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Abstract
Some aspects of the complex linear structure theory, extending the
real case due to Magnus (1988), are defined and studied. This the-
ory provides complete proofs of conjectures given in literature around
the derivation of the complex Laplace-Beltrami operator, which has the
zonal polynomials of positive definite hermitian matrix argument as
eigenfunctions. An explicit expression for the matrix G(vecX), which
appears in the metric (ds)2 = d vec∗XG(vecX)dvecX, is obtained;
also, the invariance of (ds)2 under congruence transformations is proved.
Explicit forms for (ds)2 and G(vecX) are also derived under the spectral
decomposition X = UY U∗.
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1 INTRODUCTION

In more than forty years the real and complex zonal polynomials have been
a notable subject in statistical multivariate analysis and other areas. Their
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theoretical achievements and multiple possible applications have motivated
different approaches for computing them in an efficient way, see Dumitriu,
Edelman and Shuman (2004) and Demmel and Koev (2006). In particu-
lar, the derivation of the zonal polynomials as eigenfunctions of a Laplace-
Beltrami-type operator become of interest, and in the next lines we give a
summary about the literature of the complex case, which was inspired by the
same method given for zonal polynomials of positive definite matrix argument.
For the positive definite symmetric case, the source of the subsequent works
is James (1968) (except for an error in its equation (3.9), see Dı́az-Garćıa and
Caro-Lopera (2006)), which was fully detailed by Muirhead (1982); and it
motivated Definition 2.10 in Dumitriu, Edelman and Shuman (2004) for α-
Jack polynomials and the algorithm for computing them. In such definition
those polynomials are considered as the only homogeneous polynomial eigen-
functions of a Laplace-Beltrami operator indexed by the parameter α; we must
recall that Jack polynomials reduce to real and complex zonal polynomials of
positive definite symmetric and hermitian matrix argument when α = 2 and
α = 1, respectively. However, no proofs or published references on the deriva-
tion of the α-Laplace-Beltrami operator are provided in Dumitriu, Edelman
and Shuman (2004). Historically, a few years after the publication of James
(1968), some papers conjectured the 1-Laplace-Beltrami operator and used
it in further results, for example: Sugiura (1973), equation (4.16); Chikuse
(1976), Lemma 2.1. But even for this case a complete study of the complex
operator is not published and an extension of the detailed derivation given by
Muirhead (1982) is not straightforward.

In that sense, the proposal of the present paper is to derive completely
the 1-Laplace-Beltrami operator. The approach presented here is an exten-
sion of a new method, different to James (1968) and Muirhead (1982), which
resulted successful not only in deriving again the 2-Laplace-Beltrami opera-
tor for the definite positive symmetric zonal polynomials, but, in deriving the
semidefinite positive symmetric zonal polynomials (see Dı́az-Garćıa and Caro-
Lopera (2006)); this method for the general real symmetric polynomials is
based in a recent theory due to Magnus (1988). However, for the extension
of Magnus (1988) we required new definitions and properties of the complex
linear structure theory, see for example Subsection 2.1 below, the remaining
concepts are dispersed in the proofs of theorems in Section 2. Then, in Sec-
tion 2 the fundamental complex linear structure elements are studied in order
to express the 1-Laplace-Beltrami operator in terms of the latent roots of
the Hermitian matrix; i.e, the following highlights are derived: the complex
version of the operator ΔX of Dı́az-Garćıa and Caro-Lopera (2006); the in-
variance property of Δ∗

X ; the matrix G(vecX), which appears in the metric
(ds)2 = d vec∗XG(vecX)d vecX; the invariance of (ds)2 under congruence
transformations; the matrix D̃m; and, explicit forms for (ds)2 and G(vecX),
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under the spectral decomposition X = UY U∗. With this, the conjectures
given in literature (Sugiura (1973), Chikuse (1976), Dumitriu, Edelman and
Shuman (2004) for α = 1) are proved; and even one of them are corrected, just
compare Theorem 2.5 below with the conjectured equation (4.15) by Sugiura
(1973), it seems an inherited error, derived from the error in equation (3.9) of
James (1968) (see Dı́az-Garćıa and Caro-Lopera (2006)).

2 ZONAL PLYNOMIALS OF POSITIVE DEFINITE
HERMITIAN MATRIZ ARGUMENT

To follow this section we recommend the reading of the Laplace-Beltrami op-
erator given in Dı́az-Garćıa and Caro-Lopera (2006).

Let X ∈ Sm an m × m positive definite Hermitian matrix, the metric
differential for Sm is defined to be

(ds)2 = tr(X−1dXX−1dX), (1)

where dX = (dxij). Then we have

Theorem 2.1. Let L ∈ Gl(m,C), (with Gl(m,C) the group of non-singular
complex matrices) and L∗ be the conjugate transpose of L, then the metric
form (1) is invariant under the congruence transformation

X → LXL∗, (2)

Proof. Given that dX → LdXL∗ then

(ds)2 = tr(X−1dXX−1dX)

→ tr((LXL∗)−1LdXL∗(LXL∗)−LdXL∗))

= tr(LX−1L∗LdXL∗LX−1L∗LdXL∗)

= tr(X−1dXX−1dX)

which proves the invariance or (ds)2.
Now, we present the complex version of the linear structure approach given

in section 3 of Dı́az-Garćıa and Caro-Lopera (2006).
We start with the complex operator ΔX , see Dı́az-Garćıa and Caro-Lopera

(2006) and Muirhead (1982, eq. (24), p. 240):

Theorem 2.2. Let X an m×m definite positive Hermitian matrix, then the
complex version of the operator ΔX of Dı́az-Garćıa and Caro-Lopera (2006)
is

Δ∗
X = (det(X))m ∂∗

∂ vecX

(
(det(X))−m(X ⊗X)

∂

∂ vecX

)
. (3)

where det(X) is the determinant of X, vecX is the vectorization of X and ⊗
denotes the Kronecker product, see Muirhead (1982) and Magnus (1988).
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Proof. The quadratic form (ds)2 can be written in terms of a certain matrix
G(·) as follows:

(ds)2 = tr(X−1dXX−1dX)

= d vec∗X
(
X−1 ⊗X−1

)
d vecX

= d vec∗XG(vecX)d vecX

Then

detG(vecX) = det
(
X−1 ⊗X−1

)
= (detX)−m(detX)−m

= (detX)−2m

and

G−1(vecX) =
(
X−1 ⊗X−1

)−1

= X ⊗X

By substituting detG(vecX) and G−1(vecX) in the general definition of the
operator Δ∗

X given in Muirhead (1982), (eq. (24), p.240), we obtain the re-
quired result.

As in the real case we have the invariance property of Δ∗
X :

Theorem 2.3. The operator Δ∗
X in (3) is invariant under the congruence

transformation (2), this is: for L ∈ Gl(m,C) we have that Δ∗
X = Δ∗

LXL∗

Proof. Take Z = LXL∗ and note that vecZ = (L⊗L) vecX, then d vecZ =
(L⊗ L)d vecX.

Besides,

∂

∂ vecX
= (L⊗ L)∗

∂

∂ vecZ
or

∂

∂ vecZ
= (L⊗ L)∗−1 ∂

∂ vecX
,

Thus

G(vecZ) = G((L⊗ L) vecX)

= (LXL∗)−1 ⊗ (LXL∗)−1

= L∗−1X−1L−1 ⊗ L∗−1X−1L−1

= (L⊗ L)∗−1(X−1 ⊗X−1)(L⊗ L)−1

Then,

det(G(vecZ)) = (det(L∗ ⊗ L∗))−1 det(X−1 ⊗X−1)(det(L⊗ L))−1

= (det(L∗L⊗ L∗L))−1 det(X−1 ⊗X−1)

= (det(L∗L))−m(det(L+L))−m(det(X))−2m

= (det(L∗L))−2m(det(X))−2m
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And

G−1(vecZ) = ((L⊗ L)∗−1(X−1 ⊗X−1)(L⊗ L)−1)−1

= (L⊗ L)(X ⊗X)(L⊗ L)∗

Thus we get the required invariance, because

Δ∗
Z = Δ∗

LXL∗

= (det(G(vecZ)))−1/2 ∂∗

∂ vecZ

[
(det(G(vecX)))1/2 G−1(vecZ)

∂

∂ vecZ

]

= (det(L∗L))m(det(X))m ∂∗

∂ vecX
(L⊗ L)−1

[
((det(L∗L))−m

(det(X))−m(L⊗ L)(X ⊗X)(L⊗ L)∗(L⊗ L)∗−1 ∂

∂ vecX

]

= (detX)m ∂∗

∂ vecX

[
(det(X))−m(L⊗ L)(X ⊗X)

∂

∂ vecX

]

= Δ∗
X

Now if we proceed as Dı́az-Garćıa and Caro-Lopera (2006) in the real case,
we arrive at the following result

Theorem 2.4. Let U be an unitary matrix, i.e. U∗U = UU∗ = Im and
consider the spectral decomposition of X given by X = UY U∗, with Y =
diag(y1, . . . , ym), then

(ds)2 = d∗ vecY (Y −1 ⊗ Y −1)d vecY − 2d∗ vec Θ((Y ⊗ Y −1) − Im2)d vec Θ (4)

Proof. Using the invariance of the metric and the spectral decomposition
of X we obtain

(ds)2 = tr(X−1dXX−1dX)

= tr((UY U∗)−1d(UY U∗)(UY U∗)−1d(UY U∗));

following the same procedure presented in Dı́az-Garćıa and Caro-Lopera (2006)
for the real case (U = H ∈ O(m) group of orthogonal matrices) and noting
that trA = trA∗, trAB = trBA, the metric takes the form

(ds)2 = 2 tr(U∗dUU∗dU) + tr(Y −1dY Y −1dY ) − 2 tr(Y −1U∗dUY U∗dU),

where we used the fact that U∗dU = −dU∗U , because U∗U = Im and by
differentiation dU∗U + U∗dU = 0; so U∗dU = −dU∗U = −(U∗dU)∗ and it
means that U∗dU is an skew-Hermitian matrix. See Khatri (1965, (iv), p.99),
(observe that B∗ = dB in Khatri’s notation).
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So, if we denote U∗dU = dΘ we get the desired result

(ds)2 = tr(Y −1dY Y −1dY ) − 2 tr(Y −1U∗dUY U∗dU) + 2 tr(U∗dUU∗dU)

= tr(Y −1dY Y −1dY ) − 2 tr(Y −1dΘY dΘ) + 2 tr(dΘdΘ)

= d∗ vecY (Y −1 ⊗ Y −1)d vecY − 2d∗ vec Θ(Y ⊗ Y −1)d vecΘ

+2d∗ vec Θd vecΘ

= d∗ vecY (Y −1 ⊗ Y −1)d vecY − 2d∗ vec Θ((Y ⊗ Y −1) − Im2)d vecΘ

2.1 THE MATRIX D̃m

To reach the main result: the matrix G(w(Y )), we need to define new topics
on complex linear structure (see Magnus (1988) for the real case) . We start
with the matrix D̃m.

Definition 2.1. Let A be an m×m skew-Hermitian matrix, then the matrix
D̃m is defined from the decomposition of vecA, and ṽ(A),i.e

vecA = D̃mṽ(A) (5)

and
ṽ(A) = D̃+

m vecA (6)

Here, the action of D̃+
m over vecA just removes from vecA the elements aii,

i = 1, . . . , m.
Note that for our propose we do not need something else for D̃m, be-

cause all the calculations can be expressed as function of D̃m and this is
the foundation for the linear structure of the skew-symmetric matrices (see
Magnus (1988),p.94), i.e. we just need to apply twice the computation of
D̃mṽ(A), knowing that the diagonal and the under-diagonal elements of a
skew-Hermitian matrix are mathematically independent.

2.2 THE MATRIX G(·)
Now, we have all the tools for finding the main matrix G(·). Extending the
result of real linear structure, we see that if Y is a diagonal matrix, then
vecY = ψ∗

m w(Y ) (see Magnus (1988), p.109 and Dı́az-Garćıa and Caro-Lopera
(2006)) and knowing that Θ is skew-Hermitian, then vec Θ = D̃mṽ(Θ) for a

matrix D̃m : m2 × m(m − 1), because an unitary matrix U has m2 − m =
m(m − 1) independently mathematical elements, the same ones of Θ. So the
metric form (ds)2 in (4) can be written as follows

(ds)2 = d∗ w(Y )ψm(Y −1 ⊗ Y −1ψ∗
mdw(Y ) − 2d∗ṽ(Θ)D̃∗

m((Y ⊗ Y −1 − Im2))D̃mdṽ(Θ)
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= (d∗ w(Y ) d∗ṽ(Θ))
(
ψm(Y −1 ⊗ Y −1)ψ∗

m 0
0 −2D̃∗

m((Y ⊗ Y −1) − Im2)D̃m)

)
(
dw(Y )
dṽ(Θ)

)

= (dw∗(Y ) d∗ṽ(Θ))G(w(Y ))
(
dw(Y )
dṽ(Θ)

)
.

Thus,

G(w(Y )) =

(
ψm(Y −1 ⊗ Y −1)ψ∗

m 0

0 −2D̃∗
m((Y ⊗ Y −1) − Im2)D̃m)

)
; (7)

by Magnus (1988), p.113, Th. 7.7 (i):

ψm(Y −1 ⊗ Y −1)ψ∗
m = Y −1 � Y −1 = diag(y−2

1 , . . . , y−2
m ),

then

det(ψm(Y −1 ⊗ Y −1)ψ∗
m) =

m∏
i=1

y−2
i . (8)

For finding an explicit expression of the matrix −2D̃∗
m((Y ⊗Y −1)−Im2)D̃m

let us take a look at the (skew-Symmetric) real case proved in Dı́az-Garćıa and
Caro-Lopera (2006):

−2D̃
′
m((Y ⊗ Y −1) − Im2)D̃m =

diag

[(
2(yi − yj)

2

yiyj

)
, 1 ≤ j < i ≤ m

]
∈ � 1

2
m(m−1)×1

2
m(m−1). (9)

That matrix considers only the mathematically independent elements lying
under the main diagonal.

Similarly, if we take in count the mathematically independent elements
above the diagonal, we obtain the required complex version to be

M = −2D̃∗
m((Y ⊗ Y −1) − Im2)D̃m =

diag

⎧⎪⎪⎨
⎪⎪⎩

2(yi − yj)
2

yiyj
, 1 ≤ j < i ≤ m

2(yj − yi)
2

yiyj
, 1 ≤ i < j ≤ m

⎫⎪⎪⎬
⎪⎪⎭

∈ �m(m−1)×m(m−1), (10)

(except for a permutation of the diagonal elements).

By permuting the elements of the diagonal we have
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M = diag

[
2(y1 − y2)

2

y1y2

,
2(y1 − y3)

2

y1y3

, . . . ,
2(y1 − ym)2

y1ym

,

2(y2 − y1)
2

y2y1

,
2(y2 − y3)

2

y2y3

, . . . ,
2(y2 − ym)2

y2ym

, . . . ,

2(ym − y1)
2

ymy1
,
2(ym − y2)

2

ymy2
, · · · , 2(ym − ym−1)

2

ymym−1

]

Thus

G(w(Y )) =

(
diag(y−2

1 , . . . , y−2
m ) 0

0 M

)
= diag(y−2

1 , . . . , y−2
m ) ⊕M, (11)

where
⊕

denotes the direct sum of two matrices, see Srivastava and Khatri

(1979), p.3, i.e A⊕B = diag(A,B) =

(
A 0
0 B

)
Then,

G(w(Y ))−1 = diag(y2
1, . . . , y

2
m) ⊕M−1,

where

M = diag

[
y1y2

2(y1 − y2)2
,

y1y3

2(y1 − y3)2
, . . . ,

y1ym

2(y1 − ym)2
,

y2y1

2(y2 − y1)2
,

y2y3

2(y2 − y3)2
, . . . ,

y2ym

2(y2 − ym)2
, . . . ,

ymy1

2(ym − y1)2
,

ymy2

2(ym − y2)2
, · · · , ymym−1

2(ym − ym−1)2

]

Finally, we collect the highlights of the operator Δ∗
X=UY U∗ in the following

result:

Theorem 2.5. 1.

G(w(Y )) = diag(y−2
1 , . . . , y−2

m ) ⊕
diag

(
2(y1 − y2)2

y1y2
,
2(y1 − y3)2

y1y3
, . . . ,

2(y1 − ym)2

y1ym
,

2(y2 − y1)2

y2y1
,
2(y2 − y3)2

y2y3
, . . . ,

2(y2 − ym)2

y2ym
, . . . ,

2(ym − y1)2

ymy1
,
2(ym − y2)2

ymy2
, · · · , 2(ym − ym−1)2

ymym−1

)
,

2.

G(w(Y ))−1 = diag(y2
1, . . . , y

2
m) ⊕ diag

(
y1y2

2(y1 − y2)
, . . . ,

ymym−1

2(ym − ym−1)

)

and
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3.

det(G(w(Y )))1/2 =
m∏

i=1

y−m
i

∏
i<j

2(yi − yj)
2

We emphasize that expression (3) is not the same one proposed by Sugiura
(1973) in equation (4.15). In fact it is an inherited error, derived from the error
in equation (3.9) of James (1968), see Dı́az-Garćıa and Caro-Lopera (2006).

Then, collecting the above results, we have proved exhaustively that the 1-
Laplace-Beltrami operator, which has the complex zonal polynomials as eigen-
function, is given by

Δ =

m∑
i=1

y2
i

∂2

∂y2
i

+ 2

m∑
i=1

m∑
j=1(j �=i)

y2
i (yi − yj)

−1 ∂

∂yi
+ (2 −m)

m∑
i=1

yi
∂

∂yi
, (12)

see: Sugiura (1973), equation (4.16); Chikuse (1976), Lemma 2.1; Dumitriu,
Edelman and Shuman (2004), Definition 2.10 with α = 1.
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