {(5 = (do,dl, e d[_l) € RTI/“Fi_I_IiﬂxO((S)” <a;; Vi>I1+1 andVxy € P},
= {(5 = (do,dl, ceey d[_l) € RTI/HFkiﬂxO((S)H S Ny 141, vk 2 0 and V$0 € P}

In the following proposition we will show that the knowledge of all the set
P is not necessary to define D, («, P) but only its vertices. So let us define
the set
vert(P) = {v1, v, ..., vs} where vy, k =1,2,...,s are the vertices of P.

Proposition 3.1 We have

(i) D.,(a,P) ﬂDzO o (@, P)
where D, vk(& P)={6 € R"/||thin,(0)]] < s, Vi>1}

(i) G = ﬂg,,k and H = ﬂHvk
where ka {0 € R”/wak( <o, 1<i<I}
and Hy, = {6 € R™/|[F'4py, 0)|] < igrsr, Vi 0}

with vy, € vert(P), 1<k<s
We have also,

DZQ,Uk(&7P) = gvk N HUk’ fO?“ all k = 1,2, oy S

Proof. .
(i) It’s clear that D, (a, P) C ﬂ D,y v (, P)
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reciprocally, let § € ﬂ D,y (a0, P).
k=1

Forallzy € P, 36, >0 (1 <k < s) such that Zﬁk =1 and zyg= Zﬁkvk.
k=1 k=1

Then
leil| = |[Fizo— FITY g+ Y F/(HE - TD)d;|
k=1 j=1
< Y BllFiz — F'Tog+ Y F'/(HE — TD)d; |
k=1 j=1
< Zﬁk&z‘ =y
k=1
(ii) Same proof as (i). n

Remark 3.1 Before trying to characterize the set D, (a, P), it is natural to
Justify that this set is not reduced to zero (§ = 0 corresponds to the case where
the system is not disturbed). In the following theorem we show that under some
conditions, there exists zy initials state observer such that D,, (o, P) contains
a ball centered on 6 = 0.

Theorem 3.1 We suppose that the following conditions hold

1) there exists v > 0 such that —',lFi” <=, for every ¢ > 0.
Y dirrr =

.o . 1 . _ R .

(i) diamP < s Where diamP = vkerilearii(mHUz vjl.

Then

1
0 € intD,,(a, P), for every zy€ B(Tv,, el ||T||diamP).

where v; is a vertex of P, B(a,r) is the ball of radius r, centered on a, and
ntE is the interior of the set E.

Proof.
The proof will be made in two steps.

Step 1: proof that 0 € intG.

For that we will show that 0 € intG,, for all k =1,2,...;s
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Let us define the functionals

Vol er — RP
d() 3
5 = : — Y _F"/(HE—-TD)d;
dr—1 =1
(pi)o<i<s are continuous functions, particulary at point 0, consequently, for
every integer i € {1,..., I'} there exists p; > 0 such that
ar
Vo € B(0, i), lwi(O)l] < =
Let p = Oréliléllpi, then

Vo€ B(0,p), [lei(0)ll <5 <5, Vie{0,1,... 1}

PR

For z € B(ij,% — ||T||diam(P)) and § € B(0,p), we have for every i €
{0,..., 1} and every k € {1,..., s}.

Itk #j,
Wi O] = [1F*(20 — Tor) — ¢i(9)]]
< |[F*(z0 = Top)l| + ||[F*(Tve — Tv)|| + [|i(6)]]
< [1F(llz0 = Tos|[ + 1T [[|Jvk = v5]]) + %
< gy — |Tl|diam(P) + ||T||diam(P)) + § < a.
It | = 5,
Wi O] = [1F*(20 — Tor) — 0i(9)]]
< F (20 — Tyl + [le:(0)]]
< |[Fllz0 — Tvjl| + %

< qai(g; — |[Tlldiam(P)) + § < o

Step 2: proof that 0 € intH
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For that we will show that 0 € intH,, forall k =1,2,...,s
Let us define the functional

o:RT — RP
d() I
5= : — Z F'""I(HE —TD)d;_, ¢ is continuous function at

—
dr—1 J

point 0, consequently, there exists > 0 such that

1
vo € B(0,5), lle@)ll < 2

For zp € B(Tv;, % —||T||diam(P)) and 6 € B(0, ) we have for every i > 0
and every k € {1,..., s}.

It &  j
F%u )] = |[F* (20 — Twi) — Fo(0)]
< |[F* (20 — Top)l| + [Tk — Tvj)l| + vairr| o (6)]|
< [[F*|(120 — Tyl | + [IT]|[Jox — vj][) + =5
< Yairn(sy = [|T]|diam(P) + || T||diam(P)) + “45+ < qigrer.
It k =
F%u O] = |[F* (20 — Tvi) — Fo(0)]
< |[F™* (20 — Top)l| + yeie 11|l (0)]]
< |[F* 20 — Tyl | + =52

< airra(sy — [|T]|diam(P)) + “45% < aigr.

We deduce from step 1 and step 2 that 0 € intG[intH and consequently
0 € intD,,(a, P). n
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In the following proposition we will give more properties of the set D, («, P).

Proposition 3.2 (i) D,,(a,P) is closed and convez set.

L]
Qip 141

(ii) If it exists v > 0 such that

diamP < m Then,

< 7, for all i > 0 and if

S

0 € intD,,(a, P), for every z€ conv(UB(TUk,B)),
k=1

where convE is the convex hull of E, and 3 = 5= — ||T||diam(P).

2y

Proof.
(i) One can easily verifies that D,,(«, P) is convex set.
Since

Go= [ ¥rke e B :|lal| < ai})

1€{0,....I}

{z € R? : ||z|| < «a;} are closed. We deduce then that G = ﬂ;lgvk is also
closed. B
On the other hand, H,, = wv_kl (S), where S is the closed set given by

S={z eRr:||Fz|| < airr41, Vi >0}. The continuity of ¢, implies that

H.,, is closed. And consequently H = ﬂHvk is closed.
k=1
Finally we conclude that so is D,,(«, P) = G N H.

(ii)Let 2z € conv(UB(TUk,B)), then there exists \; € [0,1] and w; €

k=1
s l l

UB(Tvk,B) such that zg = Z)‘iwi and Z)‘i =
k=1 i=1 i=1
From theorem 3.1 we deduce that 0 € Dy, (o, P), i.e, Ipr > 0 : B(0,px) C

Doy, (v).
Let p = lrgiglpk, then for every 6 € B(0, p), every i > 1 and every xy € P, we

have
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: !
| Fi(zo — o) + > F(HE —=TD)d;—y || = | FI(> Mwg — o)
k=1

J=1

+ZFH HE —TD)d,_, |

= | ZM (wy, — o)

+ZF’ I(HE —TD)d;_,) ||

< Z)\k | F*(wy, — o)
+ZF’ (HE —TD)d,_, |
< Z)\k&z = ;.
Which implies that 6 € D,,(«a, P). n

Remarks 3.1 (i) The condition diamP < m is not very restrictive, in-
deed one can consider instead of T the operator €I, where € is positive

real that can be chosen as little as need.

(ii) It is obvious that the set G can be completely obtained by solving a finite
number of functional inequalities. However, the set 'H is defined by an
infinite number of inequations, and so it can be hardly obtained. As in
Rachik et al.[}] we will give a sufficient condition that able the charac-
terization of the set D,, (o, P) by finite number of inequalities.

4 Characterization of the sets H,

In order to improve the structure of the sets H,, v € vert(P) we introduce the
following sets,
S={ R ||F'¢|| < ipra, Viz0}

S ={{ €RP: HF’fH < Qiprs1, Vie{0,1,..,k}}, E>0
and
Hio = {0 € R™ HF’wv((S)H < itrp1, Vie{0,1,...,k}}, E>0

where v is a vertex of the polyhedron P.
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Definition 4.1 The set E (E = S or H,) is said to be finitely accessible if
there exists an integer k such that E = Ey, ( Ex, = S, or Hy,). We denote by
k* the smallest such integer.

Remarks 4.1 (i) For integers i and j such that i > j, we have

ScC Sz - Sj and H, C Hz"v C Hjﬂ,.

(i) As
Hiv =01 (S:) and H,=1,1(S).
Then,

S s finitely accessible = H, is finitely accessible.

Proposition 4.1 The set S is finitely accessible if and only if Sp+1 = Sk for
some integer k.

Proof.

(=) If S is finitely accessible then Si11 = S for all k > k*.

(<) Conversely, suppose that it exists k such that Si+1 = Sy which is equiva-
lent to Sy C Sk41 (Remark 4.1 (i)).

Let £ € Sk, then € € Sy1 which implies for 0 <7 <k

H Fi(Oék—l—I—l—lFS) H: QpT+1 H FH—lf HS Okt 141
Of+1+42 AOf+1+42 Af+142

Q4142

As the sequel (=2-).5( is decreasing then ZEtItl < %I+l which implies
ajt1/d Qg4 I+2 Qi I42
J - 7

H FZ(&k+j+;Ff) HS QG4 1+1
+I+

and consequently

MFS €S,
At 142

We deduce, then by iteration that

(CHEYFIg € S, W20
k+1+42

or equivalently

| (S PIE < gy, W0 <<k and ¥ 0.
Ay 142
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Particulary for ¢ = k, we have

H Fk+j€ H< M Vi > 1.
 (Qprg1)?Y -

We show by iteration that

Qpp112) .
ﬁ < Qkiryjer, VJ 21

which implies
| F*9¢ < appjir, V5> 1.

Or equivalently
| 6 |1< cigren, Vi k.

And then we deduce that £ € S so S, C S hence S = &;. [

Remark 4.1 As a natural consequence of the previous proposition, we shall
give in section 5 an algorithm which allows to determine the smallest integer
k* such that S = Sj-.

Before taking interest on the determination of k*, it is desirable to have
simple condition which assure the finite accessibility of S. Our main result in
this direction is the following theorem.

Theorem 4.1 If the following condition hold

LR
i—=400 (g 141

0.

Then S is finitely accessible.

Proof.
The hypothesis of the theorem implies that it exists kg such that
| Fo
< .
Ay +1+2 arg
Let £ € Sk,, then
| FRrig ] < | PRl €
Qkg+142
< g
< Qo 4+142

which gives £ € Sk, 41 and that completes the demonstration. [
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Remark 4.2 In the theorem 3.1 and proposition 3.2, we need the value of
F’L
v = supu to check the sufficient condition. In practice, it is not always
i>0 Cjti41
easy to calculate this supremum . So we establish in the following proposition,

sufficient condition wich ensure the feasibility of this calculus.

F? F?
Proposition 4.2 Suppose that lim | | = 0, and let p = max | H,
i—+00 Q4141 0<e<k* QY4141
where k* is the smallest integer such that S = Sg«. Then if diamP < 2u|1|T||’

we have

S

0 € intD,,(a, P), for every =z € conv(UB(TUk, 3))
k=1

where 3 = = — ||T||diamP.

2p
Proof. i
Let v = supu. It’s evident that v > pu.
i>0 Q4141

Suppose that v > p which implies that there exists ig > k* such that || F ||>

Mg 1+1
what implies that there exists & € B(0,1) such that

1
| F(=&0) [|> cigt141
1
what yields l%fo ¢S.
On the other hand, for 0 <7 < k* we have
1 1
| F*(=&o) IS —iyriapn = qigria,
1 1

consequently l%fo € Sy, which is contradiction. So v = p.
Then application of proposition 3.2 with v = u completes the proof. [

5 Algorithmic approach

From the previous results we can deduce an algorithm for determination of k*,
the smallest integer such that & = Sy+, and consequently the (o, P)-admissible
set D, (o, P).
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Let R? be endowed with the infinite norm

1€]| = max |&|,  forall €=(&,...,&) € RP.

The set S, is then described as follows

Sp={§ R f;( Fi¢) <0 pour j=1,2,...2p et i=0,1,... .k}

QG4 1+1

where the functions f; : R? — R, are defined for every y = (y1, ..., y,) € RP by

f2l—1(y):yl_17 Vi e {17277p}
f2l(y) :_yl_17 Vi e {17277p}
It follows from remark (4.1(i)),that :

Sk+1 =8, S, C Sk+1

or equivalently

. 1
V§ ~ Sk;, VJ c {1,2,,2]3} 7fj(ka+1€) S O,

or yet

sup f;( FMe) <0 for je{l1,2,..,2p}.

€eS,  Ok+tI+2

what is equivalent to

1 .
Supfj(rg - 2Fk“f) <0 for je{1,2,..,2p}.
+I+

with the constraints

fj(al+11+1 Fl€> S 07

j:1727"' 72p7
1=01,.. .k

Finally, we deduce an algorithm that, when it converges, calculate k*.
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Algorithm

step 1 : initialise k£ := 0;
step2: fori=1,...,2p, do:
Maximize J;(z) = fi(=———F*1x)

A+ T1+2
filg—=F'v) <0,
7=1,...,2p,
1=0,...,k.

Let J; be the maximum value of J;(x).
If J; <0, for i=1,...,2p then
set k* := k and stop.

Else continue.

step 3 : Replace k£ by k + 1 and return to step 2.

Remark 5.1 The optimization problem cited in step 2 is a mathematical pro-
grammang problem and can be solved by standard methods, in particular the
method of simplez.

To illustrate this work we give in the following section a numerical example.

6 Numerical Example
Consider the following perturbed system:
10 1 1 -1
i+1 = i i di, Vi>0
wn= (7)o (o) ue (o 1) 8wz g
Zo

With the corresponding perturbed output signal:

(2, (0,
yl_ 01 x’L 00 (2

We suppose that the age of disturbances (d;)o<i<s is I = 1 We consider the
identity observer:

05 0 1 0.25 —0.25
Zit1 ( L 05 )zz—l— ( 0 )uz—l— ( 0 0.5 )y,, Vi>0 (8)

It is obvious that
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1. P=TB
2. TA-FT =DC
3. The eigenvalues of F are 0.5 and 0.5, then F is stable.

Let o; = ; +1
The algorithm established in section 5 gives £* = 3

We have by proposition 4.2, y = gr<1a<>§ a”fl'lil = 6.25.

1
For T'= ( 0 (_i ) and the polyhedron P with vertices

S 0.02 o —0.02 e — —0.02 and v, — 0.02
FNo002 ) 0 2L 002 » T —0.02 T —0.02
A simple calculation gives diamP ~ 0.056 then diamP < 5 IITH = 0.08, thus

proposition 4.2 insures that the set D, (a, P) of the (o, P)-admissible distur-
bances corresponding to the polyhedron P and to the observer initial state

0. . : . .
Zo = ( 0 ) is nonempty and is entirely characterized by proposition 3.1, and

we have the following representation

/

////
7 44
%

F

Figure 1: Graphic representation of the set D, (a, P)

Remark 6.1 The procedure suggested requires a great amount of computa-
tional work if the state-space dimension or the age of disturbances or the num-
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ber of the vertices of P are large, because the set D, (a, P) is then obtained by
the resolution of a large set of linear inequalities.

7 Conclusion

The problem of improving some performances of an observer of a discrete linear
system in presence of disturbances has been considered.

It was proved that the characterization of the set of the disturbances that
realize the desired performance is achieved by the selection of an adequate
class of initial state observer.

It has been shown that with the hypothesis that the unknown initial state
belongs to polyhedral set, the solution involves simple linear programming
algorithms.
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