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Abstract 
 

In this paper, we proposed a simple way to find model reduction of 

dynamical system 
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 where x: R → nR  is a 

state vector, u: R → pR  is input function, y: R → qR is a output 
function, ∈A nn×R , ∈B pn×R , and ∈C qn×R  are the system 
matrices. Furthermore, we show that error output of single input 
single output system  can be estimated over a certain class of input 
functions. 
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1. Introduction 

 
Consider  dynamical system  
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x: R → nR  is a state vector, u: R → pR  is input function, y: R → qR is a 
output function, ∈A nn×R , ∈B pn×R , and ∈C qn×R  are the system matrices. 
Matrix A is allowed to be a singular matrix and we assumed that the matrix 

AI −s  is not singular. In most practical case,we have qpn >>  [1-6, 9-11 and 
13]. 
Model reduction is a procedure to find reduced-order model, say of r-th order  
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xr : R → rR  is a state vector, ur : R → pR  is input function, yr : R → qR is a 
output function, ∈A rr×R , ∈B pr×R , and ∈C qr×R  and nr < , in such a way 
that the transfer functions are close in some sense. If BAIC 1−−= )s()s(G  and 

rrrr )s()s(G BAIC 1−−=  are transfer function of original model and transfer 
function of reduced-order model, respectively, then ( ) ( )sGsG r−  is less than a 
predefined tolerance [1, 2 and 4]. In other words, reduced system )s(Gr  
approximates original system ( )sG  well. Model reduction is to apply in circuit 
electrics (VSLI design), wave surge forecast, vibrations system , and biological 
system [1, 2, 10 and 11]. 
 Model reduction can be approximated by Krylov subspace method, 
singular value decomposition (SVD) method, or combining between Krylov 
subspace and SVD method. Model reduction is to apply in circuit electrics (VSLI 
design), wave surg forecast, vibrations system , and biological system.  
On his textbook, Antoulas (2005) discussed a survey of model reduction methods 
[1]. Futhermore, we refer a survey paper of model reducion in [7-10] . Model 
reduction using Krylov subpace is constructed by moment matching. This method 
have devoleped with others approach. Gallivan et. al. (2003) proposed model 
reduction using Krylov subspace based on interpolation theory, and more 
precisely on Pade approximation [3]. Others researchers have developed this 
method based on modified Arnoldi algorithm. Model reduction using Krylov 
subspace can de devoleped by matrices arise in these classes can be viewed as 
multiple copies of certain subspace of the state space of the original system. See 
for detail in [6]. 
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In this paper, we propose a simple way to find reduced-order system based on 
sparseness and structure matrix from original system. 
 The paper is organized as follow. In section 2 we give some fundamental 
properties of Krylov subspace. Also we give how to construct orthogonal basis for 
Krylov subspace. Next section , we discussed moment matching and to related by 
model reduction. Section 4, we present  a simple way to find reduced-order 
system. Finally, conclusion is written in section 5. 
 In this paper, we use the following notations. Symbol nm×R   devote set of 
real matrices have m rows and n columns. The Kronecker product (or tensor 
product for matrices) is devoted by ⊗. Let A = [ ]j,ia  ∈ nm×R  and B = [ ]j,ib  

∈ ba×R . Kronecker product of A and B is defined  

 BA ⊗  = 
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 ∈ bnam×R  

Futhermore, we define norm on vectors or matrices. For all ∈v nR , we define 
norm of the vector as 2v = v,v  where −−,  is inner product on nR . For all 

matrix ∈BA, nR  we define the inner product BA,  = ( )BATtrace  and the norm 

traceA  = ( )AATtrace . The properties of Kronecker product and norm of 
matrix can be found in [7 and 8].  
 
 
 
2. Krylov Subspace  
 
 A given matrix A∈ nn×R  and vector b∈ nR . The Krylov subspace is 
defined  
 ( )bA,Km  = { }bAbAAbb 12span −m,,,, L     (3) 
The i-th basis vector in Krylov subspace (3) is linear combination of the previous 
(i-1) vectors. In other words, the pth basic vector can be written as linear 
combination of the first (p-1) vectors. Clearly, dim ( )bA,K1  = 1 and                  
dim ( )bA,Km  ≤ m. Scaling and shift by identity matrix (= I) are not important in 
Krylov subspace, since ( )bA,Km  = ( )bIA ,Km +α  for any nonzero scalar α. 
Theorem 1. Consider Krylov subspace ( )bA,Km  for 1,  2,m = L .  
If ( )bA,Km  = ( )bA,Km 1+  for some  integer m >0, then ( )bA,Km  = ( )bA,K p      
for each  integer 0>≥ mp . 
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 Krylov subspace ( )bA,Km  = { }bAbAAbb 12span −m,,,, L  is also called   
reachability space or controlability space in control systems comunnity.  
Two methods to construct a basis for Krylov subspace ( )bA,Km , which are 
Arnoldi algorithm and lanzcos algorithm. Based on the two methods, Krylov 
subspace has three main uses: iterative solution of linear equations yAx = , 
iterative approximation of eigenvalue of A, and approximation of dynamical 
systems by moment matching. 
 The Arnoldi algorithm is an orthogonal projection method for calculating 
the orthonormal basis for Krylov subspace ( )bA,Km . The algorithm can be 
written the following  

Arnoldi Algorithm  
[1] Data : A and b 
[2] bbv /=1  
[3] for  j  = 1, 2, …, m-1  
[4] ii Avv T

j,ih =  for  i = 1, 2, …, j 

[5] ij,i
j

i
jj h vAvu ∑

=
−=

1
 

[6] ju=j,ih  

[7] stop if  j,ih  = 0 

[8] j,jjj h/ 11 ++ = uv  
[9] End for 

Outputs of Arnoldi algorithm are matrices mV  = [ ]mvvv ,,, L21   and  

mH  = 
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The matrix mH  is called ( ) mm ×+1  upper Hessenberg matrix . 

Theorem 2. A given matrix A∈ nn×R and vector b∈ nR .  If the Arnoldi procedure 
does not stop before the mth step, then the vectors  

mvvv ,,, L21  
form an orthonormal basis of the Krylov subspace ( )bA,Km . 
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We devoted  mH = 
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The square matrix mH  is obtained from mH  by deleting its last row.  

Theorem 3 
Let A (n × n) matrix and v vector. Devote mV , mH , and mH  matrices as 
described previous. The following relations hold: 
(a).  A mV = mV mH  + T

m,mh m1m ev ++1   where is  me = ( )∈100 ,,, L mR  
(b). A mV =  1+mV mH  

(c). T
mV A mV  = mH  

 
 
3. Moment Matching and Model Reduction 
 
 Consider D is a subset on C complex plane and Dz ∈0 . The function 
analytic of  f  on D can be writen by the Laurent expansion 

 ( )zf  = ( )kk
k

zzc 0−∑
∞

−∞=
      (4) 

for all Dz ∈0 . The coeficients ck is called kth-moment of ( )zf  at 0z . If ( )zf  is a 
rational function, then ( )zf  are analytic on the complement of the set of their 
poles. For complex analysis, we refer [14]. 
The problem of moment matching can be described as follow: a given a sequence 
of complex numbers { }

121 ks,,s,s L  and  j = 1, 2, …, j1 and a function ( )zf  which 

is analytical in neighbourhood of points of { }
121 ks,,s,s L , find a strictly proper 

real rational function ( )zF  of degree n with no poles at { }
121 ks,,s,s L  such that 

j
k

j

ds
)s(fd  = j

k
j

ds
)s(Fd       (5) 

for all j = 1, 2, …, j1  and  k = 1, 2, …, k1. 
Dynamical system (1) can also be represented in frequency domain using 

Laplace transform. Recall that Laplace transform is defined  

 )s(f̂  = dte)t(f st−
∞
∫
0

, for s∈C     (6) 

Let )s(x̂ , )s(ŷ , and )s(û  denoted Laplace transform of x(t), y(t), and u(t) 
respectively.  Then taking the Laplace transform of (1), we have 
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C
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If we eliminate )s(x̂  in equation of (7), we have most important concept on linear 
system  
  BAIC 1−−= )s()s(G      (8) 
The function of ( )sG  is called transfer function. Equation of (8) can also be 
written ( )sG  = CX , where X  is a solution of linear system ( ) BXAI =−s .  

By expanding  ( ) 1−−AIs  around 01 == sx , we have 

 ( ) 1−−AIs  = ( )( ) 11 −
− AI s

1
s = ( )( ) 1−− AI xx  

       = L+++ 2AAI 2xxx  
Hence, transfer function of (8) become 
 BAIC 1−−= )s()s(G  

          = ( ) 1

0

−−∞

=
∑ ii

i
sBCA               (9)  

The transfer function is also a rational function. The coeficients matrix BCAi  are 
known as thi moment of ( )sG  at 01 == sx  (around ∞). It is called markov 

parameters . In this case, we have BCAi  = ( ) 1! −i
∞=s

i

i

ds
)s(Gd  for all i . 

Model reduction can be approximated by moment matching. The goal is to 
find transfer function of reduced-order system ( )sGr  that interpolate transfer 
function of original system ( )sG  and a certain number of its derivatives at the 
selected points sk in complex plane so that 

 j
r

j

j

j

ds
)s(Gd

ds
)s(Gd
=               (10) 

for j = 1, 2, …, j1  and  k = 1, 2, …, k1, where k1 is the number of  interpolation 
points and j1 is the numbers of moments at each sk.  
The moments are extremely ill-conditioned to compute [1 & 4]. Many 
investigators proposed model reduction based Krylov subspace that satisfied 
equation of (10) without computing the moments explicitly [1, 4 and 9]. 
 
 
4. Moment Matching and Krylov Subspace 

 
Cayley-Hamilton theorem state that every square matrix satisfies its own 

polynomial characteristic, see for detail in [7]. One important use of Cayley-
Hamilton theorem is to write Ak, for all k > n, as linear combinations of  I , A , A2 
, …, An-1. Therefore expanding  BAI 1−− )s(  can be done as the following 
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 BAI 1−− )s( = ( )BAAAI 1

1
2

210
−

−++++ n
n )s(p)s(p)s(p)s(p L  

or  

 BAI 1−− )s(  = [ ]BAABB 1−nL

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− )s(p

)s(p
)s(p

n 1

1

0

M
 

If det )s( AI −  can be evaluated then polynomials p0(s), p1(s), …, and pn-1(s) can  
also be found.  
 In order to Krylov subspace can be applied to model reduction, Arnoldi 
algorithm have been modified. By taking norm of vector 2v  replaced with norm 

of matrix  traceA , we get general Arnoldi algorithm that it can be used any pair 
matrix (A, B) as data input. 

Commonly, the main goal of model reduction based on Arnoldi algorithm 
is to find projecting matrices H, V∈ rn×R such that  HTV = I∈ rr×R . Then we set    
Ar = HTAV, Br = HTB, and Cr = CV. See detail in [1 and 3]. 
We propose a simple way to find projecting matrices H, V∈ rn×R as the 
following. Firstly, we apply r  step Arnoldi algorithm to the pair matrix (A, B) to 
obtain the matrices V = rV  and H = rH . We set Ar = rH ⊗ I, Br = 

traceB ( )I⊗1e , and  Cr = CVr. 

From (9), ( )sG  is transfer function of original system with mi = BCAi  is thi -

moment ( )sG .  If ( )sGr  = rrr )s( BAIC 1−−  is transfer function of reduced 
order system, we have 
  Mi = r

i
rr BAC  = CVr ( rH ⊗ I)i traceB ( )I⊗1e    (11) 

as thi -moment ( )sGr . 
 
Theorem 4. Let rV  and rH  can be yielded by r steps Arnoldi algorithm to  pair 
(A,B), where A and B are matrices from (1). Let Ar = rH ⊗ I,                              
Br = traceB ( )I⊗1e , and  Cr = CVr. The original system (1) and reduced order 

system (2) are first r moments same, i.e. Mi = r
i

rr BAC    for  i = , 1, 2, , …., r-1. 
Proof. 
 Let rV  = [ ]r,,, vvv L21  and rH  is ( )1r r+ × upper Hessenberg matrix 
are obtained by r step Arnoldi algorithm for a pair matrix (A, B). The square 
matrix rH  obtained from rH  by deleting its  last row. 
Using fact ( )( )SRQP ⊗⊗ = ( ) ( )QSPR ⊗ , we have (Ar)i = rH ⊗ I for i = , 1, 2, , 
…., r-1. Furthermore, we have rH I⊗1e  = ( )IH ⊗r ( )I⊗1e  
Since B = traceB 1v = traceB rV ( )I⊗1e , we obtained 
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 Mi = r

i
rr BAC   

        = CVr ( rH ⊗ I)i traceB ( )I⊗1e  

      = traceB  CVr ( rH ⊗ I)i ( )I⊗1e  

      =  traceB  CVr ( rH ⊗ I)i-1 ( rH I⊗1e ) 
The process is continued, hence 
     iM   = traceB  CVr (( rH )i I⊗1e )        

        = traceB  CAiVr ( )I⊗1e  = CAi traceB 1v = CAiB  
for 0,  1,  2, ,  1= −Li r . In other words, The original system (1) and reduced order 
system (2) are first r moments same. 
The proof is finished.        ♦ 

Generally, we want to approximate output y(t) by yr(t) over large class of 
input u(t). Different measure of approximation and different choice of class of 
input function will lead to different model reduction goals.  
A given dynamical system like (1) 

⎪⎩

⎪
⎨
⎧

=

+=

)t(x)t(y

)t(u)t()t(x
dt
d

Tc

bAx
      (12) 

where x: R → Rn  is a state vector, u: R → R is input function, y: R → R  is a 
output function, ∈A nn×R , b∈ nR , and c∈ nR  are the system matrices. 
The dynamical system is called single input single output (SISO) system.        
After this, we assume that class of input function u: R → R and its Laplace 

transform contained in L2(R) and 12

0
≤∫

∞
dt)t(u . The class is devoted by D2(R). 

In  D2(R), we use the norm of the usual Hardy space is given by 

 HG  =  
0>x

sup dy)iyx(GR
2

2
1 +∫
π

 

for all  G∈ D2(R). We refer [12] for Hardy space. 
 Model reduction process of (12) will yield reduced-order system 

 
⎪⎩

⎪
⎨
⎧

=

+=

)t(x)t(y

)t(u)t()t(x
dt
d

r

rr
Tc

bxA
      (13) 

where x: R → Rn  is a state vector, u: R → R is input function, y: R → R  is a 
output function, r < n, ∈A rr×R , b∈ rR , and c∈ rR   are the system matrices. 
Let g(s) and gr(s) are transfer function (12) and (13), respectively. We see that 

)s(ŷ = g(s) )s(û  and )s(ŷr = gr(s) )s(û . Next  theorem, we show that  error 
estimate to approximate y(t) by yr(t) over class of input u(t) ∈ D2(R). 
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Theorem 5. A given system (12) and its transfer functions g(s). The system (13) is 
reduced-order system 12 with Ar = rH , br = 2b 1e , and  cr = cVr, where rH  

and rV  = [ ]r,,, vvv L21  are obtained by applying r steps Arnoldi algorithm to a 
pair (A, b).  The square matrix rH  obtained from rH  by deleting its  last row. 
If  u∈ D2(R) then   

 
0>t

sup ≤− )t(y)t(y r  hr+1,r 2b ( )
Hrs 1

1
+

−− VAIc ( )
H

r
T
r s 1

1eHIe −
−  

Where T
re = ( )∈100 ,,, L rR  and 1e = ( )L,,, 001 . 

Proof. 
 Let g(s) and gr(s) are devoted transfer functions of original system and 
reduced-order system, respectively. We see that )s(ŷ = g(s) )s(û  and         

)s(ŷr = gr(s) )s(û . 
We claim that  

0>t
sup ≤− )t(y)t(y r Hr )s(g)s(g −    

Using fact invers Laplace transform,  

0>t
sup )t(y)t(y r−  = 

0>t
sup ( ) dte)it(ŷ)it(ŷ ixt

rR −∫
π2

1      

        ≤ ( )dt)it(ŷ)it(ŷ rR −∫
π2

1  

Since )s(ŷ - )s(ŷr  = (g(s) - gr(s)) )s(û , we have 

 
0>t

sup )t(y)t(y r−  ≤  ( ) dt)it(û)it(g)it(g rR −∫
π2

1  

if we use Cauchy-Schwarz inequality for integral, then  
 ( ) dt)it(û)it(g)it(g rR −∫

π2
1   

≤  ( )
212

2
1

/
rR dt)it(g)it(g ⎟

⎠
⎞⎜

⎝
⎛ −∫

π

212 /
R dt)t(u ⎟

⎠
⎞⎜

⎝
⎛ ∫        

≤  ( )
212

2
1

/
rR dt)it(g)it(g ⎟

⎠
⎞⎜

⎝
⎛ −∫

π
= Hrgg −   

whenever u∈ D2(R). 
Hence  
 

0>t
sup )t(y)t(y r−  ≤  − r H

g g      (14) 

whenever u∈ D2(R). 
 Using Theorem 3.a, A rV = rV rH  + T

rrr,rh ev 1++1    

⇔ s rV - A rV =  s rV  - rV rH  - T
rrr,rh ev 1++1  

⇔ (sI – A) rV  = rV (sI - rH ) - T
rrr,rh ev 1++1  

Since g(s) = bAIc 1−− )s(  and gr(s) = rrr )s( bAIc 1−− , it implies  
 g(s)  − gr(s)   

= bAIc 1−− )s(  − rrr )s( bAIc 1−−  
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 = bAIc 1−− )s(  − ( )rcV ( ) 1−
− rs HI ( )12eb  

 = 1−− )s( AIc (b - )s( AI − ) rV ( ) 1−
− rs HI ( )12eb  

 = 1−− )s( AIc (b - rV (sI - rH ) - T
rrr,rh ev 1++1 ) ( ) 1−

− rs HI ( )12eb  

 = 1−− )s( AIc ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −+−

−
++ 1

1
12112 eHIeVbeVb r

T
rrr,rr shb  

By Arnoldi process, b = 1vb  = 1eVb r  and implies 

 g(s)  − gr(s)  = 1−− )s( AIc ( ) ⎟
⎠
⎞⎜

⎝
⎛ −

−
++ 1

1
121 eHIeVb r

T
rrr,r sh  

hence 

 Hrgg − ≤  ( ) ( )
H

r
T
rHrr,r ssh 1

1
1

1
21 eHIeVAIcb −

+
−

+ −−          (15) 

From (14) and (15), we get  

  
0>t

sup )t(y)t(y r−  ≤  ( ) ( )
H

r
T
rHrr,r ssh 1

1
1

1
21 eHIeVAIcb −

+
−

+ −−   

whenever u∈ D2(R). 
The proof is finished.        ♦ 

 

5. Conclusion 
 
 In this paper, we have proposed model reduction based on output of 
matrices in Arnoldi process. This result can be used to estimate error output 
system for single input single output system over a certain class of input function 

( )u x . 
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