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Abstract 

Given two Poisson populations with unknown means; it is required to select 

N units in three phases. Colton (1963) assumed that the cost of sampling is equal 

to the cost of an incorrect choice for half of the sample size. In this paper Colton’s 

decision procedure is used to determine a sequential method of sampling when the 

choice is between two Poisson distributions, the standard performance being 

determined by the mean. This model is modified by considering delayed 

observations. This modification leads to major changes in the results. Minimax 

and maximin approaches are used for determining the optimal position of the 

boundaries of a sequential experiment.  

 

Keywords: Decision theory, delayed observations, minimax approach, maximin 

approach. 

  
1. Introduction 

There are many practical problems associated with the selection or the 

ranking of populations based on a given attribute. The following represent some 

typical  examples. Which  process is  best  for  the  manufacture  of  an  electronic  



166                                                                                                       Afaf M. Mady 

component or an appliance? Which drug or drugs of a given set are most 

promising in the cure of a given disease? What type of fertilizer gives the largest 

expected yield from a given variety of grain? 

Mady (2000) and Mendoza and Iglewicz (1977) discussed three phase 

procedures for choosing the better of two Exponential (Normal) distributions with 

unknown means. The sequential version of this model is reconsidered in this 

article when the choice is between two Poisson distributions. 

It is assumed that N units of an article are to be manufactured using one of 

two processes. The finite N is reasonable in that the decision between two 

processes is not everlasting. We shall use the selected process at least until some 

new process has been developed. An experiment will be performed on 2n of the 

units, n on each process. In some manufacturing experiments only a small fraction 

of the manufactured article requiring manufacturing during the duration of the 

experiment, are actually entered in the experiment. It is therefore assumed that, 

while the experiment is in progress, 2n units are entered in the experiment and Kn 

units are not. That is, it is assumed that   N   units are subdivided into three phases 

based on the type of allocation rule used. The three phases consist of the delay 

phase containing   Kn   units, the experimental phase containing   2n   units and 

the post experimental phase containing  N- Kn- 2n  units (will be manufactured 

using the process selected as the better at the conclusion of the experiment) . It is 

assumed that a proportion qi of units are to be manufactured using process i during 

the delay phase, where q1 + q2=1. For simplicity assume that q1 ≥  q2 and define 

process 1 as the standard process. 

It is assumed that we obtain defects or no defects units using one of two 

processes. The number of defects on a manufactured article using each process are 

assumed to be Poissonally distributed with unknown means   (i=1, 2). Assume 

that smaller number of defects is associated with better process. Then, letting  
iλ
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λ = , we should like the experiment to select process 1 if  12 λλ − λ is positive 

and process 2 if λ  is negative. 

In formulating the consequences of right and wrong decisions, we consider 

Colton’s approaches which differ in location of a base line. One is the “Cost” or 

“Loss” approach. For this we assume that for each manufactured unit using the 

inferior process we incur a loss or cost directly proportional to λ (without loss of 

generality we take λ  as positive). We will obtain the equation of expected loss 

for all N units in the next section. 

The other approach is the “Net Gain” approach. For this we assume that 

each time one unit that is manufactured using the superior process we gain in 

direct proportion toλ , while if manufacture using the inferior process we lose in 

direct proportion to λ  (i.e., we have a negative gain). We will obtain the equation 

of expected net gain for all N units in sec. (3). 

It will be shown that the modification of the delay phase leads to results 

considerably different from those obtained when there is no delay phase. 

There have been a number of papers on the delayed observations including 

Sung (1999), Williamson (1998), Douk (1994) and Hoel, Sobel and Weiss (1975). 

2. Minimax Method with Expected Loss 

It is assumed that we require manufacturing N units of an article using one 

of two processes. The random variables xij, j=1,…n denote the number of defects 

on a manufactured article using the process i (i= 1,2). They are assumed to be 

Poisson distributed with unknown means . That is, iλ

f (xij  , iλ )= = 0 ,1, .. ijiij
λxij

i x,oλ,!/xeλ i ≥−

 

 



168                                                                                                       Afaf M. Mady 

It is assumed that independent pairs of units, are manufactured at a time and 

compute the observed difference dj = x1j - x2j. Here xij represents the jth unit that is 

manufactured using the ith process.  

There is no loss of generality in assuming that small defects are desirable. It 

is also assumed that a loss of zero is incurred for each manufactured unit using the 

superior process and a loss of   12 λλλ −=  for a unit that is manufactured 

using the inferior process. Sampling is continued as long as  

τdτ
n

1j
j <<− ∑

=
   ,                                                                          (1) 

whereτ is a constant less than zero. Process 1 is chosen as superior if 

, while process 2 is chosen as superior if . This is 

equivalent to a sequential probability ratio test of 

τ≥∑ jd τ−≤∑
=

n

j
jd

1

0λλ:H 00 >=  versus 

 (the size of the Type I01 λλ:H −= )(α  and Type II errors are the same 
and they are fixed in advance of the experiment). Using the usual sequential 
probability ratio test approximation, one obtains Pr (inf.) = (1+x)

)β(

-1, where Pr (inf.) 
is the probability of selecting the inferior process and  

.)]/(log[expx 21 λλτ=   

 Furthermore, 

. 0λ/2λτ

0λ
x)(1λ
x)(1τ)λ/n(E

1
2 ==

≠
+
−

=

 

Defining P = n / N, one obtains the expected loss per unit as, 
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Here φ (λ ) =1 for λ > 0 and  φ (λ ) = 0   for   ≤λ 0.  

Because , it can be easily seen that 21 qq ≥ ]τ),λ[L(E]τ),λ[L(E ** −≥  for 

every . One needs therefore, only to consider the case 0K≥ 0≥λ  in order to 
obtain the minimax solution.  

For 0>λ , (2) reduces to  

.]1)K(qxKq1[x
1)(xN
1)(xτ

1x
λ]τ), λ [L(E 112 −++−

+
−

−
+

=                 (3) 

Solving 0λ/]τ),λ([LE i =∂∂ , one obtains,  

,])Kq1)(1(x

x)(31)}K(qxKq1x[{
1)(xλN
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τxλ1x
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Similarly, 0τ/]τ),(λ[LE =∂∂   yields  
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.

)/λ(λlogxλ
1)]K(qxKq1[x1)(x

1)(xλ
1)]K(qxKq1[xx)τ(3

λ
)Kq(11)(xτN

21
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111

−++−−
+

+
−++−−

+
+−

=
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Combining equations (4) and (5), one obtains,  .It is easy to see 
that 

*
21 λλλ ==

λ   = 0 is the unique solution of (4) and (5). 

When  λ  = 0, the right hand side of equation (6) is the indeterminate form 

zero/zero. There is no solution for equation (6) unless 5.01 =q . In this case 
applying L’Hopital’s Rule the right hand side of (6) approaches  

 as *2 λ2]/τ2)(K[3 + λ approaches zero and 5.01 =q  . 

Hence,     

])2(3/[2 ** +−= KNλτ  ,                                                                      (7) 

and this solution is unique for each K. 

Note that and this value is an acceptable because 5.0.)(infPr =

)0.,.(21 == λλλ ei  and it does not depend on K, and N. 1q

2.1. Numerical Results 

A numerical example will now be given in order to illustrate the use of 

minimax method and to summarize the results.  

Table 1 gives values for = 2,5 , 25 and a number of values of K. Thus, if 

= 0.5, K=10, = 2 and N=10000, then = -33.33, E(n/ ) = 278. 

*λ

1q *λ *τ *λ
Table 1 shows that the expected sample sizes change considerably as K 

increases. In the above example, K = 0 yields E(n / =2)= 1667 as compared to 

E(n / =2)= 278 for K=10. The two ’s have different values in the above 

comparison. Also  has no effect on E(n / ) for all values of K.  

*λ
*λ *τ

*λ *λ

Consequently, if there is an actual delay, then the expected sample size seems 
to be very low. 
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Table 1 
Some needed constants and performance parameters for the sequential minimax 

case ]2/)/()],2(3[/2,[ *2*****
21 λτλλτλλλ =+−=== nEKN  

2* =λ  5*=λ  25* =λ  

K *τ  E(n / ) *λ *τ  E(n / ) *λ *τ  E(n / ) *λ

0 

5 

10 

25 

50 

75 

100 

-81.65 

-43.64 

-33.33 

-22.22 

-16.01 

-13.16 

-11.43 

1667 

476 

278 

123 

64 

43 

33 

-129.10 

-69.01 

-52.70 

-35.14 

-25.32 

-20.81 

-18.08 

1667 

476 

278 

123 

64 

43 

33 

-288.68 

-154.30 

-117.85 

-78.57 

-56.61 

-46.52 

-40.42 

1667 

476 

278 

123 

64 

43 

33 

3. Maximin Method with Expected Net Gain 
For this approach we assume that each time a unit that is manufactured using 

the superior process we gain in direct proportion toλ , while if manufacture using 
the inferior process we lose in direct proportion to λ  (i.e., we have a negative 
gain). We then get the expected net gain for all N units, 

E(Net Gain)= λ  [N-(k+2) E(n)][Pr(sup.)-Pr(inf.)] 

                    =λ  [N-(k+2) E(n)][1-2Pr (inf.)].                                   (8) 

The problem is to determine ,τ the position of the boundary, so that expected net 
gain is maximized. 

 

Atλ  =0 (i.e., ) the derivatives of E (Net Gain) with respect to 

  respectively vanishe. It can be shown without difficulty that this is 
the only value of 

*
21 λλλ ==

21 λandλ
λ for which this is true (this result is obvious since the least 

value of   E (Net Gain) is, of course, zero when λ = 0). 

Differentiating   E(Net Gain )  with respect to τ gives the equation 
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 )].λ/λ(logxτ41[x1)(x2)(K1)(x)λ/λ(logxNλ2 21
222

21 +−−+++  
Setting this derivative equal to zero gives  

)λ/λ(log1)(xxλ
)]λ/λ(logx4τ1[x1)(x

2)(K
2N

21

21
2

+

+−−
=

+
−

.                                       (9) 

When λ = 0 the right hand side is the indeterminate form 0/0. Applying 
L’Hopital’s Rule twice, as λ approaches zero, the right hand side approaches   

. Thus, 1
2 λ/τ3−

],2)K([3/λN2τ ** +−=                                  (10) 

is the maximin solution . 

Note that both minimax and maximin results are equivalent. 

 

4. The Case When One Population Mean is Already Known 
The above approaches may be more difficult to the case when one 

population mean is already known and it is desired to decide whether or not to 
change to the alternative population. 

Consider two Poisson populations 1Π  and 2Π  with parameters 1λ  and β  

(known) respectively. It is assumed that independent units are to be manufactured 

using the process with unknown mean and compute .Here  

represents the unit that is manufactured using  process 1. Sampling is 

continued as long as 

∑
=

=
n

1j
1jj xd 1jx

thj

,τnτdτnτ 21j21 −<<−−                                                             (11) 

where  is a constant greater than zero and is a constant less than zero. 

Process 1 is chosen as superior if 

1τ 2τ

21j τnτd −≥ , while process 2 is chosen as  
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superior if   21j τnτd −−≤ . This is equivalent to a sequential probability ratio 

test of  00 λλ:H =  versus ,λλ:H 01 −=  1λβλ −=  (the size of the 

type I (α ) and type II (β ) errors are the same and they are fixed in advance of 

the experiment). Using the usual sequential probability ratio test approximation, 

one obtains  where    is  the  probability of  

selecting  the  inferior  pro-cess, x = exp(ah)  and  h  can  be obtained from the 

equation 

,x)(1=(inf.)Pr 1−+ (inf.)Pr

)γ/(γlnτa,
1)τ/exp(-ah

τ/τah
βλ 121

1

12 −=
−

=+−  (recall that , 

). Furthermore,  

01 λβγ −=

02 λβγ +=

0λτ/τ

0λ
β)λ(τ1)(x

x)(1τ)λ/(nE

2
2
1

2

1

=−=

≠
+−+

−
=

                                (12) 

4.1. Minimax Method with Expected Loss: 

Defining P= n /N, one obtains the expected loss per unit as  
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Here  for and 1)(λφ = 0λ> 0)(λφ =  for 0λ≤ . 

Because it can be easily seen that  

  for every .  

21 qq > ≥)]τ,τ,λ(E[L 21
*

)]τ,τ,λ(E[L 21
*− 0K ≥

One needs, therefore, only to consider the case in order to obtain the 

minimax solution.  

0λ≥

For , (13) reduces to 0λ>

.
β)λ(τ1)2N(x
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Solving ,  one obtains 0τ/)]τ,τ,(λE[L i21 =∂∂
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                                                                                                                    (16) 

Combining equations (15) and (16), one obtains h=0 (i.e., 2τβλ =− ). 

 Now, we will differentiate between two cases, these cases include βτ −=2 (i.e ., 

0=λ ) and βτ −≠2  (i.e., )( 2 βτλ += ) 

a) The case (i.e., 0*=λ βτ −=2 )  

When 0=λ , the right hand side of equation (15) is the indeterminate form zero 

/zero .There is no solution for equation (15) unless 5.0q1 = . In this case applying 

L’Hopital’s Rule the right hand side of (15) approaches as 2
2
1 τ/1)(Kτ +−

λ approaches zero and . Hence 5.0q1 =
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                                                  (17) 
. β τ and 

1) Nβ /(K τ 

2 

* 
1 

− =

+ = 

Table 2 gives values =2,5 , 50 and a number of values of K. Thus, 

if  , K=10, =2 and N=10000, then ,  E(n/ )= 909. 

β

5.01=q β 64.42τ*
1 = β

Table 2 shows that the expected sample sizes change considerably as K 

increases. In the above example, K =0 yields E(n/ =2) =10000 as compared to 

E(n/ =2) = 909 for K =10. The two ’s have different values in the above 

comparison . Also  has no effect on E(n / ) for all values of K.  

β

β *τ

β β

Consequently, if there is an actual delay, then the expected sample size 

seems to be very low. 

 

 

Table 2 (see next page) 
Some needed constants and performance parameters for the sequential 

minimax case  

 ]5.0q,/ττ)E(n/1)],(K/Nβτ,βτ0,λ[ 1
*
2

2*
1

**
1

*
2

* =−=+=−== λ  
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2β=  5β=  50β=  

K *
1τ  E(n / )β *

1τ  E(n / )β *
1τ  E(n / )β

0 

5 

10 

25 

50 

75 

100 

141.42 

57.74 

42.64 

27.74 

19.80 

16.22 

14.07 

10000 

1667 

909 

385 

196 

132 

99 

223.61 

91.29 

67.42 

43.85 

31.31 

25.65 

22.25 

10000 

1667 

909 

385 

196 

132 

99 

707.11 

288.68 

213.20 

138.68 

99.01 

81.11 

70.36 

10000 

1667 

909 

385 

196 

132 

99 

2
*
1 τλ −=  (i.e., βτ 2 −≠ ) b) The case 

When , the right hand side of equation (15) is the indeterminate form 

zero /zero. Applying L’Hopital’s Rule the right hand side of (15) approaches 

as approaches 

2
*
1 τλ −=

21
2
1 /)]1(21[ ττ qK −+− *

1λ 2τ− . Hence 

,)]q-2K(1/[1Nτ 1
*
1

*
1 += λ      ( 5.0q1≠  )                                                (18) 

and .                     
*
1

*
2 λτ −=

Table 3 gives values =0.25, 0.75 and a number of values of K. Thus, if 

=0.25, K=10, =2   and   N=10000, then , = 625. 

1q

1q *
1λ 36.35τ*

1 = )λ/(nE *
1

Table 3 shows that the expected sample sizes change considerably as K 

increases. In the above example, K =0 yields =10000 as compared to   

 = 625 for K =10. The two    have different values in the above 

comparison. Also  has no effect on   for all values of   K but  

has a stronger effect for all values of K.  

)2λ/(nE *
1 =

)2λ/(nE *
1 =

*
1τ

*
1λ )λ/(nE *

1 1q
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Consequently, if there is an actual delay, then the expected sample size 

seems to be very low. 

Table 3 
Some needed constants and performance parameters for the sequential minimax 

case  

]/ττ)λ/nE()],q2K(1[1/λNτ,λτ,λλ[ *
2

2*
1

*
1

*
1

*
1

*
1

*
2

*
1 −=−+=−==

 
2λ*

1 =
 

K 

*
1τ when 

 0.25q1 =

)λ/(nE *
1 when 

0.25q1 =  

*
1τ  when 

0.75q1 =  

)λ/(nE *
1  when

0.75q1 =  

0 

5 

10 

25 

50 

75 

100 

141.42 

48.51 

35.36 

22.79 

16.22 

13.27 

11.51 

10000 

1176 

625 

260 

132 

88 

66 

141.42 

75.59 

57.74 

38.49 

27.74 

22.79 

19.80 

10000 

2857 

1667 

741 

385 

260 

196 

      

5λ*
1 =

 

K 

*
1τ when 

 0.25q1 =

)λ/(nE *
1 when 

0.25q1 =  

*
1τ  when 

0.75q1 =  

)λ/(nE *
1  when

0.75q1 =  

0 

5 

10 

25 

50 

75 

100 

223.61 

76.70 

55.90 

36.04 

25.65 

20.99 

18.20 

10000 

1176 

625 

260 

132 

88 

66 

223.61 

119.52 

91.29 

60.86 

43.85 

36.04 

31.31 

10000 

2857 

1667 

741 

385 

260 

196 
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     4.2. Maximin Method with Expected Net Gain: 
It is not difficult to show that the expected net gain for all N units is, 

E(Net Gain) = λ  [N-(K+1) E(n)] [Pr(sup.)-Pr(inf.)] 

 

                   = .
1)(xβ)λ(τ
1)(x1)(Kτλ

1x
1)(xNλ

2
2

2
1

++−
−+

−
+
−

                                     (19) 

The problem is to determine and , the position of the boundaries, so that 

expected net gain is maximized. 

1τ 2τ

At  λ  = 0 the derivative 
λ∂

∂ )( GainNetE
 vanishes. It can be shown that this is the 

only value of  λ  for which this is true. 

Differentiating E(Net Gain) with respect to  gives the 

equation  

)0λatβ(ττ 21 =−=

-2N x ah (x+1) ( ) –  (K+1) (x-1) [ - 1- 4 ahx]. βλτ 2 +− 1τ 2x

Setting this derivative equal to zero gives  

.
β)λ(τ1)(xhx

4ahx]1[x1)(x
1)(Kτ

aN2

2

2

1 +−+
−−−

=
+

−
                                            (20) 

When λ  =0, βτ 2 −=  the right hand side is the indeterminate form 0/0. Applying 

L’Hopital’s Rule twice as λ  approaches zero, the right hand side 

approaches . Thus, 21 /ττ2a
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,βτand

1)(K/βNτ

*
2

*
1

−=

+=

                                                           (21)  

is the maximin solution.  

Note that both minimax and maximin ( = 0) results are equivalent. *λ
5. Conclusion 

When a choice has to be made in favour of one of two populations the cost 

of sampling (experimenting) in order to obtain information on which to base the 

decision must be balanced against the cost of making the wrong choice. 

Also, we have shown that the delay phase leads to results considerably 

different from those obtained when there is no delay phase. The nature of the 

delay could, in general, be quite important. For instance, an assumption in the 

Colton model is that the response to the treatments is instantaneous, or that there 

is no time lag between the treatment of the patients during the trial stage and the 

availability of all the treatment results. In practice, however, the response to the 

treatments is often delayed, causing a “waiting period” between the two stages, 

and an accumulation of new patients who have to be treated before the beginning 

of the treatment stage. The allocation of treatments to theses patients is an 

important issue, especially when their number is large relative to N. 
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