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Abstract

This paper discusses robust sampled-data control for uncertain sys-
tems with time-varying delay. We allow a time-varying sampling.

When we use digital devices to control systems, we usually apply
the zero-order control input. In this case, the closed-loop system with
such a state feedback control input becomes a system with time-varying
delays in state. We first give a sufficient condition for the stability of the
closed-loop system with sampled-data control, in terms of linear matrix
inequalities(LMIs). The key techniques to obtain such a stability condi-
tion are to employ generalized Lyapunov function and Leibniz-Newton
formula. These lead to a less conservative stability condition. Based on
such a stability condition, we also propose a design method of sampled-
data state feedback controller for time-delay systems. Furthermore, we
extend our results to a class of uncertain time-delay systems.
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1 Introduction

The control of sampled-data systems is an important practical problem. The
dynamics of the systems are naturally continuous, and control inputs are usu-
ally applied at discrete time instants. This form of the sampled-data systems
arises in various applications and system formulations, such as manufacturing
systems and industrial systems. Thus, the theoretical design of controllers
for the sampled-data systems is essentially required in many applications. The
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numerous works for the sampled-data systems have ever been made and the sig-
nificant results have appeared in the literature(for example, Chen and Francis
2], Sun et al. [11]). The stochastic counterpart for the sampled-data systems
has also appeared in Jazwinski [9] and Yoneyama et al. [14]. Jazwinski [9] con-
sidered the stochastic filtering for the sampled-data systems and Yoneyama et
al. [14] have given a design method for sampled-data control systems via jump
system approach.

Astrom and Wittenmark [1] and Fridman et al. [5] introduced a delay sys-
tem approach to sampled-data stabilization of linear systems. The continuous-
time linear system with sampled-data control input results in the closed-loop
system with time-varying state-delays. Sufficient stability conditions for such a
linear state-delayed system were obtained and a design method of a stabilizing
sampled-data state feedback controller was proposed. Further development has
been made in Fridman and Shaked [6] and Suplin et al. [12] where H,, control
was concerned, respectively. On the other hand, stability analysis and control
design for linear time-delay systems are active [3], [4]. [10]. Recently, the same
research has been carried out for time-varying delay case of time-delay systems
and some techniques that reduce the conservatism in the stability conditions
have employed([7], [8], [13]).

In this paper, we consider the sampled-data stabilization for systems with
time-varying delay. Few works on the sampled-data stabilization problem for
time-varying delayed systems have appeared in the literature, and an input
delay approach to this problem is new. When we consider the delayed control
to a time-delay system, the closed-loop system becomes a system with multi-
ple time-varying delays. Free weighting matrix method and Leibniz-Newton
formula are used to obtain a sufficient stability condition of the closed-loop
system. It is known that those techniques reduce the conservatism in the sta-
bility condition. A design method of sampled-data state feedback stabilization
of time-delay systems is proposed by delay-dependent stability conditions that
are given in terms of LMIs. A numerical example is given to illustrate a design
method of sampled-data state feedback stabilization controllers for time-delay
systems.

2 Time-Delay Systems
Consider the following uncertain time-delay system:
#(t) = (A4+AA)x(t) + (B+ AB)u(t) + (Ag+ AAy)x(t — (1)) (1)

where z(t) € R" is the state, u(t) € R™ is the control input. The matrices
A, A; and B are constant matrices of appropriate dimensions. 7(t) is an
unknown time-varying delay that satisfies 0 < 7(t) < 73y where 7); is known
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constant. The time-varying uncertainties are of the form

where F(t) € R/ is an unknown time-varying matrix satisfying F7 (¢)F(t) <
I and H, E;, F> and E5 are known constant matrices of appropriate dimen-
sions. We consider the sampled-data control input. It may be represented as
delayed control as follows;

u(t) = ud(tk) = ud(t - (t - tk)) = ud(t - h(t)), tk S t S tk+1

where u,4 is a discrete-time control signal and the time varying delay h(t) =
t — t), is piecewise linear with the derivative h(t) = 1 for t # tj. t; is the
sampling instant satisfying 0 < t; <ty < --- <ty < ---. Define the maximum
sampling interval hjy; such that we have h(t) < tgyq — ty = hyy for all t.

Our problem is to find a sampled-data state feedback controller

u(t) = Ku(ty) (2)

where K is to be determined, which robustly stabilizes the system (1). We
represent a piecewise control law as a continuous-time control with a time-
varying piecewise continuous(continuous from the right) delay. Thus we look
for a state feedback controller of the form

u(t) = Kz(t — h(t)) (3)
Then, the closed-loop system (1) with (3) is given by
#(t)= (A+HF(t)E)x(t) + (Ag+ HF(t)Es)x(t — 7(t)) ()
+(B+ HF(t)E3)Kz(t — h(t))

3 Sampled-Data Stabilization

Here we consider the sampled-data stabilization of a time-delay system. We
first give a sufficient condition for a nominal closed-loop system to be stable.
Then we propose a design method of a sampled-data state feedback controller
for a nominal system. Finally, we extend the result to a class of uncertain
time-delay systems.

3.1 Stability Analysis

We make a stability analysis of nominal closed-loop system (4).
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Theorem 3.1 Given a control gain matriz K, the nominal time-delay sys-
tem (4) with H =0, E; =0, i = 1,2,3 is asymptotically stable if there exist
P>0,Q>0, R>0,Y,>0,Y,>0, Z1 >0, Zy >0,

Ny Sy M,y [ Ly Vi
Ny S M, Lo Va
| Vs | Ss | M3 | Ls |V
N = N, .S = S, M = M, L= L, V= A
N5 Ss M; Ls Vs
Ng | | S6 ) | M | | Ls | | V6
W, T
Wo Ts
| W | T
W = W, and T = T,
W T
| W | | 76 |
such that o o
P — [ 11 12] <0 5
f, Dy (5)
where
Py = Dy + Dy + OL + 3 + BT
[Q+R 0 0 0 O P )
* 0O 0 0 0 0
* * —R 0 0 0
0, = * *x x 0 0 0
* * * x  —(Q) 0
* x ok o« ox (Y1 +Ye)+ hy(Z1+ Z3) |

b= [N+ M+L+W —-N+S —-M—-S —L+V —V-W 0]
d3= [-TA —-TBK 0 —-TA; 0 T]

@12: [hMN hMS hMM TML TMV TMW]

Dy = diag[—hMZ1 —hyuzy —hyZs —TuYr —TuYi —TMY2]

Proof: First, it follows from the Leibniz-Newton formula that the following
equations are true for any matrices N, S, M, L,V and W:

2T ()N [x(t) —z(t—h(t)) — /tth(t) ﬂb(s)ds] =0 (6)

2T (1)S [x(t — (1)) — ot = har) — | o x'(s)ds] —0 (7)

—har

t

2T ()M [x(t) (b — ) — /t

—hnr
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2T ()L lx(t) (= (1)) — /t tT@) :t(s)ds} —0 9)
t—7(t)

2T (1)V [x(t —r(8) — 2t — 7o) — /H a‘c(s)ds] —0 (10)

2T (1YW [x(t) (- Tag) - /ti a‘c(s)ds] ~0 (11)

C(t) = [27(t) 2"t —h(t)) «"(t—ha) 2" (t—7(8)) 2" (t —7a) &T()]"
The following is also true for any matrix 7"
207 ()T [i(t) — Ax(t) — Aga(t — 7(t)) — BKx(t — h(t))] =0 (12)
Now, we consider the following Lyapunov functional:
Vi) = Vilz) + Valw) + Vs(a)
where z; = x(t +6), —max(hy, Tar) < 6 <0,

Vi(z) = @ (t)Pa(t) t
Va(w) = [ Qe [T (6 Re(5)ds

t—hg
Vi(z,) = / /+9 5)(Y1 + Ya)i(s)dsdo
oy
+/ / V(21 + Zo)i(s)dsdd
ha +6’

and P >0, @ >0, R>0,Y, >0, Y, >0, Z; >0, Zy > 0 are to be
determined. Then, we take the derivative of V'(x;) with respect to ¢ along the
solution of the nominal system (4) and add the left-hand-side of (6)-(12):

D) = 27 (0)Pa(t) + a7 (0)(Q + R)xlt) — a™(t — mar)Qult — 1)
)

dt —zT(t — hpr)Ra(t — hay) + o (8)(Yy + Yo) (2
+ha(t)(Zy + Zo)x(t)

a /tt ™ IT(S)(Yi - %)I(S)ds B /tth jT(S)(Zl + Z2)-T<S)d8

= 24T (1)Pa(t) + 2T (1)(Q + R)(t) — 21 (t — 1)) Q(t — )
—zT(t — hyr)Rx(t — hay) +tTM5c(t)(§q + Y3)a(¢)

i (8)(Zy + Zo)i(t) — /t o P (s)ds
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. t:;(t) §)Yii(s)ds — /1t t o (6 Zu(s)ds — /t :’:t) T (8) Zoie(s)ds
- [ ai(s)ds - /t;M " () Zai(s)ds

LT ()N lx(t) — (= h(0) - | ih(t) i-(s)ds]

LTS |2t — () — 2t — hag) — /t th]:t) ab(s)ds]

+2§T(t)M[x(t) —alt—h) - [ thM ab(s)ds]

2T () — et — () — / tr(t) x'(s)ds]

LTV |t — () — (t — rag) — ;;(t) gb(s)ds]

L2TOW [w(t) — w(t — mar) — / tTM j:(s)ds]

+2¢T () T2 (t) — Ax(t) — Agz(t — 7(t)) — BKxz(t — h(t))]

IN

CT) [ @1 + (LY, LT + VYTV + WY, ' wT)
+hy(NZTINT 4+ SZ70ST + MZ3 MY ¢(t)

) tihae (CON + () A2 [N + Zr(s))ds
t—h(t)

= [0S + 8T 22T + Zi(s)ds
[ CTOM £ T (5) 2025 [MTC(E) + Zai(s))ds (13)
— [ T+ VY ETCE) + Yai(s)]ds

sty
-/ [TV + @V VT + Yia(s)lds

—TM

- /tlt (ST ()W + T (s)Ya] Yy WP L(E) + Yair(s)]ds

Since Y7 > 0, Yo > 0, Z; > 0, Zy > 0, the last six integral terms in (13)
are all less than 0. Hence, if ®1; + 7y (LY, ' LT + VY7V + WY, 'WT) +
ha(NZTINT + SZ7YST + MZyMT) < 0, we have V(z) < —e|z(t)||? for a
sufficiently small € > 0 which implies that the nominal system (4) is asymptot-
ically stable. The above condition can be written as (5) by Schur complement
formula.

Remark 3.2 Theorem 3.1 employs Leibniz-Newton formula in (6)-(11),
and free weighting matriz method in (12). These methods are known to re-
duce the conservatism in stability conditions.
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3.2 State Feedback Control

In this section, we seek a design method of the sampled-data control for a
time-delay system. Unfortunately, Theorem 3.1 does not give a feasible LMI
condition for obtaining a state feedback control gain matrix K. Hence, we
look for another stability condition. To this end, we make a congruence trans-
formation and obtain a feasible LMI stability condition. Based on it, we give
a design method of sampled-data state feedback controllers.

Theorem 3.3 Given scalars p;, © = 1,---,6, the sampled-data controller
(2) stabilizes the nominal system (1) with H =0, E; =0, i = 1,2,3 if there
erist P>0, >0, R>0, Y1 >0, Yo>0, Z;1 >0, Z; >0, G, U,

M S M L Vi W
Ny S My Ly Vs Wy
o N3 g S| o |Ms| : |Ls| & | Vs — | W
N = ]Y4 ,S— 54 ,M— ]\:44 ,L— [:/4 ,V— ‘24 and W = VI/4
N5 s Ms Ly Vs Ws
| N6 | | S6 | M | | Le | | V6 | W |
such that o o
0= [ o 12] <0 14
O, O (14)
where
O11 = O;+060,+06] +06;+067, )
[Q+R 0 0 0 O P i
* 0 0 0 0 0
* *x —R 0 0 0
©: = % *x +« 0 0 0
* x % ox —Q 0 - -
Lo« ook o o« (N +Ye)+hu(Zi+2Z2) ]
©= [N+ M+L+W —-N+S -M-S —-L+V -W-V 0]
[ —plAC_JT -, BU 0 _plAqu 0 PlC_;T_
—pAG"T  —p,BU 0 —paAgGT 0 ppGT
Q. — —PSA(}T —psBU 0 —P3Aqu 0 P3@T
o _P4AQT —paBU 0 —P4Aqu 0 P4@T
—psAGT  —psBU 0 —psAgGT 0 psGT
L—peAGT  —psBU 0 —peAaGT 0 psGT |

@12: [hMN h]w_g hMM_ TML 7_'MV TM_VT/] _ _
Og = diag[—hMZ1 —hyZzy —hyZy, —tuYr —TuY: —TMY2]

In this case, a state feedback gain in (2) is given by

K=UG™™T (15)
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Proof: Welet T; = p,G, i = 1,---,6 where p; are given scalars, and substitute
T; into the condition (5). If (5) holds, it follows that (6,6)-block of ®1; must
be negative definite. This leads that Ts +T¢ = pg(G + GT) < 0, which implies
that G is nonsingular if pg # 0.

Now we make a congruence transformation to (5) with

Yy = diag[G G G G G G G G G G G G
where G = G~ to calculate Y®X7. Letting
P=GPG", Q =GQG", R=GRG", Y, =GY,G", Z;=GZ,G", i=1,2

N =SNG, S=%SGY, M =XMG", L =XLGY,V =SVGT, W = WGt

we obtain X®XT = O in (14) where we define U = KGT. If the condition (14)
holds, a state feedback control gain matrix K is obviously given by (15).

3.3 Robust Stabilization

Now we extend the result in the previous sections to robust stabilization.

Theorem 3.4 Given scalars p;, © = 1,---,6, the sampled-data controller
(2) robustly stabilizes the system (1) if there exist P >0, Q >0, R >0, Y; >
0, 9>0, Z, >0, Z,>0, G, U, N, S, M, L, V, W and a scalar \ such
that L )
B @—i—)\AHHT ET

A E _ar) <Y
where © is given in Theorem 3.3 and
H= —[pH" pHT psH" pyHT psH™ pgHT 0 0 0 0 0 0],

E= [E.GT EsU 0 EGT 0 0 0 0 0 0 0 0].
In this case, a state feedback gain in (2) is given by (15).

Proof: Replacing A, Ay, B in © with A+ HF(t)E,, Aq+ HF(t)Ey, B+
HF(t)E3, we obtain
A A 1 A~
O+ \HH" + XETE <0

for some A > 0, from which the result is deduced by Schur complement formula.

Remark 3.5 In order to obtain the optimal p;, 1 =1,---,6, we may use a
numerical software like Matlab with optimization toolbox fminsearch//).
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4 Numerical Examples

The following numerical examples illustrate our results. First, we compares
our result with other results in the literature. Then we give a design method
of stabilizing sampled-data controllers for nominal time-delay system and un-
certain time-delay system.

Consider the system (1) with the following matrices

A= 0) ac= [ ) m= ) w0 mmEmo, =0

(16)
We first compare our result with Fridman et al.[5] and Suplin et al.[12] where a
sampled-data stabilization for a non-delay system with 7(¢) = 0 is considered.
Suplin et al.[12] and Fridman et al.[5] guarantee the sampled-data stabilization
for hy < 1.3928 and hjy; < 3.0201, respectively, while Theorem 3.2 does for
hy < 9.99 when p; = 1, po = —0.65, p3 = 0.06, py = —0.03, p5 = —0.15, pg =
1200.10 and 7(t) = 0. This shows that our result is less conservative than
other results.

Next, we consider the sampled-data stabilization of the above time-delay
system for 7y = 0.9999. Theorem 3.2 shows the stabilizing sampled-data state
feedback controller exists for hyp; < 1.0. When p; =1, ps = —0.66, p3 = 0, py =
—0.03, p5 = —0.15, pg = 154.8, we achieve the sampled-data stabilization with
hy = 1.0 and obtain the stabilizing controller (2) with K = [0.0000 — 0.1001]
by Theorem 3.2.

Finally, we consider the robust sampled-data stabilization for the system
(1) with (16) and H, Fy, Es, E3 replaced by

H:[, E1:E2:015[, E3: |:01:| .

0.1

Given 737 < 0.5, Theorem 3.3 shows the robust stabilizing sampled-data state
feedback controller exists for hy; < 0.5. When p; = 1,p0 = 0,p3 = 0,p4 =
—0.04, p5 = —0.33, ps = 1.12, we achieve the robust sampled-data stabilization
with hy, = 0.5 and obtain the stabilizing controller (2) with K = [—0.0080 —
0.8485] by Theorem 3.3.

5 Conclusions

We considered the sampled-data control problem for time-delay systems. Our
method was based on a control input delay approach, which was new challenge
to such a control problem. We first showed the closed-loop system with the
sampled-data state feedback control became the state delayed system. First,
we gave a sufficient condition for the closed-loop system to be stable. Then we
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proposed a design method of the robust sampled-data state feedback controller
for uncertain time-delay systems. Finally, we gave illustrative examples and
showed our result is less conservative than other existing ones.
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