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Abstract

This paper discusses robust sampled-data control for uncertain sys-
tems with time-varying delay. We allow a time-varying sampling.

When we use digital devices to control systems, we usually apply
the zero-order control input. In this case, the closed-loop system with
such a state feedback control input becomes a system with time-varying
delays in state. We first give a sufficient condition for the stability of the
closed-loop system with sampled-data control, in terms of linear matrix
inequalities(LMIs). The key techniques to obtain such a stability condi-
tion are to employ generalized Lyapunov function and Leibniz-Newton
formula. These lead to a less conservative stability condition. Based on
such a stability condition, we also propose a design method of sampled-
data state feedback controller for time-delay systems. Furthermore, we
extend our results to a class of uncertain time-delay systems.
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1 Introduction

The control of sampled-data systems is an important practical problem. The
dynamics of the systems are naturally continuous, and control inputs are usu-
ally applied at discrete time instants. This form of the sampled-data systems
arises in various applications and system formulations, such as manufacturing
systems and industrial systems. Thus, the theoretical design of controllers
for the sampled-data systems is essentially required in many applications. The
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numerous works for the sampled-data systems have ever been made and the sig-
nificant results have appeared in the literature(for example, Chen and Francis
[2], Sun et al. [11]). The stochastic counterpart for the sampled-data systems
has also appeared in Jazwinski [9] and Yoneyama et al. [14]. Jazwinski [9] con-
sidered the stochastic filtering for the sampled-data systems and Yoneyama et
al. [14] have given a design method for sampled-data control systems via jump
system approach.

Astrom and Wittenmark [1] and Fridman et al. [5] introduced a delay sys-
tem approach to sampled-data stabilization of linear systems. The continuous-
time linear system with sampled-data control input results in the closed-loop
system with time-varying state-delays. Sufficient stability conditions for such a
linear state-delayed system were obtained and a design method of a stabilizing
sampled-data state feedback controller was proposed. Further development has
been made in Fridman and Shaked [6] and Suplin et al. [12] where H∞ control
was concerned, respectively. On the other hand, stability analysis and control
design for linear time-delay systems are active [3], [4]. [10]. Recently, the same
research has been carried out for time-varying delay case of time-delay systems
and some techniques that reduce the conservatism in the stability conditions
have employed([7], [8], [13]).

In this paper, we consider the sampled-data stabilization for systems with
time-varying delay. Few works on the sampled-data stabilization problem for
time-varying delayed systems have appeared in the literature, and an input
delay approach to this problem is new. When we consider the delayed control
to a time-delay system, the closed-loop system becomes a system with multi-
ple time-varying delays. Free weighting matrix method and Leibniz-Newton
formula are used to obtain a sufficient stability condition of the closed-loop
system. It is known that those techniques reduce the conservatism in the sta-
bility condition. A design method of sampled-data state feedback stabilization
of time-delay systems is proposed by delay-dependent stability conditions that
are given in terms of LMIs. A numerical example is given to illustrate a design
method of sampled-data state feedback stabilization controllers for time-delay
systems.

2 Time-Delay Systems

Consider the following uncertain time-delay system:

ẋ(t) = (A + ΔA)x(t) + (B + ΔB)u(t) + (Ad + ΔAd)x(t − τ(t)) (1)

where x(t) ∈ �n is the state, u(t) ∈ �m is the control input. The matrices
A, Ad and B are constant matrices of appropriate dimensions. τ(t) is an
unknown time-varying delay that satisfies 0 ≤ τ(t) ≤ τM where τM is known
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constant. The time-varying uncertainties are of the form

[ ΔA ΔAd ΔB ] = HF (t) [E1 E2 E3 ]

where F (t) ∈ �l×j is an unknown time-varying matrix satisfying F T (t)F (t) ≤
I and H, E1, E2 and E3 are known constant matrices of appropriate dimen-
sions. We consider the sampled-data control input. It may be represented as
delayed control as follows;

u(t) = ud(tk) = ud(t − (t − tk)) = ud(t − h(t)), tk ≤ t ≤ tk+1

where ud is a discrete-time control signal and the time varying delay h(t) =
t − tk is piecewise linear with the derivative ḣ(t) = 1 for t �= tk. tk is the
sampling instant satisfying 0 < t1 < t2 < · · · < tk < · · ·. Define the maximum
sampling interval hM such that we have h(t) ≤ tk+1 − tk = hM for all tk.

Our problem is to find a sampled-data state feedback controller

u(t) = Kx(tk) (2)

where K is to be determined, which robustly stabilizes the system (1). We
represent a piecewise control law as a continuous-time control with a time-
varying piecewise continuous(continuous from the right) delay. Thus we look
for a state feedback controller of the form

u(t) = Kx(t − h(t)) (3)

Then, the closed-loop system (1) with (3) is given by

ẋ(t) = (A + HF (t)E1)x(t) + (Ad + HF (t)E2)x(t − τ(t))
+(B + HF (t)E3)Kx(t − h(t))

(4)

3 Sampled-Data Stabilization

Here we consider the sampled-data stabilization of a time-delay system. We
first give a sufficient condition for a nominal closed-loop system to be stable.
Then we propose a design method of a sampled-data state feedback controller
for a nominal system. Finally, we extend the result to a class of uncertain
time-delay systems.

3.1 Stability Analysis

We make a stability analysis of nominal closed-loop system (4).
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Theorem 3.1 Given a control gain matrix K, the nominal time-delay sys-
tem (4) with H = 0, Ei = 0, i = 1, 2, 3 is asymptotically stable if there exist
P > 0, Q ≥ 0, R ≥ 0, Y1 > 0, Y2 > 0, Z1 > 0, Z2 > 0,

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

N6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

S3

S4

S5

S6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

M4

M5

M6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

L2

L3

L4

L5

L6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that

Φ =
[
Φ11 Φ12

ΦT
12 Φ22

]
< 0 (5)

where
Φ11 = Φ1 + Φ2 + ΦT

2 + Φ3 + ΦT
3

Φ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q + R 0 0 0 0 P
∗ 0 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ ∗ τM (Y1 + Y2) + hM(Z1 + Z2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ2 = [N + M + L + W −N + S −M − S −L + V −V − W 0 ]
Φ3 = [−TA −TBK 0 −TAd 0 T ]

Φ12 = [hMN hMS hMM τML τMV τMW ]
Φ22 = diag [−hMZ1 −hMZ1 −hMZ2 −τMY1 −τMY1 −τMY2 ]

Proof: First, it follows from the Leibniz-Newton formula that the following
equations are true for any matrices N, S, M, L, V and W :

2ζT (t)N

[
x(t) − x(t − h(t)) −

∫ t

t−h(t)
ẋ(s)ds

]
= 0 (6)

2ζT (t)S

[
x(t − h(t)) − x(t − hM ) −

∫ t−h(t)

t−hM

ẋ(s)ds

]
= 0 (7)

2ζT (t)M
[
x(t) − x(t − hM ) −

∫ t

t−hM

ẋ(s)ds

]
= 0 (8)
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2ζT (t)L

[
x(t) − x(t − τ(t)) −

∫ t

t−τ(t)
ẋ(s)ds

]
= 0 (9)

2ζT (t)V

[
x(t − τ(t)) − x(t − τM ) −

∫ t−τ(t)

t−τM

ẋ(s)ds

]
= 0 (10)

2ζT (t)W
[
x(t) − x(t − τM ) −

∫ t

t−τM

ẋ(s)ds

]
= 0 (11)

where

ζ(t) = [xT (t) xT (t − h(t)) xT (t − hM) xT (t − τ(t)) xT (t − τM) ẋT (t) ]T

The following is also true for any matrix T :

2ζT (t)T [ẋ(t) − Ax(t) − Adx(t − τ(t)) − BKx(t − h(t))] = 0 (12)

Now, we consider the following Lyapunov functional:

V (xt) = V1(x) + V2(xt) + V3(xt)

where xt = x(t + θ), −max(hM , τM ) ≤ θ ≤ 0,

V1(x) = xT (t)Px(t)

V2(xt) =
∫ t

t−τM

xT (s)Qx(s)ds +
∫ t

t−hM

xT (s)Rx(s)ds

V3(xt) =
∫ 0

−τM

∫ t

t+θ
ẋT (s)(Y1 + Y2)ẋ(s)dsdθ

+
∫ 0

−hM

∫ t

t+θ
ẋT (s)(Z1 + Z2)ẋ(s)dsdθ

and P > 0, Q ≥ 0, R ≥ 0, Y1 > 0, Y2 > 0, Z1 > 0, Z2 > 0 are to be
determined. Then, we take the derivative of V (xt) with respect to t along the
solution of the nominal system (4) and add the left-hand-side of (6)-(12):

d

dt
V (xt) = 2ẋT (t)Px(t) + xT (t)(Q + R)x(t) − xT (t − τM)Qx(t − τM)

−xT (t − hM)Rx(t − hM) + τM ẋ(t)(Y1 + Y2)ẋ(t)
+hM ẋ(t)(Z1 + Z2)ẋ(t)

−
∫ t

t−τM

ẋT (s)(Y1 + Y2)ẋ(s)ds −
∫ t

t−hM

ẋT (s)(Z1 + Z2)ẋ(s)ds

= 2ẋT (t)Px(t) + xT (t)(Q + R)x(t) − xT (t − τM)Qx(t − τM)
−xT (t − hM)Rx(t − hM) + τM ẋ(t)(Y1 + Y2)ẋ(t)

+hM ẋ(t)(Z1 + Z2)ẋ(t) −
∫ t

t−τ(t)
ẋT (s)Y1ẋ(s)ds
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−
∫ t−τ(t)

t−τM

ẋT (s)Y1ẋ(s)ds −
∫ t

t−h(t)
ẋT (s)Z1ẋ(s)ds −

∫ t−h(t)

t−hM

ẋT (s)Z1ẋ(s)ds

−
∫ t

t−τM

ẋT (s)Y2ẋ(s)ds −
∫ t

t−hM

ẋT (s)Z2ẋ(s)ds

+2ζT (t)N

[
x(t) − x(t − h(t)) −

∫ t

t−h(t)
ẋ(s)ds

]

+2ζT (t)S

[
x(t − h(t)) − x(t − hM) −

∫ t−h(t)

t−hM

ẋ(s)ds

]

+2ζT (t)M
[
x(t) − x(t − hM) −

∫ t

t−hM

ẋ(s)ds
]

+2ζT (t)L

[
x(t) − x(t − τ(t)) −

∫ t

t−τ(t)
ẋ(s)ds

]

+2ζT (t)V

[
x(t − τ(t)) − x(t − τM) −

∫ t−τ(t)

t−τM

ẋ(s)ds

]

+2ζT (t)W
[
x(t) − x(t − τM) −

∫ t

t−τM

ẋ(s)ds
]

+2ζT (t)T [ẋ(t) − Ax(t) − Adx(t − τ(t)) − BKx(t − h(t))]

≤ ζT (t)[Φ11 + τM (LY −1
1 LT + V Y −1

1 V T + WY −1
2 W T )

+hM(NZ−1
1 NT + SZ−1

1 ST + MZ−1
2 MT )]ζ(t)

−
∫ t

t−h(t)
[ζT (t)N + ẋT (s)Z1]Z

−1
1 [NT ζ(t) + Z1ẋ(s)]ds

−
∫ t−h(t)

t−hM

[ζT (t)S + ẋT (s)Z1]Z
−1
1 [ST ζ(t) + Z1ẋ(s)]ds

−
∫ t

t−hM

[ζT (t)M + ẋT (s)Z2]Z
−1
2 [MT ζ(t) + Z2ẋ(s)]ds

−
∫ t

t−τ(t)
[ζT (t)L + ẋT (s)Y1]Y

−1
1 [LT ζ(t) + Y1ẋ(s)]ds

−
∫ t−τ(t)

t−τM

[ζT (t)V + ẋT (s)Y1]Y
−1
1 [V T ζ(t) + Y1ẋ(s)]ds

−
∫ t

t−τM

[ζT (t)W + ẋT (s)Y2]Y
−1
2 [W T ζ(t) + Y2ẋ(s)]ds

(13)

Since Y1 > 0, Y2 > 0, Z1 > 0, Z2 > 0, the last six integral terms in (13)
are all less than 0. Hence, if Φ11 + τM(LY −1

1 LT + V Y −1
1 V T + WY −1

2 W T ) +
hM(NZ−1

1 NT + SZ−1
1 ST + MZ−1

2 MT ) < 0, we have V̇ (x) < −ε||x(t)||2 for a
sufficiently small ε > 0 which implies that the nominal system (4) is asymptot-
ically stable. The above condition can be written as (5) by Schur complement
formula.

Remark 3.2 Theorem 3.1 employs Leibniz-Newton formula in (6)-(11),
and free weighting matrix method in (12). These methods are known to re-
duce the conservatism in stability conditions.
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3.2 State Feedback Control

In this section, we seek a design method of the sampled-data control for a
time-delay system. Unfortunately, Theorem 3.1 does not give a feasible LMI
condition for obtaining a state feedback control gain matrix K. Hence, we
look for another stability condition. To this end, we make a congruence trans-
formation and obtain a feasible LMI stability condition. Based on it, we give
a design method of sampled-data state feedback controllers.

Theorem 3.3 Given scalars ρi, i = 1, · · · , 6, the sampled-data controller
(2) stabilizes the nominal system (1) with H = 0, Ei = 0, i = 1, 2, 3 if there
exist P̄ > 0, Q̄ ≥ 0, R̄ ≥ 0, Ȳ1 > 0, Ȳ2 > 0, Z̄1 > 0, Z̄2 > 0, Ḡ, U ,

N̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N̄1

N̄2

N̄3

N̄4

N̄5

N̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄1

S̄2

S̄3

S̄4

S̄5

S̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄1

M̄2

M̄3

M̄4

M̄5

M̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̄1

L̄2

L̄3

L̄4

L̄5

L̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V̄1

V̄2

V̄3

V̄4

V̄5

V̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄1

W̄2

W̄3

W̄4

W̄5

W̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that

Θ =
[
Θ11 Θ12

ΘT
12 Θ22

]
< 0 (14)

where

Θ11 = Θ1 + Θ2 + ΘT
2 + Θ3 + ΘT

3 ,

Θ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄ + R̄ 0 0 0 0 P̄
∗ 0 0 0 0 0
∗ ∗ −R̄ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ −Q̄ 0
∗ ∗ ∗ ∗ ∗ τM(Ȳ1 + Ȳ2) + hM(Z̄1 + Z̄2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ2 = [ N̄ + M̄ + L̄ + W̄ −N̄ + S̄ −M̄ − S̄ −L̄ + V̄ −W̄ − V̄ 0 ]

Θ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1AḠT −ρ1BU 0 −ρ1AdḠ
T 0 ρ1Ḡ

T

−ρ2AḠT −ρ2BU 0 −ρ2AdḠ
T 0 ρ2Ḡ

T

−ρ3AḠT −ρ3BU 0 −ρ3AdḠ
T 0 ρ3Ḡ

T

−ρ4AḠT −ρ4BU 0 −ρ4AdḠ
T 0 ρ4Ḡ

T

−ρ5AḠT −ρ5BU 0 −ρ5AdḠ
T 0 ρ5Ḡ

T

−ρ6AḠT −ρ6BU 0 −ρ6AdḠ
T 0 ρ6Ḡ

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ12 = [ hMN̄ hM S̄ hMM̄ τM L̄ τM V̄ τMW̄ ]
Θ22 = diag [−hM Z̄1 −hM Z̄1 −hM Z̄2 −τM Ȳ1 −τM Ȳ1 −τM Ȳ2 ]

In this case, a state feedback gain in (2) is given by

K = UḠ−T (15)
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Proof: We let Ti = ρiG, i = 1, · · · , 6 where ρi are given scalars, and substitute
Ti into the condition (5). If (5) holds, it follows that (6, 6)-block of Φ11 must
be negative definite. This leads that T6 +T T

6 = ρ6(G+GT ) < 0, which implies
that G is nonsingular if ρ6 �= 0.

Now we make a congruence transformation to (5) with

Σ = diag [ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ Ḡ ]

where Ḡ = G−1 to calculate ΣΦΣT . Letting

P̄ = ḠP ḠT , Q̄ = ḠQḠT , R̄ = ḠRḠT , Ȳi = ḠYiḠ
T , Z̄i = ḠZiḠ

T , i = 1, 2

N̄ = ΣNḠT , S̄ = ΣSḠT , M̄ = ΣMḠT , L̄ = ΣLḠT , V̄ = ΣV ḠT , W̄ = ΣWḠT

we obtain ΣΦΣT = Θ in (14) where we define U = KḠT . If the condition (14)
holds, a state feedback control gain matrix K is obviously given by (15).

3.3 Robust Stabilization

Now we extend the result in the previous sections to robust stabilization.

Theorem 3.4 Given scalars ρi, i = 1, · · · , 6, the sampled-data controller
(2) robustly stabilizes the system (1) if there exist P̄ > 0, Q̄ ≥ 0, R̄ ≥ 0, Ȳ1 >
0, Ȳ2 > 0, Z̄1 > 0, Z̄2 > 0, Ḡ, U, N̄ , S̄, M̄ , L̄, V̄ , W̄ and a scalar λ such
that

Λ =
[
Θ + λĤĤT ÊT

Ê −λI

]
< 0

where Θ is given in Theorem 3.3 and

Ĥ = − [ ρ1H
T ρ2H

T ρ3H
T ρ4H

T ρ5H
T ρ6H

T 0 0 0 0 0 0 ]T ,

Ê = [E1Ḡ
T E3U 0 E2G

T 0 0 0 0 0 0 0 0 ] .

In this case, a state feedback gain in (2) is given by (15).

Proof: Replacing A, Ad, B in Θ with A + HF (t)E1, Ad + HF (t)E2, B +
HF (t)E3, we obtain

Θ + λĤĤT +
1

λ
ÊT Ê < 0

for some λ > 0, from which the result is deduced by Schur complement formula.

Remark 3.5 In order to obtain the optimal ρi, i = 1, · · · , 6, we may use a
numerical software like Matlab with optimization toolbox fminsearch[4].
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4 Numerical Examples

The following numerical examples illustrate our results. First, we compares
our result with other results in the literature. Then we give a design method
of stabilizing sampled-data controllers for nominal time-delay system and un-
certain time-delay system.

Consider the system (1) with the following matrices

A =
[
0 0
0 1

]
, Ad =

[−1 −1
0 −0.9

]
B =

[
0
1

]
, H = 0, E1 = E2 = 0, E3 = 0.

(16)
We first compare our result with Fridman et al.[5] and Suplin et al.[12] where a
sampled-data stabilization for a non-delay system with τ(t) = 0 is considered.
Suplin et al.[12] and Fridman et al.[5] guarantee the sampled-data stabilization
for hM ≤ 1.3928 and hM ≤ 3.0201, respectively, while Theorem 3.2 does for
hM ≤ 9.99 when ρ1 = 1, ρ2 = −0.65, ρ3 = 0.06, ρ4 = −0.03, ρ5 = −0.15, ρ6 =
1200.10 and τ(t) = 0. This shows that our result is less conservative than
other results.

Next, we consider the sampled-data stabilization of the above time-delay
system for τM = 0.9999. Theorem 3.2 shows the stabilizing sampled-data state
feedback controller exists for hM ≤ 1.0. When ρ1 = 1, ρ2 = −0.66, ρ3 = 0, ρ4 =
−0.03, ρ5 = −0.15, ρ6 = 154.8, we achieve the sampled-data stabilization with
hM = 1.0 and obtain the stabilizing controller (2) with K = [0.0000 − 0.1001]
by Theorem 3.2.

Finally, we consider the robust sampled-data stabilization for the system
(1) with (16) and H, E1, E2, E3 replaced by

H = I, E1 = E2 = 0.15I, E3 =
[
0.1
0.1

]
.

Given τM ≤ 0.5, Theorem 3.3 shows the robust stabilizing sampled-data state
feedback controller exists for hM ≤ 0.5. When ρ1 = 1, ρ2 = 0, ρ3 = 0, ρ4 =
−0.04, ρ5 = −0.33, ρ6 = 1.12, we achieve the robust sampled-data stabilization
with hM = 0.5 and obtain the stabilizing controller (2) with K = [−0.0080 −
0.8485] by Theorem 3.3.

5 Conclusions

We considered the sampled-data control problem for time-delay systems. Our
method was based on a control input delay approach, which was new challenge
to such a control problem. We first showed the closed-loop system with the
sampled-data state feedback control became the state delayed system. First,
we gave a sufficient condition for the closed-loop system to be stable. Then we
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proposed a design method of the robust sampled-data state feedback controller
for uncertain time-delay systems. Finally, we gave illustrative examples and
showed our result is less conservative than other existing ones.
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