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Abstract

In this paper we study the stability of the periodic solutions of a
model set forth by M. A. Aziz Alaoui et al. [1, 11] with time delay, which
describes the competition between the predator and prey. This model
incorporates a modified version of Leslie-Gower functional response as
well as that of the Holling-type II. In this paper we consider the model
with one delay and a unique non trivial equilibrium E∗. its dynamics
are studied in terms of the local stability and of the description of the
Hopf bifurcation at E∗, that is proven to exists as the delay (taken as a
parameter of bifurcation) crosses some critical values. The main result
of this paper is to establish an explicit algorithm for determining the
direction of the Hopf bifurcation and the stability or instability of the
bifurcating branch of periodic solutions, using the methods presented
by T. Faria et al. [5, 6].
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1 Introduction and mathematical models

Time delays of one type or another have been incorporated into biological mod-
els by many researchers, we refer to the monographs of Cushing [4], Gopalsamy
[8], Kuang [9] and MacDonald [10] for general delayed biological systems. In
general, delay differential equations exhibit much more complicated dynamics
than ordinary differential equations since time delay could cause a stable equi-
librium to become unstable and cause the populations to fluctuate.
In this paper, we shall consider a two-dimensional system with discrete de-
lay proposed recently by Aziz Alaoui et al. [1, 11], see also [1, 12, 13] which
modelling a predator-prey competition. This model incorporates a modified
version of Leslie-Gower functional response as well as that of the Holling-type
II.
The first model proposed in this optic is given by an ordinary differential
equations [1] as follows

⎧⎨
⎩

dx
dt

= (a1 − bx− c1y
x+k1

)x,

dy
dt

= (a2 − c2y
x+k2

)y
(1)

with initial conditions x(0) > 0 and y(0) > 0.
This two species food chain model describes a prey population x which serves
as food for a predator y. The model parameters a1, a2, b, c1, c2, k1 and k2 are
assuming only positive values. These parameters are defined as follows: a1 is
the growth rate of prey x, b measures the strength of competition among indi-
viduals of species x, c1 is the maximum value of the per capita reduction rate
of x due to y, k1 (respectively, k2) measures the extent to which environment
provides protection to prey x (respectively, to the predator y), a2 describes the
growth rate of y, and c2 has a similar meaning to c1.
In this paper we consider the delayed model of (1) see [11]

⎧⎪⎨
⎪⎩

dx(t)
dt

= (a1 − bx(t) − c1y(t)
x(t)+k1

)x(t),

dy(t)
dt

= (a2 − c2y(t−τ)
x(t−τ)+k2

)y(t)

(2)

for all t > 0. Here, the discrete delay τ > 0 has been incorporated in the
negative feedback of the predator’s density.
The notion of global stability is studied by many authors in the predator-prey
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systems with delay [2, 12, 14].
In [1], the authors study the boundeness and global stability of system (1).
In [11], the authors study the global stability and persistence of the delayed
system (2) by using liapunov functional.
In [15], the authors study the occurrence of Hopf bifurcation at the third trivial
equilibrium and at the non trivial positive equilibrium when the delay crosses
some critical values.
Our goal in this paper is to consider the system (2) the non trivial equilibrium
E∗. We study the stability of limit cycle around the non trivial equilibrium
E∗ which is the most biologically meaningful one. We establish an explicit
algorithm for determining the direction of the Hopf bifurcation.
This paper is organized as follows. In the next section, we recall some results
on the existence and the change of stability of equilibrium points E∗ and the
occurrence of the Hopf bifurcation. The main result is given in sections 3, we
show the stability or instability of the bifurcating periodic solutions and the
direction of Hopf bifurcation via normal form theory. In the end, we give an
application.

2 Stability and Hopf bifurcation

Consider again the system (2), then we have the following result on the exis-
tence of equilibrium points:

Proposition 2.1. [11] i) The system have three equilibrium points E0 =
(0, 0), E1 = (a1

b
, 0) and E2 = (0, a2k2

c2
),

ii) if the following condition holds

a2k2

c2
<
a1k1

c1
,

then the system (2) has a unique non trivial positive equilibrium E∗ = (x∗, y∗),
where

x∗ =
1

2c2b
(−(c1a2 − a1c2 + c2bk1) +

√
Δ),

and

y∗ =
a2(x

∗ + k2)

c2
,

and

Δ = (c1a2 − a1c2 + c2bk1)
2 − 4c2b(c1a2k2 − c2a1k1) > 0.

Normalizing the delay τ by the time scaling t −→ t
τ
, (2) is transformed
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into ⎧⎪⎨
⎪⎩

dx(t)
dt

= τ((a1 − bx(t) − c1y(t)
x(t)+k1

)x(t)),

dy(t)
dt

= τ((a2 − c2y(t−1)
x(t−1)+k2

)y(t))

(3)

By the translation z(t) = (u(t), v(t)) = (x(t), y(t))−E∗ ∈ R
2 and by linearizing

system (3) around the equilibrium E∗, (3) is written as an FDE in C :=
C([−1, 0],R2) as

dz

dt
(t) = L(τ)zt + f(zt, τ) (4)

where zt(θ) = z(t+ θ), ∀θ ∈ [−1, 0] and L0(τ) : C −→ R2, f0 : C × R+ −→ R2

are given by

L(τ)(ϕ) = τ

⎛
⎝ A11ϕ1(0) + A12ϕ2(0)

A21ϕ1(−1) + A22ϕ2(−1)

⎞
⎠

where

A11 = −bx∗ +
c1y

∗

(x∗ + k1)2
x∗,

A12 = − c1x
∗

x∗ + k1

,

A21 =
a22

c2
,

A22 = −a2,

and

f(ϕ, τ) = τ

⎛
⎜⎜⎜⎝

(a1 − b(ϕ1(0) + x∗) − c1(ϕ2(0)+y∗)
ϕ1(0)+x∗+k1

)(ϕ1(0) + x∗)
−A11ϕ1(0) − A12ϕ2(0)

(a2 − c2(ϕ2(−1)+y∗)
ϕ1(−1)+x∗+k2

)(ϕ2(0) + y∗) − A21ϕ1(−1) − A22ϕ2(−1)

⎞
⎟⎟⎟⎠

where ϕ = (ϕ1, ϕ2) ∈ C.
The characteristic equation of the linear equation

dz(t)

dt
= L0(τ)zt (5)

is given by

Δ1(λ, τ) = λ2 + τpλ+ τ 2r + (sτλ+ qτ2)e−λ = 0, (6)



Stability of limit cycle in a predator-prey model 123

where p, s, r, and q have the following expressions:

p = −A11

r = 0

s = −A22

q = det(J).

where

J =

(
A11 A12

A21 A22

)
.

This type of characteristic equation is studied by many authors see [3].
The following theorem gives the result of change of stability of the non trivial
steady state E∗.

Theorem 2.2. [15] Assume a2k2

c2
< a1k1

c1
and a1 < bk1. Then, there exists a

critical value τ0 of the time delay, such that the non trivial steady state E∗ is
asymptotically stable for τ ∈ [0, τ0[ and unstable for τ > τ0,where

τ0 =
1

ζ+
arccos

{
qζ2

+ − psζ2
+

s2ζ2
+ + q2

}
, (7)

and

ζ2
+ =

1

2
(s2 − p2) +

1

2
[(s2 − p2)2 + 4q2]

1
2 . (8)

The next theorem gives a result on the existence of limit cycle of system
(4) at the non trivial steady state E∗.

Theorem 2.3. [15] Assume a2k2

c2
< a1k1

c1
and a1 < bk1. Then, there exists

ε0 > 0 such that, for each 0 ≤ ε < ε0, equation (4) has a family of periodic
solutions pl(ε) with period Tl = Tl(ε), for the parameter values τ = τ(ε) such
that pl(0) = E∗, Tl(0) = 2π

ζ+
and τ(0) = τ0, where τ0 and ζ+ are given respec-

tively in equations (7) and (8) and ω0 = τ0ζ+ is the purely imaginary root of
equation (6).

3 Direction of Hopf bifurcation

Consider (4) in the phase space C, let Λ = {−iω0, iω0}. Introducing the new
parameter α = τ − τ0, (4) is rewritten as

dz

dt
(t) = L(τ0)zt + F (zt, α) (9)
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where F (ϕ, α) = L(α)(ϕ) + f(ϕ, τ0 + α). Using the formal adjoint theory for
FDEs in [7], we decompose C by Λ as C = P ⊕Q, where P is the center space
for

dz

dt
(t) = L(τ0)zt.

Considering complex coordinates, P = span{φ1, φ2}, with φ1(θ) = eiω0θv,
φ2(θ) = φ1(θ), −1 ≤ θ ≤ 0, where the bar means complex conjugation, and v
is a vector in C

2 that satisfies

L(τ0)(φ1) = iω0v. (10)

Then

v = (v1, v2) = (1,
iω0 − τ0A11

τ0A12
)

For Φ = [φ1, φ2], note that Φ̇ = BΦ, where B is the 2 × 2 diagonal matrix

B =

(
iω0 0
0 −iω0

)
.

Choose a basis Ψ for the adjoint space P ∗, such that (Ψ,Φ) = (ψi, φj)
2
i,j=1,

where (., .) is the bilinear form on C∗×C associated with the adjoint equation.
Thus, Ψ(s) = col(ψ1(s), ψ2(s)) = col(uTe−iω0s, uT eiω0s), s ∈ [0, 1], for u ∈ C2

such that

(ψ1, φ1) = 1, (ψ1, φ2) = 0. (11)

A further computation leads to

u = (u1, u2) = (
A12

A12 + A21(iω0+τ0A11)e−iω0

, 0).

We take the enlarged phase space

BC = {ϕ : [−1, 0] −→ C
2/ϕ continuous on [−1, 0), ∃ lim

θ−→0−
ϕ(θ)},

we can see that the projection of C upon P , associated with the decomposition
C = P⊕Q, is now replaced by π : BC −→ P , xhich leads to the decomposition

BC = P ⊕Kerπ.

Using the decomposition
zt = ΦX(t) + Yt,

where X(t) ∈ C2, Yt ∈ Q1, we decompose (9) as⎧⎨
⎩

dX
dt

= BX + Ψ(0)F (ΦX + Y, α)

dY
dt

= AQ1Y + (I − π)X0F (ΦX + Y, α),
(12)
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where here and throughout this section we refer to [6] for results and explana-
tions of several notations involced. We write the taylor formula

Ψ(0)F (ΦX + Y, α) =
1

2
f 1

2 (X, Y, α) +
1

3!
f 1

3 (X, Y, α)

(I − π)X0F (ΦX + Y, α) =
1

2
f 2

2 (X, Y, α) +
1

3!
f 2

3 (X, Y, α),

where f 1
j (X, Y, α), f 1

j (X, Y, α) are homogeneous polynomials in (X, Y, α) of
degree j, j = 1, 3, with coefficients in C2, Kerπ, respectively.
The normal form method gives for (9) a normal form on the center manifold
of the origin at α = 0, written as

dX

dt
= BX +

1

2
g1

2(X, 0, α) +
1

3!
g1

3(X, 0, α) + h.o.t., (13)

where g1
2, g

1
3 are the second and third order terms in (X,α), respectively, and

h.o.t. stands for higher order terms.
The normal form procedure will show that these terms have the form

1

2
g1

2(X, 0, α) =

⎛
⎝ A1X1α

B1X2α

⎞
⎠ ,

and

1

3!
g1

3(X, 0, α)

⎛
⎝ A2X

2
1X2

B2X1X
2
2

⎞
⎠ +O(|X |α2).

Moreover, it will be turn out that B1 = A1, B2 = A2, because the coefficients
in (9) are real.
We continue this section with the computation of g1

2, g
1
3, omitting some details.

Always following [5], we first recall the operators, M1
j ,

M1
j (p)(X,α) = DXp(X,α)BX − Bp(X,α), j ≥ 2.

In particular,

M1
j (αlXqek) = iω0(q1 − q2 + (−1)k)αlXqek, l + q1 + q2 = j, k = 1, 2,

for j = 1, 2, q = (q1, q2) ∈ N2
0, l ∈ N0, and e1, e2 the canonical basis for C2.

Hence,

Ker(M1
2 ) = span

⎧⎨
⎩

⎛
⎝ X1α

0

⎞
⎠ ,

⎛
⎝ 0

X2α

⎞
⎠

⎫⎬
⎭

Ker(M1
3 ) = span

⎧⎨
⎩

⎛
⎝ X2

1X2

0

⎞
⎠ ,

⎛
⎝ X1α

2

0

⎞
⎠ ,

⎛
⎝ 0

X1X
2
2

⎞
⎠

⎛
⎝ 0

X2α
2

⎞
⎠

⎫⎬
⎭
(14)
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From equation (9), it is

f 1
2 (X, Y, α) = 2Ψ(0)[L(α)(ΦX + Y ) + f(ΦX + y, α) (15)

and we have,

f 1
2 (X, 0, α) = 2

⎧⎨
⎩
α

τ0
iω0

⎛
⎝ uTvX1 − uTV X2

uTvX1 − uTvX2

⎞
⎠ +

τ0

⎛
⎝ (u1a11 + u2b11)X

2
1 + (u1a12 + u2b12)X1X2 + (u1a13 + u2b13)X

2
2

(u1a11 + u2b11)X
2
1 + (u1a12 + u2b12)X1X2 + (u1a13 + u2b13)X

2
2

⎞
⎠

⎫⎬
⎭

where

a11 =
1

2
f 1

20 = −b+
c1y

∗

(x∗ + k1)2
− c1x∗y∗

(x∗ + k1)3
,

a12 = f 1
11 = − c1

x∗ + k1
+

c1x
∗

(x∗ + k1)2
,

a13 =
1

2
f 1

20 = 0

and

b11 =
1

2
f 2

20 = − c2y
∗2

(x∗ + k2)3
,

b12 = f 2
11 =

2c2y
∗

(x∗ + k2)2
,

b13 =
1

2
f 2

20 = −1

2

c2
x∗ + k2

where

f 1
ij =

∂i+jf 1

∂ix∂jy
|(x∗,y∗)

f 2
ij =

∂i+jf 2

∂ix∂jy
|(x∗,y∗)

and f 1 and f 2 are the components of the function f defined in equation (4).
Therefore, the second order terms in (X,α) of the normal form on the center
manifold are given by

g1
2(X, 0, α) = ProjKer(M1

2 )f
1
2 (X, 0, α)

=

⎛
⎝ A1X1α

B1X2α

⎞
⎠
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where

A1 = B1 =
iω0u

Tv

τ0
.

To eliminate these nonresonant terms in the quadratic terms f 1
2 (X, 0, α), we

have to make a series of transformations of variables, which can change the
coefficients of the cubic terms of f 1

3 (X, 0, α). By some computations, the ex-
pression of f 1

3 (X, 0, α) is given as follows

f 1
3 (X, 0, α) = τ0

⎛
⎜⎜⎜⎜⎝

(u1a21 + u2b21)X
3
1 + (u1a22 + u2b22)X

2
1X2+

(u1a23 + u2b23)X1X
2
2 + (u1a24 + u2b24)X

3
2

(u1a21 + u2b21)X
3
1 + (u1a22 + u2b22)X

2
1X2+

(u1a23 + u2b23)X1X
2
2 + (u1a24 + u2b24)X

3
2

⎞
⎟⎟⎟⎟⎠ (16)

where

a21 =
1

3!
f 1

30v
3
1 +

1

2
f 1

21v1
2v2 +

1

2
f 1

12v1v
2
2 +

1

3!
f 1

03v
3
2,

a22 =
1

3!
f 1

303v1|v1|2+1

2
f 1

21(2|v1|2v2+v1
2v2)+

1

2
f 1

12(2v1|v2|2+v1v
2
2)+

1

3!
f 1

033v2|v2|2,

a23 =
1

3!
f 1

303v1|v1|2+1

2
f 1

21(v1
2v2+2|v1|2v2)+

1

2
f 1

12(v1v2
2+2v1|v2|2)+ 1

3!
f 1

033v2|v2|2,

a24 =
1

3!
f 1

30v1
3 +

1

2
f 1

21v1
2v2 +

1

2
f 1

12v1v2
2 +

1

3!
f 1

03v2
3,

and

b21 =
1

3!
f 2

30v
3
1e

−3iω0 +
1

2
f 2

21v
2
1v2e

−2iω0(1 + e−iω0) +

1

2
f 2

12v1v
2
2e

−iω0(1 + e−2iω0) +
1

3!
f 2

03v
3
2(1 + e−3iω0),

b22 =
1

3!
f 2

303v1|v1|2e−iω0 +
1

2
f 2

21(2|v1|2v2 + v2
1v2e

−iω0)(1 + e−iω0) +

1

2
f 2

12(2v1e
−iω0(|v1|2 + |v2|2) + v1v

2
2(e

iω0 + e−iω0) +
1

3!
f 2

033v2|v2|2(1 + e−iω0),

b23 =
1

3!
f 2

303v1|v1|2eiω0 +
1

2
f 2

21(2|v1|2v2 + v1
2v2e

iω0)(1 + eiω0) +

1

2
f 2

12(v1e
iω0(3|v1|2 + 2|v2|2) + v1v2

2e−iω0) +
1

3!
f 2

033v2|v2|2(1 + eiω0),

b24 =
1

3!
f 2

30v1
3e3iω0 +

1

2
f 2

21v1
2v2e

2iω0(1 + eiω0) +

1

2
f 2

12(v1v2
2eiω0 + v1

3e3iω0) +
1

3!
f 2

03v2
3(1 + e3iω0).
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Notice that

Ker(M1
3 ) = span

⎧⎨
⎩

⎛
⎝ X2

1X2

0

⎞
⎠ ,

⎛
⎝ X1α

2

0

⎞
⎠ ,

⎛
⎝ 0

X1X
2
2

⎞
⎠ ,

⎛
⎝ 0

X2α
2

⎞
⎠

⎫⎬
⎭ .

However, the terms O(|X |α2) are irrelevant to determine the generic Hopf
bifurcation. Hence, we only need to compute the coefficients of X2

1X2. After
some computations we find that the coefficient of X2

1X2 is

A2 =
iτ2

0

2ω0
((u1a11 + u2b11)(u1a12 + u2b12) − 2|u1a12 + u2b12|2 −

1

3
|u1a13 + u2b13|2) + τ0(u1a22 + u2b22).

Thus

1

3!
g3(X, 0, α) =

⎛
⎝ A2X

2
1X2

A2X1X
2
2

⎞
⎠ + O(|X |α2).

Then one prove that the normal form (13) has the form

dX

dt
=

⎛
⎝ A1X1α

A1X2α

⎞
⎠ +

⎛
⎝ A2X

2
1X2

A2X1X
2
2

⎞
⎠ +O(|X |α2). (17)

The normal form relative to P can be written in real coordinates (x, y) through
the change of variables X1 = x− iy, X2 = x+ iy. Followed by the use of polar
coordinates (r, θ), x = r cos(θ), y = r sin(θ), this normal form becomes

⎧⎨
⎩

dr
dt

= K1αr +K2r
3 +O(α2 + |(r, α)|)

dθ
dt

= −ω0 +O(|(r, α)|.
(18)

where K1 = Re(A1) and K2 = Re(A2).
We are now in the position of the computation of the expressions of K1 and
K2.
From the expression of A1, we have

K1 =
1

τ0

ω0A12A21(ω0 cos(ω0) − A11 sin(ω0))

M2 +N2

where
M = A12 + A21(A11 cos(ω0) + ω0 sin(ω0))

N = A21(ω0 cos(ω0) −A11 sin(ω0)),
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and from the expression of A2, we have

K2 = ( A12

M2+N2 ){M(f 1
20− 2A11

A12
f 1

11+f
1
02(

ω2
0+A2

11

A2
12

)){M( ω0

A12
f 1

11− ω0A11

A2
12
f 1

02)−N(1
2
f 1

20−
A11

A12
f 1

11 + f 1
02(

−ω2
0+A2

11

2A2
12

))} + N(f 1
20 − 2A11

A12
f 1

11 + f 1
02(

ω2
0+A2

11

A2
12

)){M(1
2
f 1

20 − A11

A12
f 1

11 +

f 1
02(

−ω2
0+A2

11

2A2
12

)) +N( ω0

A12
f 1

11 − ω0A11

A2
12
f 1

02)}}.

Then we have the following theorem

Theorem 3.1. If K2 
= 0, then system (9) exhibits a generic Hopf bifurca-
tion. The periodic orbits of system (9) bifurcating from the origin and α = 0
satisfy

r(t, α) =

√−K1α

K2

+O(α),

θ(t, α) = −ω0t+O(|α| 12 ),
so that
1) if K1K2 < 0 (K1K2 > 0 respectively), there exists a unique nontrivial
periodic orbit in the neighborhood of r = 0 for α > 0 (α < 0 respectively) and
no nontrivial periodic orbits for α < 0 (α > 0 respectively);
2) the nontrivial periodic solutions in the center manifold are stable K2 < 0
and unstable if K2 > 0.

4 Application

Although we have explicit formulas to compute the quantities K1 and K2, it
is complicated to find the sign of Ki i = 1, 2 for an ungiven values of the
parameters, as one can see from the calculus above.
As an application, hare we complete the calculus only for a1 = 20, b = 10,
c1 = 5, k1 = 8, a2 = 15, c2 = 12 and k2 = 11. Simplifying the above formulas
and using Matlab 6.5, we obtain x∗ = 1.1705, y∗ = 11.4632, K1 = −0.1937
and K2 = 3.5923 and K1K2 = −0.6958. For this rather particular situation,
the Hopf bifurcation analysis is completed, since theorems 2.3 and 3.1 imply
the following statement:

Proposition 4.1. consider a1 = 20, b = 10, c1 = 5, k1 = 8, a2 = 15,
c2 = 12 and k2 = 11, and let τ0 be defined as above. Then, for equation (9),
at τ = τ0 = 0.1932 there exists a generic supercritical Hopf bifurcation on
a locally unstable two-dimensional center manifold of the positive equilibrium
E∗ = (1.1705, 11.4632); moreover, the associated non trivial periodic solutions
are unstable.
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