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Abstract

In this paper, a spline finite element approach is manipulated for
the numerical solution of an extended system of second-order boundary-
value problems. The efficiency of the proposed method is examined by
comparing the results with the existing exact closed form solution. The
numerical results demonstrate that the method is efficient and quite
accurate when contrasted with other methods and required relatively
less computational work.
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1 Introduction

In this paper, we study a generalized nonlinear system of second-order boundary-
value problems given by

a0(x)u′′ + a1(x)u′ + a2(x)u+ a3(x)v′′ + a4(x)v′ + a5(x)v + a6(x)u′v′ + g1(x, u, v) = f1(x)

b0(x)u′′ + b1(x)u′ + b2(x)u+ b3(x)v′′ + b4(x)v′ + b5(x)v + b6(x)u′v′ + g2(x, u, v) = f2(x)
(1)
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where a ≤ x ≤ b. The nonlinear system is subject to the following specified
boundary conditions:

u(a) = η1 u(b) = η2

v(a) = μ1 v(b) = μ2
(2)

where η1, η2, μ1 and μ2 are constants. Also, g1, g2 are nonlinear functions in u
and v, u, v ∈ W 3

2 [a, b], fi − gi ∈ W 1
2 [a, b], i = 1, 2. The functions aj(x) and

bj(x) are continuous for j = 0, 1, 2, ..., 6.

In recent years, nonlinear equations [4] as well as nonlinear systems of bound-
ary value problems have been extensively investigated in the literature due to
their wide range of applicability in engineering and other disciplines. Special
cases of system (1)-(2), namely the one which does not include the u′v′-term,
has been explored by a number of authors. Obtaining exact and/or numerical
solutions of nonlinear systems, particulary the systems which arise in applica-
tions, have been the focus of attention. Geng and Cui [5] presented a method
to obtain the analytical and approximate solutions of linear and nonlinear sys-
tem of second-order boundary value problems. The analytical solution is repre-
sented in the form of series in the reproducing kernel space. Cheng and Zhong
[3] discussed the existence of solutions to second order systems. Valanarasu
and Ramanujam [10] suggested a method for solving a system of singularly
perturbed second-order ordinary differential equations. In [7] Dehghan and
Saadatmandi employed a numerical method based on Sinc-collocation method
for the solution of second-order nonlinear systems. Saadatmandi and J. Askari
[8] solved similar systems by using the Chebyshev finite element method. Lu
[6] introduced a variational iteration approach to solve systems analogous to
problem (1)-(2). In [9] Saadatmandi et al. proposed a homotopy perturbation
method for solving a class of non-linear systems of second-order boundary-
value problems. The method yields solutions in convergent series forms with
easily computable terms and the technique does not require any discretization,
linearization or small perturbations. For further approaches to tackle nonlin-
ear systems we refer the reader to the references in [9].

In this paper, we will apply a finite element collocation approach, based on
cubic splines, to obtain a solution to the wide class of nonlinear systems of
boundary value problems given in (1)-(2). It is worth noting that the system
we are studying is more general than the ones discussed in the above mentioned
references as it includes the extra nonlinear u′v′-term. The spline finite ele-
ment approach is widely utilized (see [1] and [2]) for the numerical solution of
nonlinear problems arising in real world applications. A number of numerical
examples are examined to illustrate the applicability and efficiency of the finite
element scheme. Comparison is made between the exact analytical solution
and the numerical solution obtained by the spline collocation approach. The
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results indicate that the current approach is convenient and yields accurate
results using only a few number mesh points.

The structure of this paper is organized as follows: in Section 2, we describe
the cubic B-spline collocation approach for the numerical solution of the sys-
tem of the second-order boundary-value problem. In section 3, the method
is implemented on a number of examples of nonlinear systems using different
choices of the number of mesh points. The numerical results are compared with
the exact solutions and a conclusion is given that summarizes the outcomes of
the simulations.

2 Finite Element Method

In this section, we present the collocation approach using cubic splines is pre-
sented for the numerical solution of the extended class of nonlinear systems of
second-order boundary-value problems given in (1)-(2). We will seek a finite-
element solution for solving the nonlinear system of boundary-value problems.
To construct such an approximate solution, we consider the nodal points xi on
the interval [a, b] where

a = x0 < x1 < ... < xn−1 < xn = b

Note that if the nodal points are equidistant from each other, then we have

xi = a + ih, i = 0, 1, 2, ..., n where h =
b− a

n
on the interval [a, b]. Let ψ(x)

and φ(x) be shape functions that satisfy the boundary conditions (2) and are
written as a linear combination of n + 3 shape functions given by

ψ(x) =
n−1∑
i=−3

αiψi(x) and φ(x) =
n−1∑
i=−3

βiψi(x) (3)

The αi’s and βi’s are unknown real coefficients and the ψi(x) are the cubic
B-splines functions defined as follows:

ψi(x) =
1

h3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x− xi)
3, [xi, xi+1]

h3 + 3h2(x− xi+1) + 3h(x− xi+1)
2 − 3(x− xi+1)

3, [xi+1, xi+2]
h3 + 3h2(xi+3 − x) + 3h(xi+3 − x)2 − 3(xi+3 − x)3, [xi+2, xi+3]
(xi+4 − x)3, [xi+3, xi+4]
0, otherwise

(4)
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where h = xi+1 − xi. In particular, since x0 = 0 then ψ0(x) is given by

ψ0(x) =
1

h3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x3, [0, h]
h3 + 3h2(x− h) + 3h(x− h)2 − 3(x− h)3, [h, 2h]
h3 + 3h2(3h− x) + 3h(3h− x)2 − 3(3h− x)3, [2h, 3h]
(4h− x)3, [3h, 4h]
0, otherwise

(5)
From (4), the values of ψi, ψ

′
i and ψ′′

i at the nodal points ti = ih are given
according to the following table:

Nodes ψi ψ′
i ψ′′

i

xi 0 0 0

xi+1 1
3

h

6

h2

xi+2 4 0 −12

h2

xi+3 1 −3

h

6

h2

xi+4 0 0 0

Table 1. ψi, ψ
′
i, and ψ′′

i evaluated at the nodal points.

Next, we will present the finite-element collocation approach for approximating
the solution of the generalized nonlinear system of boundary-value problems.
We assume that the solution u is approximated by ψ(x) while the second
solution v is estimated by φ(x). Substituting the approximate solutions (3)
into equations (1) yields

n−1∑
i=−3

αi [a0(xj)ψ
′′
i (xj) + a1(xj)ψ

′
i(xj) + a2(xj)ψi(xj)] +

n−1∑
i=−3

βi [a3(xj)ψ
′′
i (xj) +

a4(xj)ψ
′
i(xj) + a5(xj)ψi(xj)] + a6(xj)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(xj)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(xj)

⎞
⎠

+ g1

⎛
⎝xj ,

n−1∑
i=−3

αiψi(xj),
n−1∑
i=−3

βiψi(xj)

⎞
⎠ = f1(xj)

j = 0, 1, 2, ..., n
(6)
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and for the second differential equation we obtain

n−1∑
i=−3

αi [b0(xj)ψ
′′
i (xj) + b1(xj)ψ

′
i(xj) + b2(xj)ψi(xj)] +

n−1∑
i=−3

βi [b3(xj)ψ
′′
i (xj) +

b4(xj)ψ
′
i(xj) + b5(xj)ψi(xj)] + b6(xj)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(xj)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(xj)

⎞
⎠

+ g2

⎛
⎝xj ,

n−1∑
i=−3

αiψi(xj),
n−1∑
i=−3

βiψi(xj)

⎞
⎠ = f2(xj)

j = 0, 1, 2, ..., n
(7)

The above system consists of 2n + 2 equations in 2n + 6 unknowns. The
boundary conditions in (2) give the following four equations:

For u(a) = η1 and u(b) = η1 we have, respectively,

u(a) =
n−1∑
i=−3

αiψi(tj) = η1, j = 0 (8)

u(b) =
n−1∑
i=−3

αiψi(xj) = η2, j = n (9)

For v(a) = μ1 and v(b) = μ2 we have, respectively,

v(a) =
n−1∑
i=−3

βiψi(tj) = μ1, j = 0 (10)

v(b) =
n−1∑
i=−3

βiψi(xj) = μ2, j = n (11)

The values of ψi(xj), ψ
′
i(xj) and ψ′′

i (xj) at the nodal points xj , j = 0, 1, ..., n
are determined from Table 1.

The system of equations in (6), (8), and (9) can be written in matrix form as
follows:

C1 d + M1 e + v1 + g1 = f1 (12)

where
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C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 0 0 ... 0

r0 s0 p0 0 0 ... 0

0 r1 s1 p1 0 ... 0

. . . . . . .

. . . . . . .

0 0 0 ... rn sn pn

0 0 0 ... 1 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We have

rj =
6a0j

h2
−3a1j

h
+a2j , sj = −12a0j

h2
+4a2j , pj =

6a0j

h2
+

3a1j

h
+a2j , j = 0, 1, ...n

given that

a0j = a0(xj), a1j = a1(xj), a2j = a2(xj) where xj = a + jh

and

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 ... 0

q0 w0 z0 0 0 ... 0

0 q1 w1 z1 0 ... 0

. . . . . . .

. . . . . . .

0 0 0 ... qn wn zn

0 0 0 ... 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We have

qj =
6a3j

h2
−3a4j

h
+a5j , wj = −12a3j

h2
+4a5j , zj =

6a3j

h2
+

3a4j

h
+a5j , j = 0, 1, ...n

given that

a3j = a3(xj), a4j = a4(xj), a5j = a5(xj) where xj = a+ jh



Spline collocation approach 2233

g1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

g1 (α−3 + 4α−2 + α−1, β−3 + 4β−2 + β−1)

g1 (α−2 + 4α−1 + α0, β−2 + 4β−1 + β0)

g1 (α−1 + 4α0 + α1, β−1 + 4β0 + β1)
.
.
.

g1 (αn−4 + 4αn−3 + αn−2, βn−4 + 4βn−3 + βn−2)

g1 (αn−3 + 4αn−2 + αn−1, βn−3 + 4βn−2 + βn−1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a6(x0)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(x0)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(x0)

⎞
⎠

a6(x1)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(x1)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(x1)

⎞
⎠

.

.

.

a6(xn−1)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(xn−1)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(xn−1)

⎞
⎠

a6(xn)

⎛
⎝ n−1∑

i=−3

αiψ
′
i(xn)

⎞
⎠

⎛
⎝ n−1∑

i=−3

βiψ
′
i(xn)

⎞
⎠

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dT =
[
α−3 α−2 α−1 α0 ... αn−3 αn−2 αn−1

]
eT =

[
β−3 β−2 β−1 β0 ... βn−3 βn−2 βn−1

]
and

fT
1 =

[
η1 f1(x0) f1(x1) f1(x2) ... f1(xn−1) f1(xn) η2

]



2234 S. A. Khuri and A. Sayfy

In a similar fashion, the system of equations in (7), (10), and (11) can be
written in matrix form as follows:

C2 d + M2 e + v2 + g2 = f2 (13)

The matrices C2,M2,v2, g2 and f2 are similar to C1,M1,v1, g1 and f1 except
that the functions ai, i = 0, 1, ..., 6 and f1 are replaced by the functions bi, i =
0, 1, ..., 5, 6 and f2, respectively. As for the boundary conditions, we replace
η1, η2 in f1 by μ1, μ2 to obtain f2.

Systems (12) and (13) can be combined as one system as follows:

[
C1

C2

]
d +

[
M1

M2

]
e +

[
v1

v2

]
+

[
g1

g2

]
=

[
f1
f2

]
(14)

The system of equations given in (14) is solved using the computer algebra
system Maple-11.

3 Numerical Examples and Conclusion

In this section, we show a number of numerical simulations of our model non-
linear system of second-order boundary-value problem which were produced
by using the spline collocation approach. The aim of these simulations is the
validation of the numerical solution and illustration of the accuracy of the pro-
posed method. We now demonstrate and test the practicality and usefulness of
the collocation approach with five numerical examples. Further, the absolute
errors in the analytical solutions are calculated. All computations were carried
out using Maple-11.

Example 1. We will consider the following special case of the second-order
system of boundary-value problems (1)-(2).

⎧⎪⎨
⎪⎩
u′′(x) + u′(x) + xu(x) + v′(x) + 2xv(x) = f1(x)
v′′(x) + v(x) + 2u′(x) + x2u(x) = f2(x)
u(0) = u(1) = 0, v(0) = v(1) = 0

(15)

where 0 ≤ x ≤ 1, f1(x) = −2(1 + x) cosx+ π cos πx+ 2x sinπx+ (4x− 2x2 −
4) sinx and f2(x) = −4(x − 1) cosx − 2(2 − x2 + x3) sinx − (π2 − 1) sinπx.
Problem (15) has the exact solutions u(x) = 2(1− x) sinx and v(x) = sinπx.

In Table 1, the numerical solution obtained by the B-spline collocation method,
using n = 10 nodal points, at the mesh points x = 0.1, 0.2, ...0.9 for problem
(15) is compared with the exact solution. The observed absolute errors be-
tween the exact solution and that obtained by the spline collocation method
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at various values of mesh points are given. This example is taken form refer-
ence [5], though it is worth pointing out that there is a misprint in the plus
sign in the value of f2(x).

x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.1 0.1787131430 9.9 × 10−4 0.3061130050 2.9 × 10−3

0.2 0.3163211912 1.5 × 10−3 0.5824083004 5.4 × 10−3

0.3 0.4119666444 1.8 × 10−3 0.8017688743 7.2 × 10−3

0.4 0.4656031566 1.7 × 10−3 0.9426730925 8.4 × 10−3

0.5 0.4779849620 1.4 × 10−3 0.9912961778 8.7 × 10−3

0.6 0.4506457864 1.1 × 10−3 0.9428594398 8.2 × 10−3

0.7 0.3858674368 6.6 × 10−4 0.8020951548 6.9 × 10−3

0.8 0.2866383882 3.0 × 10−4 0.5827815507 5.0 × 10−3

0.9 0.1566027428 6.3 × 10−5 0.3063933657 2.6 × 10−3

1.0 0.0 0.0 0.0 0.0

Table 1. Numerical solution of system (3.15) using 10 nodal points.

Example 2. We now consider a second nonlinear system which includes the
nonlinear u′v′-term.⎧⎪⎨

⎪⎩
(x− 2)u′′(x) + u′(x)v′(x) − u(x)v2(x) = f1(x)
v′′(x) − u′′(x) + xu′(x)v′(x) + xv(x) − u2(x) − v2(x) = f2(x)
u(0) = 0, u(1) = 1, v(0) = v(1) = 0

(16)

where 0 ≤ x ≤ 1, f1(x) = cos3 πx + (3x − 1) cos2 πx − (π2 sinπx + π2x −
2π2 − 3π + 1) cosπx− π2x sin πx− 3x+ 1 and f2(x) = (2 + π2 − 6x+ 4πx−
π2x sinπx) cosπx−π2 sin πx−9x2+6x−2. System (16) has the exact solutions
u(x) = 3x− 1 + cosπx and v(x) = sin πx.

In Table 2, the numerical solution obtained by the B-spline collocation method,
using n = 10 nodal points, at the mesh points x = 0.1, 0.2, ...0.9 for system
(16) is compared with the exact solution by giving the absolute error.

x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.1 0.2502396371 8.2 × 10−4 0.3072520035 1.8 × 10−3

0.2 0.4078584554 1.2 × 10−3 0.5842589692 3.5 × 10−3

0.3 0.4868145178 9.7 × 10−4 0.8040962329 4.9 × 10−3

0.4 0.5087270719 2.9 × 10−4 0.9453507046 5.7 × 10−3

0.5 0.5006947233 6.9 × 10−4 0.9942112773 5.8 × 10−3

0.6 0.4926459573 1.7 × 10−3 0.9458537599 5.2 × 10−3

0.7 0.5144908241 2.3 × 10−3 0.8049538009 4.1 × 10−3

0.8 0.5932906556 2.3 × 10−3 0.5852368223 2.5 × 10−3

0.9 0.7506158228 1.7 × 10−3 0.3080750888 9.4 × 10−4

1.0 1.0 0.0 0.0 0.0
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Table 2. Numerical solution of system (3.16) using 10 nodal points.

Example 3. Analogous to example 2, we again consider a nonlinear system
that includes the nonlinear u′v′-term.⎧⎪⎨

⎪⎩
3u′′(x) + 3xu(x) + 3v(x) − u′(x)v′(x) = 8 − x
v′′(x) + x3u′(x) + x2u(x) − x

2
u′(x)v′(x) = x3 + x2 + 7x

u(0) = 0, u(1) = 3, v(0) = v(1) = 0
(17)

where 0 ≤ x ≤ 1. System (17) has the exact solutions u(x) = x2 + 2x and
v(x) = x3 − x.

In Table 3, we give the absolute error between the exact solution of system
(17) and the numerical results obtained by the spline collocation method. It
is evident from the table that the absolute errors are extremely small using
only 5 nodal points at the mesh points x = 0.2, 0.4, 0.6, 0.8. We observe that
the error is too small as expected and that is due to the fact that the exact
solution is a polynomial.

x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.2 0.439999962 3.8 × 10−8 −0.1920000231 2.3 × 10−8

0.4 0.959999947 5.3 × 10−8 −0.3360000430 4.3 × 10−8

0.6 1.559999937 6.3 × 10−8 −0.3840000618 6.2 × 10−8

0.8 2.239999932 6.8 × 10−8 −0.2880000764 7.6 × 10−8

1.0 3.0 0.0 0.0 0.0

Table 3. Numerical solution of system (3.17) using 5 nodal points.

Example 4. We will now consider the following system:

⎧⎪⎨
⎪⎩
u′′(x) − xv′(x) + u(x) = x3 − 2x2 + 6x
v′′(x) + xu′(x) + u(x)v(x) = x5 − x4 + 2x3 + x2 − x+ 2
u(0) = u(1) = 0, v(0) = v(1) = 0

(18)

where 0 ≤ x ≤ 1. System (18) has the exact solutions u(x) = x3 − x and
v(x) = x2 − x (see [9]).

In Table 4, the numerical solution obtained by the B-spline collocation method,
using n = 5 nodal points, at the mesh points x = 0.2, 0.4, 0.6, 0.8 for system
(18) is compared with the exact solution. Note that 5 nodal points suffice
to obtain a very accurate numerical solution using spline collocation. The
absolute error is extremely small and this is again due to the fact that the
exact solution is a polynomial.
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x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.2 −0.192000000 0.0 −0.1600000022 2.2 × 10−9

0.4 −0.336000000 0.0 −0.2400000043 4.3 × 10−9

0.6 −0.384000003 3.0 × 10−10 −0.2400000054 5.4 × 10−9

0.8 −0.288000003 3.0 × 10−10 −0.1600000039 3.9 × 10−9

1.0 0.0 0.0 0.0 0.0

Table 4. Numerical solution of system (3.18) using 5 nodal points.

Example 5. Finally, we explore the following nonlinear system:

⎧⎪⎨
⎪⎩
u′′(x) + xv(x) + xu2(x) = f1(x)
v′′(x) + xu′(x) + v(x) = f2(x)
u(0) = u(1) = 0, v(0) = v(1) = 0

(19)

where 0 ≤ x ≤ 1, f1(x) = x sin2 πx− π2 sin πx+ x4 − 3x3 + 2x2 and f2(x) =
πx cosπx + x3 − 3x2 + 8x − 6. System (19) has the exact solutions (see [9])
u(x) = sin πx and v(x) = x3 − 3x2 + 2x.

In Table 5, we give the absolute error between the exact solution for system
(19) and the numerical solution obtained by the spline collocation method
using n = 5 nodal points, at the mesh points x = 0.2, 0.4, 0.6, 0.8.

x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.2 0.5674249067 2.0 × 10−2 0.2883629969 3.6 × 10−4

0.4 0.9178594327 3.3 × 10−2 0.3852886128 1.3 × 10−3

0.6 0.9176526443 3.3 × 10−2 0.3385285446 2.5 × 10−3

0.8 0.5671190563 2.0 × 10−2 0.1947324189 2.7 × 10−3

1.0 0.0 0.0 0.0 0.0

Table 5. Numerical solution of system (3.19) using 5 nodal points.

In Table 6, we give the absolute error between the exact solution and the nu-
merical solution for the same system (19) using n = 10 nodal points instead of
5 points, at the mesh points x = 0.1, 0.2, ..., 0.9. It is evident from Tables 5 and
6 that as we increase the number of mesh points, the proposed methodology
lead to higher accuracy.
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x Spline Solution u(x) |Error| Spline Solution v(x) |Error|
0.0 0.0 0.0 0.0 0.0
0.1 0.3063019976 2.7 × 10−3 0.1710196220 2.0 × 10−5

0.2 0.5826059129 5.2 × 10−3 0.2880642272 6.4 × 10−5

0.3 0.8018581535 7.2 × 10−3 0.3571512150 1.5 × 10−4

0.4 0.9426015341 8.5 × 10−3 0.3842837716 2.8 × 10−4

0.5 0.9910728566 8.9 × 10−3 0.3754462747 4.5 × 10−4

0.6 0.9425421010 8.5 × 10−3 0.3366028703 6.0 × 10−4

0.7 0.8017665493 7.3 × 10−3 0.2737000947 7.0 × 10−4

0.8 0.5825209680 5.3 × 10−3 0.1926736741 6.7 × 10−4

0.9 0.3062536908 2.8 × 10−3 0.0994585370 4.6 × 10−4

1.0 0.0 0.0 0.0 0.0

Table 6. Numerical solution of system (3.19) using 10 nodal points.

In conclusion, the cubic spline finite element approach is suitable for obtaining
numerical solutions for the extended system of second order boundary value
problems given in (1)-(2). The numerical results show accuracy of the approach
compared with other existing methods and also confirm that the accuracy is
improved if we double the number of mesh points. In particular, the approach
is simple and efficient and can be extended to other classes of systems of
boundary value problems.
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