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Abstract

In this paper, we proposed a simple way to find model reduction of
d

dynamical system Ex(t) =AX()+BU) erex: R R" isa
y(t)=CTx(t)

state vector, u: R— RP is input function, y: R— R%is a output

function, Ae R™", Be R™P and CeR™Y are the system
matrices. Furthermore, we show that error output of single input
single output system can be estimated over a certain class of input
functions.
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1. Introduction
Consider dynamical system
%x(t): Ax(t)+Bu(t)

y(t)=C x(t)
x: R—> R" is a state vector, u: R— RP is input function, y; R— RYis a

(1)

output function, Ae R™", Be R™P and Ce R™Y are the system matrices.
Matrix A is allowed to be a singular matrix and we assumed that the matrix
sl — A is not singular. In most practical case,we have n>p>q [1-6, 9-11 and

13].

Model reduction is a procedure to find reduced-order model, say of r-th order
d
—X, (t)=AX, (t)+B,u(t
dt I‘( ) r r( ) r r( ) (2)

Y ()=C, "% (t)
x: R— R" is a state vector, u; : R— RP is input function, y, : R—> R%isa
output function, A R™", Be R™P and Ce R™% and r <n, in such a way
that the transfer functions are close in some sense. If G(s)=C(sl —A)_lB and
G,(s)=C,(sl-A,)"B, are transfer function of original model and transfer
function of reduced-order model, respectively, then |[G(s)-G, (s)| is less than a

predefined tolerance [1, 2 and 4]. In other words, reduced system G (s)
approximates original system G(s) well. Model reduction is to apply in circuit

electrics (VSLI design), wave surge forecast, vibrations system , and biological
system [1, 2, 10 and 11].

Model reduction can be approximated by Krylov subspace method,

singular value decomposition (SVD) method, or combining between Krylov
subspace and SVD method. Model reduction is to apply in circuit electrics (VSLI
design), wave surg forecast, vibrations system , and biological system.
On his textbook, Antoulas (2005) discussed a survey of model reduction methods
[1]. Futhermore, we refer a survey paper of model reducion in [7-10] . Model
reduction using Krylov subpace is constructed by moment matching. This method
have devoleped with others approach. Gallivan et. al. (2003) proposed model
reduction using Krylov subspace based on interpolation theory, and more
precisely on Pade approximation [3]. Others researchers have developed this
method based on modified Arnoldi algorithm. Model reduction using Krylov
subspace can de devoleped by matrices arise in these classes can be viewed as
multiple copies of certain subspace of the state space of the original system. See
for detail in [6].
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In this paper, we propose a simple way to find reduced-order system based on
sparseness and structure matrix from original system.

The paper is organized as follow. In section 2 we give some fundamental
properties of Krylov subspace. Also we give how to construct orthogonal basis for
Krylov subspace. Next section , we discussed moment matching and to related by
model reduction. Section 4, we present a simple way to find reduced-order
system. Finally, conclusion is written in section 5.

In this paper, we use the following notations. Symbol R™" devote set of
real matrices have m rows and n columns. The Kronecker product (or tensor

product for matrices) is devoted by ®. Let A = [a; j| € R™" and B = |p, |

e R¥®  Kronecker product of A and B is defined

_a]_lB alzB alnB
A®B = a21B 8.228 aan . Ramxbn
[amB  ampB -+ amyB]]

Futhermore, we define norm on vectors or matrices. For all ve R", we define
norm of the vector as ||v||2: (v,v) where (—-) is inner product on R". For all

matrix A,B e R" we define the inner product (A,B) = trace(AT B) and the norm

|Aace = \/traceiATAi. The properties of Kronecker product and norm of
matrix can be found in [7 and 8].

2. Krylov Subspace

A given matrix Ae R™" and vector be R". The Krylov subspace is
defined

Km(Ab) = span{b,Ab,A%,--- ,Am—lb} (3)
The i-th basis vector in Krylov subspace (3) is linear combination of the previous

(i-1) vectors. In other words, the p™ basic vector can be written as linear
combination of the first (p-1) vectors. Clearly, dimK;(A,b) = 1 and

dim Km(A,b) < m. Scaling and shift by identity matrix (= I) are not important in
Krylov subspace, since Ky, (A,b) = K, (A +1,b) for any nonzero scalar a.
Theorem 1. Consider Krylov subspace K, (A,b) for m=1, 2,---.

If Kim(Ab) = Kpy,1(A,b) for some integer m >0, then K (Ab) = K(Ab)
for each integer p>m>0.
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Krylov subspace K (A,b) = span{b,Ab,AZb,.--,Am_lb} is also called
reachability space or controlability space in control systems comunnity.
Two methods to construct a basis for Krylov subspace K, (A,b), which are
Arnoldi algorithm and lanzcos algorithm. Based on the two methods, Krylov
subspace has three main uses: iterative solution of linear equations Ax=Y,
iterative approximation of eigenvalue of A, and approximation of dynamical
systems by moment matching.

The Arnoldi algorithm is an orthogonal projection method for calculating
the orthonormal basis for Krylov subspace Km(A,b). The algorithm can be
written the following

Arnoldi Algorithm
[1] Data: Aandb

[2] vi=b/|b]
[3] for j=1,2,...,m-1
[4] hi,j =ViTAVi for i:1,2,...,j
]
[5] uj:AVj__zl hi,jVi
1=
[6] hi j = ug
[7] stop if hjj =0
[8] Vist=Uj/hjej
[9] End for
Outputs of Arnoldi algorithm are matrices Vp, = [vq,V5, -,V ] and
by My o hmg
0 hyp = hpm hym
H,=|0 0

hm,m—l hm,m
_0 0 - 0 hm+1,m_
The matrix H, is called (m +1)>< m upper Hessenberg matrix .

Theorem 2. A given matrix Ac R™"and vector be R". If the Arnoldi procedure
does not stop before the m™ step, then the vectors

V1’V2 o !Vm
form an orthonormal basis of the Krylov subspace K, (A,b).
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gl o g . m
B 0 hyp - hymaa  hyy
We devoted Hm=10 0 KN :

. . hm—1,m—1 hm—l,m
0 0 hm,m—l hm,m

The square matrix Hm is obtained from H, by deleting its last row.

Theorem 3
Let A (n x n) matrix and v vector. Devote V,,, H,, and Hm matrices as
described previous. The following relations hold:
@). AVi= Vi Hm + hypamVmeim' Whereis ey = (00,--1)e R™
(b). AV = Vi Hi

(©). V§ AV, = Hpy

3. Moment Matching and Model Reduction

Consider D is a subset on C complex plane and zg e D. The function
analytic of f on D can be writen by the Laurent expansion

)= 3 oxlz-2) 4

k=—o0
forall zy € D. The coeficients ¢ is called k™-moment of f(z) at zy. If f(z) isa
rational function, then f(z) are analytic on the complement of the set of their

poles. For complex analysis, we refer [14].
The problem of moment matching can be described as follow: a given a sequence
of complex numbers {sl,sz ,---,skl} and j=1,2, ..., jiand a function f(z) which

is analytical in neighbourhood of points of {sl,sz ,---,skl}, find a strictly proper
real rational function F(z) of degree n with no poles at {s;,s, ,---,skl} such that
dlf(s) _ dIF(s)

ds! ds!
forallj=1,2,...,j and k=1, 2, ..., ki.
Dynamical system (1) can also be represented in frequency domain using
Laplace transform. Recall that Laplace transform is defined

()

f(s)=[ f(t)e dt, forseC (6)
0
Let X(s), ¥(s), and G(s) denoted Laplace transform of x(t), y(t), and u(t)

respectively. Then taking the Laplace transform of (1), we have
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{S’)\((S)ZA’)\((S)-FBG(S) .

y(s)=Cx(s)
If we eliminate X(s) in equation of (7), we have most important concept on linear
system
G(s)=C(sl-A)B (8)
The function of G(s) is called transfer function. Equation of (8) can also be
written G(s) = CX, where X is a solution of linear system (sl —A)X =B.

By expanding (sl —A)~* around x = % =0, we have

(o1-A" = (Li-2A]= (0 -xa)

= Xl + XA+ x2AZ% +-..
Hence, transfer function of (8) become

G(s)=C(sl-A)™B

< g k—i-1
=Y (CA'B)s"‘ 9)

i=0
The transfer function is also a rational function. The coeficients matrix CA'B are
known as i" moment of G(s) at x:%:o (around oo). It is called markov

. i
parameters . In this case, we have CA'B = (i!)_ldG—(iS) forall i.
ds
S=00

Model reduction can be approximated by moment matching. The goal is to
find transfer function of reduced-order system G, (s) that interpolate transfer

function of original system G(s) and a certain number of its derivatives at the
selected points s in complex plane so that
dIG(s) d 1G,(s)
ds! ds!

forj=1,2,...,Jp and k=1, 2, ..., ki, where k; is the number of interpolation
points and j; is the numbers of moments at each s.

The moments are extremely ill-conditioned to compute [1 & 4]. Many
investigators proposed model reduction based Krylov subspace that satisfied
equation of (10) without computing the moments explicitly [1, 4 and 9].

(10)

4. Moment Matching and Krylov Subspace

Cayley-Hamilton theorem state that every square matrix satisfies its own
polynomial characteristic, see for detail in [7]. One important use of Cayley-
Hamilton theorem is to write AX, for all k > n, as linear combinations of 1, A, A?

..., A", Therefore expanding (sl —A)‘lB can be done as the following
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(s1-A)1B= (po(s)1+ Pr(5)A+ Po($)AZ -+ Py 1()A™ B
or
Po(s)
(sl-A)1B = [B AB ... A"l plfs)
Pn-1(s)
If det(sl —A) can be evaluated then polynomials po(s), pi(s), ..., and pn-1(S) can

also be found.
In order to Krylov subspace can be applied to model reduction, Arnoldi

algorithm have been modified. By taking norm of vector |v|, replaced with norm
of matrix [Al,.... We get general Arnoldi algorithm that it can be used any pair

matrix (A, B) as data input.
Commonly, the main goal of model reduction based on Arnoldi algorithm

is to find projecting matrices H, Ve R™" such that H'V = 1e R"™*". Then we set
A, =H'AV, B, =H'B, and C, = CV. See detail in [1 and 3].

We propose a simple way to find projecting matrices H, Ve R™"as the
following. Firstly, we apply r step Arnoldi algorithm to the pair matrix (A, B) to
obtain the matrices V = V, and H = H,. We set A, = H, ® |, B, =

|Byce €2 ®1), and C;=CV..

From (9), G(s) is transfer function of original system with m; = CAB is i"-
moment G(s). If G.(s) = C,(sl-A,) !B, is transfer function of reduced
order system, we have

Mi= CrA('B; =CV,(H,® 1) [B|,... (&1 ®1) (11)

as i" -moment G,(s).

Theorem 4. Let V, and H, can be yielded by r steps Arnoldi algorithm to pair
(A,B), where A and B are matrices from (1). Let A, = H, ® I,
Br = ||B||trace (e;®1), and C, = CV,. The original system (1) and reduced order

system (2) are first r moments same, i.e. M; = CrAriBr fori=,1,2,,...,r-L
Proof.

Let Vp = [vy,vp, vy ] and H, is (r +1)xr upper Hessenberg matrix
are obtained by r step Arnoldi algorithm for a pair matrix (A, B). The square
matrix Hy obtained from H, by deleting its last row.

Using fact (P®Q)YR®S)=(PR)®(QS), we have (A;)' = H,® I fori=,1,2,,
..., I-1. Furthermore, we have Hr & ®1 = (Hr ®1)(e; ®1)

Since B = [B|yac0 V1= [Blace Vr (€1 ®1), we obtained
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Mi= C,A,'B,

=CVr (H; ®1)' B0 €1 ®1)
Blyace CVr (Hr®@ 1) (e ®1)
1Blliyace CVr (Hr ® ' (Hr & ®1)
The process is continued, hence_ _

M = [Blyaee CVr (Hr)'er ®1)
= |Bfyace CA'Vr (1 ®1) =CA'[B],... V1= CAB

for i=0, 1, 2,---, r=1. In other words, The original system (1) and reduced order

system (2) are first r moments same.
The proof is finished. .

Generally, we want to approximate output y(t) by y.(t) over large class of
input u(t). Different measure of approximation and different choice of class of
input function will lead to different model reduction goals.

A given dynamical system like (1)

%x(t):Ax(t)+bu(t)

y(t)=cx(t)
where x: R = R" is a state vector, u: R — R is input function, y: R > R is a

output function, A e R™" beR", and ce R" are the system matrices.
The dynamical system is called single input single output (SISO) system.
After this, we assume that class of input function u: R — R and its Laplace

(12)

transform contained in L,(R) and j |u(t)|2dt <1. The class is devoted by D,(R).
0

In Dy(R), we use the norm of the usual Hardy space is given by
-2
|G, = sup ZLTEIR|G(X+|y)| dy
x>0

for all Ge Dy(R). We refer [12] for Hardy space.
Model reduction process of (12) will yield reduced-order system

%x(t)=Arx(t)+bru(t)

-
y(t)=c, ' x(t)
where x: R = R" is a state vector, u: R — R is input function, y: R > R is a

(13)

output function, r<n, Ae R™" beR",andce R" are the system matrices.
Let g(s) and g,(s) are transfer function (12) and (13), respectively. We see that
Y(s)=g(s)u(s) and Y,(s)= ge(s)U(s). Next theorem, we show that error

estimate to approximate y(t) by y,(t) over class of input u(t) € D,(R).
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Theorem 5. A given system (12) and its transfer functions g(s). The system (13) is

reduced-order system 12 with A, = Hr, by = |b|, e;, and ¢, = ¢V, where Hy
and V, = [vl,vz ,~--,vr] are obtained by applying r steps Arnoldi algorithm to a
pair (A, b). The square matrix Hr obtained from H, by deleting its last row.

If ue D2(R) then

sup [y(t)—yr (1)< hesar [ Hc(sl YNV
t>0 H

— 1
el (s1—Hr) e1H
H

Where e = (00,--1)e R" and e;= (10.0,-).
Proof.

Let g(s) and g.(s) are devoted transfer functions of original system and
reduced-order system, respectively. We see that Yy(s)= g(s)i(s) and

Yr(s)=gis)U(s).

We claim that sup |y(t)-y,(t) <|g(s)-9,(s)|,
t>0

Using fact invers Laplace transform,

sup |y(t)—y,(t) = sup ‘Tlfch(g’(it)—yr(it))eiXtdt‘
t>0 t>0

< Z-TR|((it) -y (it) ot
since §(s)- r(s) = (3(s) - 9r(s)) U(s), we have

sup V() =y (1) < o-[rl(g(it)- g, (it)facit yot
t>

if we use Cauchy-Schwarz inequality for integral, then
o Irl(g(it) - g, (it)faCit et

1/2 1/2
< (Elrlatv-gr i) e ] (Tajucof et

1/2
< (LIrllatv-g (0 dt] = =g/,

whenever ue Dy(R).
Hence

sup |y(t)-y,(t) < |g-g,], (14)
t>0

whenever u e D(R).
Using Theorem 3.2, AV, = V; Hr + hy 1 V18,

& sVe-AVp=sVp - Vo Hy - hr+1,rVr+1€rT

< (s1-A) Vy = V, (sl - Hr)- hr+1,rVr+1erT

Since g(s) = c(sl —A)"lb and gr(s) = c (sl - A, )"1br , itimplies
a(s) —9r(s)
=¢(sl-A)tb — ¢, (sl-A; )b,
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c(sl-A)tb - (cv,) (sl —Hy )_1 (“b||2e1)

e(sl-A) b - (s1-ANV; (s1-Hr )™ (o], e)

e(s1 =AYb Vy (st - Hr) - hyq o veaae, ) (S1=He )™ (o], e)

e~ A) (b= (bl Vre & .ol Viae T (o1 -Fie [ e

By Arnoldi process, b = [b|vy = [b|V,e; and implies

g(s) —ar(s) = c(sl _A)_l (hrJrl,r”bnz\/HlerT (SI —Hr )_1e1)

hence

lo=0rlyy< o rlbljolst ~A *Vra
From (14) and (15), we get

sup |y(t)=yr(t)] < hr+1,r||b||2Hc(sl ~A IV,

t>0 H

whenever ue Dy(R).
The proof is finished. .

el (sl —Hr )_1e1HH (15)

TR
EI(Sl—Hr) 91H
H

5. Conclusion

In this paper, we have proposed model reduction based on output of
matrices in Arnoldi process. This result can be used to estimate error output
system for single input single output system over a certain class of input function

u(x) .
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