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Abstract

In this paper, we are interested in discrete linear systems subject to
disturbances. The initial state being supposed unknown, the observer
constitutes a traditional estimator. In this work, and for an improve-
ment of the Luenberger observer, we establish that by an adequate
choice of the initial state observer one can act on the error which had
with the estimate, in the presence of disturbances. The results obtained
are illustrated through a numerical simulation.
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1 Introduction

Every time, that one of the parameters of a system is partially or completely

unknown, it becomes necessary to carry out the estimate of the state of this

last. It is in this context that D. Luenberger introduced and developed, for

the first time the observers theory [13], [14]. Fascinated by this new approach,

the scientists adapted it to different types of systems: discrete systems [5],

[15], [16]; stochastic systems [3]; time varying systems [1], [8] and hereditary

systems [7]; and disturbed systems [11], [12], [17], [20].
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2smahansaadi@hotmail.com
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in spite of the important role played by the observers in the systems theory,

they remain of limited interest for a great class of systems. Indeed, since

the observer is by definition an asymptotic estimator of the state of origin,

means that information which it provides are only reliable after a long length

of time . Thus, the observers are not very interesting for the systems at short

duration of evolution, or for systems concerned with epidemiology, environment

or space navigation, where a delayed estimate of the state of the system can

have disastrous consequences.

To contribute to the resolution of this problem, we take interest in this

paper, in improving the performances of a discrete linear disturbed system,

described by the difference equation

{
xi+1 = Axi +Bui +Ddi, ∀i ≥ 0

x0
(1)

with the corresponding disturbed output signal

yi = Cxi + Edi

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
q, di ∈ R

r and di ∈ R
r′ are respectively, the

state vector, the control vector, the output vector and the disturbance vectors.

Without loss of generality, we can assume that di = di (r’=r). If not, we

replace di and di by the new disturbance vector d̃i =

(
di

di

)
and the matrices

D and E, respectively by the matrices D̃ =
(
D 0

)
and Ẽ =

(
0 E

)
.

The disturbances (di)i≥0 that are liable to affect the system are supposed finite

age, that means (di)i≥0 ∈ D where D = {(di)i≥0 : di ∈ R
r, and di = 0, ∀i ≥

I} with I a positive integer that indicate the age of disturbances. While A, B,

C, D and E are constant matrices of appropriate dimensions.

Our main objective, in this paper is to construct an observer of the system (1)

described by the equation

{
zi+1 = Fzi + Pui +Hyi, ∀i ≥ 0

z0
(2)

where zi ∈ R
p is the state observer, F , P and H are matrices of suitable

dimensions, such that the estimate state converges towards Txi (where T ∈
L(Rn,Rp)) with an assigned rate of convergence. More precisely, for given a

threshold of tolerance α = (α)i≥0, and while supposing that the unknown state
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belongs to a convex polyhedron P we seek to verify the condition that we call

(α,P)-condition

||Txi − zi|| ≤ αi ; ∀i ≥ 0 and ∀x ∈ P (3)

For T ∈ L(Rn,Rp), where (xi)i≥0 is the solution of the equation (1) corre-

sponding to the initialization x0 = x.

In all the sequel of this paper, we will call an estimator (2) that verifies the

(α,P)-condition (3), an (α,P)-observer.

In recent work [4], Rachik et al have presented a study of (α,P)-observers for

non disturbed linear systems (di = 0, ∀i ≥ 0). they have characterized a class

M of initial states observer such that the estimator (2) with z0 ∈ M is an

(α,P)-observer for the system (1) with (di = 0, ∀i ≥ 0).

As following this work, and taking into account the presence of disturbances

that result from the natural interaction which exists between a system and its

environment, we will be interested in this paper in the determination of the

couples (z0, (di)i≥0) for which the estimator (2) is an (α,P)-observer for the

perturbed system (1). For that, we will fix z0 in an appropriate class, and for

this z0 we will characterize the set of all disturbances (di)i≥0 ∈ D such that the

(α,P)-condition is checked. In other words we are interested in determining

the set

Dz0(α,P) = {δ = (d0, d1, ..., dI−1) ∈ R
rI/||Txi−zi|| ≤ αi, ∀i ≥ 1, ∀x0 ∈ P},

with adequate choice of z0 This paper is organized as follows. In a first step,

using the hypothesis on the geometry of P , we show the existence of all a

class of (α,P)-observers. In a second step, we give a theoretical as well as

algorithmic characterization of the set Dz0(α,P).

finally, to illustrate the obtained results, a numerical simulation is given.

2 preliminary results

The observer (2) only uses known variables u and y, d being non measured.

the whole of all its matrices have to be properly defined, the objective of

this section is to show that the observer of Luenberger constitutes a good

asymptotic estimator of the system (1) and this for all disturbances (di)i≥0 ∈
D.

Proposition 2.1 Equation (2) specifies an observer of the system (1) if the

following conditions hold ,
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1. TA− FT = HC

2. P = TB

3. F is asymptotically stable

Proof

Let ei = zi − Txi be the observer error , then for all i ≥ 0 we have,

ei+1 = zi+1 − Txi+1

= Fzi + Pui +Hyi − TAxi − TBui − TDdi

= Fei + (FT − TA+HC)xi + (P − TB)ui + (HE − TD)di

the conditions 1 and 2 yields

ei+1 = Fei + (HE − TD)di

Which implies

ei = F ie0 +
i∑

j=1

F i−j(HE − TD)dj−1, ∀i ≥ 1 (4)

As the disturbances are of finite age I , (i.e)

dj = 0 ∀j ≥ I

then for i ≥ I + 1 we have

ei = F ie0 +

I∑
j=1

F i−j(HE − TD)dj−1 +

i∑
j=I+1

F i−j(HE − TD)dj−1

︸ ︷︷ ︸
=0

(5)

Which implies ,

ei = F i−I−1[F I+1e0 +
I∑

j=1

F I+1−j(HE − TD)dj−1] (6)

We deduce from condition 3 that

lim
i−→+∞

F i = 0 so lim
i−→+∞

ei = 0.

The design of state observers for disturbed systems has been treated also in

some previous papers, in particular in [6],[9],[10], [12], [18] and [19].
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3 improvement of the observer error

3.1 Problem Formulation

For the system (1), we are interested in determining Txi based on the mea-

sured output yi and control signal ui. But, because of the presence of distur-

bances, and the fact of not knowing x0, we can not determinate the state Txi

exactly. therefore, we use the observer (2) to estimate it, by imposing on the

error a tolerance threshold. The problem being addressed in this paper can be

formulated as follows

Let α = (αi)i∈� be a real and positive sequence, decreasing to 0 such that

the sequence ( αi

αi+1
)i≥0 is decreasing. (For example αi = 1

i+1
, i ≥ 0;

αi = 1
(i+1)s , s ∈ [1,+∞[; and αi = ρi, ρ < 1. )

Given a convex and compact polyhedron P of R
n containing x0 we aim to

determine among the class of finite age disturbances that are liable to affect

the system, those for which the observer error converges to 0 with assigned

speed α. More precisely we are concerned with the characterization of the set

Dz0(α,P) = {δ = (d0, d1, ..., dI−1) ∈ R
rI/||Txi − zi|| ≤ αi, ∀i ≥ 1 ∀x0 ∈ P}.

for an adequate choice of the initial state observer z0.

That means, if δ ∈ Dz0(α,P) the observer (2) with initial state z0 is an (α,P)-

observer of the system (1) affected by the vector disturbance δ.

3.2 Admissible set Dz0
(α,P)

We start this section with some technical results which will be used in the

sequel. Let us define, for z0 ∈ R
p the functionals

ψx0 : R
rI −→ R

p

δ =

⎛
⎜⎝

d0

...

dI−1

⎞
⎟⎠ �−→ F I+1(z0 − Tx0) +

I∑
j=1

F I+1−j(HE − TD)dj−1

and

ψi,x0 : R
rI −→ R

p

δ =

⎛
⎜⎝

d0

...

dI−1

⎞
⎟⎠ �−→ F i(z0 − Tx0) +

i∑
j=1

F i−j(HE − TD)dj−1.
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Then we deduce from (6)

Dz0(α,P) = {δ = (d0, d1, ..., dI−1) ∈ R
rI/||ei|| ≤ αi, ∀i ≥ 1, ∀x0 ∈ P}.

= {δ = (d0, d1, ..., dI−1) ∈ R
rI/||ψi,x0(δ)|| ≤ αi, ∀i ≥ 1, ∀x0 ∈ P}.

= G ⋂H.

Where

G = {δ = (d0, d1, ..., dI−1) ∈ R
rI/||ψi,x0(δ)|| ≤ αi, ∀i ∈ {1, . . . , I} and ∀x0 ∈ P}.

H = {δ = (d0, d1, ..., dI−1) ∈ R
rI/||F i−I−1ψx0(δ)|| ≤ αi, ∀i ≥ I + 1 and ∀x0 ∈ P},

= {δ = (d0, d1, ..., dI−1) ∈ R
rI/||F kψx0(δ)|| ≤ αk+I+1, ∀k ≥ 0 and ∀x0 ∈ P}.

In the following proposition we will show that the knowledge of all the set

P is not necessary to define Dz0(α,P) but only its vertices. So let us define

the set

vert(P) = {v1, v2, ..., vs} where vk, k = 1, 2, ..., s are the vertices of P .

Proposition 3.1 We have

(i) Dz0(α,P) =
s⋂

k=1

Dz0,vk
(α,P)

where Dz0,vk
(α,P) = {δ ∈ R

rI/||ψi,vk
(δ)|| ≤ αi, ∀i ≥ 1}

(ii) G =
s⋂

k=1

Gvk
and H =

s⋂
k=1

Hvk

where Gvk
= {δ ∈ R

rI/||ψi,vk
(δ)|| ≤ αi, 1 ≤ i ≤ I}

and Hvk
= {δ ∈ R

rI/||F iψvk
(δ)|| ≤ αi+I+1, ∀i ≥ 0}

with vk ∈ vert(P), 1 ≤ k ≤ s

We have also,

Dz0,vk
(α,P) = Gvk

∩Hvk
, for all k = 1, 2, ..., s

Proof.

(i) It’s clear that Dz0(α,P) ⊂
s⋂

k=1

Dz0,vk
(α,P)
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reciprocally, let δ ∈
s⋂

k=1

Dz0,vk
(α,P).

For all x0 ∈ P , ∃βk ≥ 0 (1 ≤ k ≤ s) such that
s∑

k=1

βk = 1 and x0 =
s∑

k=1

βkvk.

Then

||ei|| = ||F iz0 − F iT
s∑

k=1

βkvk +
i∑

j=1

F i−j(HE − TD)dj−1||

≤
s∑

k=1

βk||F iz0 − F iTvk +
i∑

j=1

F i−j(HE − TD)dj−1||

≤
s∑

k=1

βkαi = αi

(ii) Same proof as (i).

Remark 3.1 Before trying to characterize the set Dz0 (α,P), it is natural to

justify that this set is not reduced to zero (δ = 0 corresponds to the case where

the system is not disturbed). In the following theorem we show that under some

conditions, there exists z0 initials state observer such that Dz0(α,P) contains

a ball centered on δ = 0.

Theorem 3.1 We suppose that the following conditions hold

(i) there exists γ > 0 such that ||F i||
αi+I+1

≤ γ, for every i ≥ 0.

(ii) diamP < 1
2γ||T ||, where diamP = max

vk∈vert(P)
||vi − vj||.

Then

0 ∈ intDz0(α,P), for every z0 ∈ B(Tvj,
1

2γ
− ||T ||diamP).

where vj is a vertex of P, B(a,r) is the ball of radius r, centered on a, and

intE is the interior of the set E.

Proof.

The proof will be made in two steps.

Step 1: proof that 0 ∈ intG.

For that we will show that 0 ∈ intGvk
for all k = 1, 2, ..., s
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Let us define the functionals

ϕi : R
rI −→ R

p

δ =

⎛
⎜⎝

d0

...

dI−1

⎞
⎟⎠ �−→

i∑
j=1

F i−j(HE − TD)dj−1

(ϕi)0≤i≤I are continuous functions, particulary at point 0, consequently, for

every integer i ∈ {1, ..., I} there exists ρi > 0 such that

∀δ ∈ B(0, ρi), ||ϕi(δ)|| ≤ αI

2
.

Let ρ = min
0≤i≤I

ρi, then

∀δ ∈ B(0, ρ), ||ϕi(δ)|| ≤ αI

2
≤ αi

2
, ∀i ∈ {0, 1, ..., I}.

For z0 ∈ B(Tvj,
1
2γ

− ||T ||diam(P)) and δ ∈ B(0, ρ), we have for every i ∈
{0, ..., I} and every k ∈ {1, ..., s}.

If k �= j,

||ψi,vk
(δ)|| = ||F i(z0 − Tvk) − ϕi(δ)||

≤ ||F i(z0 − Tvj)|| + ||F i(Tvk − Tvj)|| + ||ϕi(δ)||

≤ ||F i||(||z0 − Tvj|| + ||T ||||vk − vj||) + αi

2

≤ γαi(
1
2γ

− ||T ||diam(P) + ||T ||diam(P))+ αi

2
≤ αi.

If k = j,

||ψi,vk
(δ)|| = ||F i(z0 − Tvk) − ϕi(δ)||

≤ ||F i(z0 − Tvj)|| + ||ϕi(δ)||

≤ ||F i||||z0 − Tvj|| + αi

2

≤ γαi(
1
2γ

− ||T ||diam(P)) + αi

2
≤ αi

Step 2: proof that 0 ∈ intH
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For that we will show that 0 ∈ intHvk
for all k = 1, 2, ..., s

Let us define the functional

ϕ : R
rI −→ R

p

δ =

⎛
⎜⎝

d0

...

dI−1

⎞
⎟⎠ �−→

I∑
j=1

F I−j(HE − TD)dj−1 ϕ is continuous function at

point 0, consequently, there exists β > 0 such that

∀δ ∈ B(0, β), ||ϕ(δ)|| ≤ 1

2γ
.

For z0 ∈ B(Tvj,
1
2γ
−||T ||diam(P)) and δ ∈ B(0, β) we have for every i ≥ 0

and every k ∈ {1, ..., s}.

If k �= j

||F iψvk
(δ)|| = ||F i+I(z0 − Tvk) − F iϕ(δ)||

≤ ||F i+I(z0 − Tvj)|| + ||F i(Tvk − Tvj)|| + γαi+I+1||ϕ(δ)||

≤ ||F i+I||(||z0 − Tvj|| + ||T ||||vk − vj||) + αi+I+1

2

≤ γαi+I+1(
1
2γ

− ||T ||diam(P) + ||T ||diam(P))+
αi+I+1

2
≤ αi+I+1.

If k = j

||F iψvk
(δ)|| = ||F i+I(z0 − Tvk) − F iϕ(δ)||

≤ ||F i+I(z0 − Tvj)|| + γαi+I+1||ϕ(δ)||

≤ ||F i+I||||z0 − Tvj|| + αi+I+1

2

≤ γαi+I+1(
1
2γ

− ||T ||diam(P)) + αi+I+1

2
≤ αi+I+1.

We deduce from step 1 and step 2 that 0 ∈ intG ⋂
intH and consequently

0 ∈ intDz0(α,P).
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In the following proposition we will give more properties of the set Dz0(α,P).

Proposition 3.2 (i) Dz0 (α,P) is closed and convex set.

(ii) If it exists γ > 0 such that ||F i||
αi+I+1

≤ γ, for all i ≥ 0 and if

diamP < 1
2γ||T ||. Then,

0 ∈ intDz0(α,P), for every z0 ∈ conv(

s⋃
k=1

B(Tvk, β)),

where convE is the convex hull of E, and β = 1
2γ

− ||T ||diam(P).

Proof.

(i) One can easily verifies that Dz0(α,P) is convex set.

Since

Gvk
=

⋂
i∈{0,...,I}

ψ−1
i,vk

({x ∈ R
p : ||x|| ≤ αi})

and (ψi,vk
)i∈{0,...,I} are continuous, the set Gvk

is closed because the sets

{x ∈ R
p : ||x|| ≤ αi} are closed. We deduce then that G =

⋂s

k=1
Gvk

is also

closed.

On the other hand, Hvk
= ψ−1

vk
(S), where S is the closed set given by

S = {x ∈ R
p : ||F ix|| ≤ αi+I+1, ∀i ≥ 0}. The continuity of ψvk

implies that

Hvk
is closed. And consequently H =

s⋂
k=1

Hvk
is closed.

Finally we conclude that so is Dz0(α,P) = G ∩ H.

(ii)Let z0 ∈ conv(
s⋃

k=1

B(Tvk, β)), then there exists λi ∈ [0, 1] and wi ∈
s⋃

k=1

B(Tvk, β) such that z0 =
l∑

i=1

λiwi and
l∑

i=1

λi = 1

From theorem 3.1 we deduce that 0 ∈ Dwk
(α,P), i.e, ∃ρk > 0 : B(0, ρk) ⊂

Dwk
(α).

Let ρ = min
1≤k≤l

ρk, then for every δ ∈ B(0, ρ), every i ≥ 1 and every x0 ∈ P , we

have
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‖ F i(z0 − x0) +
i∑

j=1

F i−j(HE − TD)dj−1 ‖ = ‖ F i(
l∑

k=1

λkwk − x0)

+

i∑
j=1

F i−j(HE − TD)dj−1 ‖

= ‖
l∑

k=1

λk(F
i(wk − x0)

+
i∑

j=1

F i−j(HE − TD)dj−1) ‖

≤
l∑

k=1

λk ‖ F i(wk − x0)

+
i∑

j=1

F i−j(HE − TD)dj−1 ‖

≤
l∑

k=1

λkαi = αi.

Which implies that δ ∈ Dz0(α,P).

Remarks 3.1 (i) The condition diamP < 1
2γ||T || is not very restrictive, in-

deed one can consider instead of T the operator εT , where ε is positive

real that can be chosen as little as need.

(ii) It is obvious that the set G can be completely obtained by solving a finite

number of functional inequalities. However, the set H is defined by an

infinite number of inequations, and so it can be hardly obtained. As in

Rachik et al.[4] we will give a sufficient condition that able the charac-

terization of the set Dz0(α,P) by finite number of inequalities.

4 Characterization of the sets Hv

In order to improve the structure of the sets Hv, v ∈ vert(P) we introduce the

following sets,

S = {ξ ∈ R
p : ‖F iξ‖ ≤ αi+I+1, ∀i ≥ 0}

Sk = {ξ ∈ R
p : ‖F iξ‖ ≤ αi+I+1, ∀i ∈ {0, 1, ..., k}}, k ≥ 0

and

Hk,v = {δ ∈ R
rI : ‖F iψv(δ)‖ ≤ αi+I+1, ∀i ∈ {0, 1, ..., k}}, k ≥ 0

where v is a vertex of the polyhedron P .
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Definition 4.1 The set E (E = S or Hv) is said to be finitely accessible if

there exists an integer k such that E = Ek ( Ek = Sk or Hk,v). We denote by

k∗ the smallest such integer.

Remarks 4.1 (i) For integers i and j such that i ≥ j, we have

S ⊂ Si ⊂ Sj and Hv ⊂ Hi,v ⊂ Hj,v.

(ii) As

Hi,v = ψ−1
v (Si) and Hv = ψ−1

v (S).

Then,

S is finitely accessible ⇒ Hv is finitely accessible.

Proposition 4.1 The set S is finitely accessible if and only if Sk+1 = Sk for

some integer k.

Proof.

(⇒) If S is finitely accessible then Sk+1 = Sk for all k ≥ k∗.
(⇐) Conversely, suppose that it exists k such that Sk+1 = Sk which is equiva-

lent to Sk ⊂ Sk+1 (Remark 4.1 (i)).

Let ξ ∈ Sk, then ξ ∈ Sk+1 which implies for 0 ≤ i ≤ k

‖ F i(
αk+I+1

αk+I+2
Fξ) ‖= αk+I+1

αk+I+2
‖ F i+1ξ ‖≤ αk+I+1

αk+I+2
αi+I+2

As the sequel (
αj

αj+1
)j≥0 is decreasing then

αk+I+1

αk+I+2
≤ αi+I+1

αi+I+2
which implies

‖ F i(
αk+I+1

αk+I+2
Fξ) ‖≤ αi+I+1

and consequently
αk+I+1

αk+I+2
Fξ ∈ Sk

We deduce, then by iteration that

(
αk+I+1

αk+I+2
)jF jξ ∈ Sk, ∀j ≥ 0

or equivalently

‖ (
αk+I+1

αk+I+2
)jF i+jξ ‖≤ αi+I+1, ∀0 ≤ i ≤ k and ∀j ≥ 0.
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Particulary for i = k, we have

‖ F k+jξ ‖≤ (αk+I+2)
j

(αk+I+1)j−1
, ∀j ≥ 1.

We show by iteration that

(αk+I+2)
j

(αk+I+1)j−1
≤ αk+I+j+1, ∀j ≥ 1

which implies

‖ F k+jξ ‖≤ αk+j+I+1, ∀j ≥ 1.

Or equivalently

‖ F iξ ‖≤ αi+I+1, ∀i ≥ k.

And then we deduce that ξ ∈ S so Sk ⊂ S hence S = Sk.

Remark 4.1 As a natural consequence of the previous proposition, we shall

give in section 5 an algorithm which allows to determine the smallest integer

k∗ such that S = Sk∗ .

Before taking interest on the determination of k∗, it is desirable to have

simple condition which assure the finite accessibility of S. Our main result in

this direction is the following theorem.

Theorem 4.1 If the following condition hold

lim
i→+∞

‖ F i ‖
αi+I+1

= 0.

Then S is finitely accessible.

Proof.

The hypothesis of the theorem implies that it exists k0 such that

‖ F k0+1 ‖
αk0+I+2

<
1

αI+1
.

Let ξ ∈ Sk0 , then

‖ F k0+1ξ ‖ ≤ ‖ F k0+1 ‖‖ ξ ‖
≤ αk0+I+2

αI+1
‖ ξ ‖

≤ αk0+I+2

which gives ξ ∈ Sk0+1 and that completes the demonstration.
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Remark 4.2 In the theorem 3.1 and proposition 3.2, we need the value of

γ = sup
i≥0

‖ F i ‖
αi+i+1

to check the sufficient condition. In practice, it is not always

easy to calculate this supremum . So we establish in the following proposition,

sufficient condition wich ensure the feasibility of this calculus.

Proposition 4.2 Suppose that lim
i→+∞

‖ F i ‖
αi+I+1

= 0, and let μ = max
0≤i≤k∗

‖ F i ‖
αi+I+1

,

where k∗ is the smallest integer such that S = Sk∗. Then if diamP < 1
2μ‖T ‖,

we have

0 ∈ intDz0(α,P), for every z0 ∈ conv(
s⋃

k=1

B(Tvk, β))

where β = 1
2μ

− ||T ||diamP .

Proof.

Let γ = sup
i≥0

‖ F i ‖
αi+I+1

. It’s evident that γ ≥ μ.

Suppose that γ > μ which implies that there exists i0 > k∗ such that ‖ F i0 ‖>
μαi0+I+1

what implies that there exists ξ0 ∈ B(0, 1) such that

‖ F i0(
1

μ
ξ0) ‖> αi0+I+1

what yields 1
μ
ξ0 /∈ S.

On the other hand, for 0 ≤ i ≤ k∗ we have

‖ F i(
1

μ
ξ0) ‖≤ 1

μ
αi+I+1μ = αi+I+1,

consequently 1
μ
ξ0 ∈ Sk∗ , which is contradiction. So γ = μ.

Then application of proposition 3.2 with γ = μ completes the proof.

5 Algorithmic approach

From the previous results we can deduce an algorithm for determination of k∗,
the smallest integer such that S = Sk∗ , and consequently the (α,P)-admissible

set Dz0(α,P).
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Let R
p be endowed with the infinite norm

‖ξ‖ = max |ξi|, for all ξ = (ξ1, ..., ξp) ∈ R
p.

The set Sk is then described as follows

Sk = {ξ ∈ R
p : fj(

1

αi+I+1
F iξ) ≤ 0 pour j = 1, 2, ..., 2p et i = 0, 1, ..., k}

where the functions fj : R
p → R, are defined for every y = (y1, ..., yp) ∈ R

p by

f2l−1(y) = yl − 1, ∀l ∈ {1, 2, ..., p}
f2l(y) = −yl − 1, ∀l ∈ {1, 2, ..., p}.

It follows from remark (4.1(i)),that :

Sk+1 = Sk ⇔ Sk ⊂ Sk+1

or equivalently

∀ξ ∈ Sk, ∀j ∈ {1, 2, ..., 2p} , fj(
1

αk+I+2
F k+1ξ) ≤ 0,

or yet

sup
ξ∈Sk

fj(
1

αk+I+2
F k+1ξ) ≤ 0 for j ∈ {1, 2, ..., 2p}.

what is equivalent to

sup fj(
1

αk+I+2
F k+1ξ) ≤ 0 for j ∈ {1, 2, ..., 2p}.

with the constraints ⎧⎪⎨
⎪⎩

fj(
1

αl+I+1
F lξ) ≤ 0,

j = 1, 2, . . . , 2p,

l = 0, 1, . . . , k.

Finally, we deduce an algorithm that, when it converges, calculate k∗.
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Algorithm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

step 1 : initialise k := 0;

step 2 : for i = 1, . . . , 2p, do :∣∣∣∣∣∣∣∣∣

Maximize Ji(x) = fi(
1

αk+I+2
F k+1x)⎧⎪⎨

⎪⎩
fj(

1
αl+I+1

F lx) ≤ 0,

j = 1, . . . , 2p,

l = 0, . . . , k.

Let J∗
i be the maximum value of Ji(x).

If J∗
i ≤ 0, for i = 1, . . . , 2p then

set k∗ := k and stop.

Else continue.

step 3 : Replace k by k + 1 and return to step 2.

Remark 5.1 The optimization problem cited in step 2 is a mathematical pro-

gramming problem and can be solved by standard methods, in particular the

method of simplex.

To illustrate this work we give in the following section a numerical example.

6 Numerical Example

Consider the following perturbed system:⎧⎨
⎩ xi+1 =

(
1 0

1 1

)
xi +

(
1

0

)
ui +

(
1 −1

0 1

)
di, ∀i ≥ 0

x0

(7)

With the corresponding perturbed output signal:

yi =

(
2 1

0 1

)
xi +

(
1 0

0 0

)
di

We suppose that the age of disturbances (di)0≤i≤I is I = 1 We consider the

identity observer:

zi+1 =

(
0.5 0

1 0.5

)
zi +

(
1

0

)
ui +

(
0.25 −0.25

0 0.5

)
yi, ∀i ≥ 0 (8)

It is obvious that
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1. P = TB

2. TA - FT = DC

3. The eigenvalues of F are 0.5 and 0.5, then F is stable.

Let αi = 1
i+1

The algorithm established in section 5 gives k∗ = 3

We have by proposition 4.2, μ = max
0≤i≤3

‖F i‖
αi+I+1

= 6.25.

For T =

(
1 0

0 1

)
and the polyhedron P with vertices

v1 =

(
0.02

0.02

)
, v2 =

( −0.02

0.02

)
, v3 =

( −0.02

−0.02

)
and v4 =

(
0.02

−0.02

)

A simple calculation gives diamP � 0.056 then diamP < 1
2μ‖T ‖ = 0.08, thus

proposition 4.2 insures that the set Dz0(α,P) of the (α,P)-admissible distur-

bances corresponding to the polyhedron P and to the observer initial state

z0 =

(
0

0

)
is nonempty and is entirely characterized by proposition 3.1, and

we have the following representation

0.6

0.2

0.4

−0.2

−1.0

−0.4

0.8

0.0

−0.8

−0.6

1.00.50.0−0.5−1.0

1.0

Figure 1: Graphic representation of the set Dz0(α,P)

Remark 6.1 The procedure suggested requires a great amount of computa-

tional work if the state-space dimension or the age of disturbances or the num-
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ber of the vertices of P are large, because the set Dz0(α,P) is then obtained by

the resolution of a large set of linear inequalities.

7 Conclusion

The problem of improving some performances of an observer of a discrete linear

system in presence of disturbances has been considered.

It was proved that the characterization of the set of the disturbances that

realize the desired performance is achieved by the selection of an adequate

class of initial state observer.

It has been shown that with the hypothesis that the unknown initial state

belongs to polyhedral set, the solution involves simple linear programming

algorithms.
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