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Abstract

A numerical method for finding the solution of nonlinear Volterra-
Hammerstein integral equations is proposed. The properties of the hy-
brid functions which consists of block-pulse functions plus rationalized
Haar functions are presented. The hybrid functions together with the
operational matrices of integration and product are then utilized to re-
duce the solution of nonlinear Volterra-Hammerstein integral equations
to the solution of algebraic equations. Illustrative examples are included
to demonstrate the validity and applicability of the technique.
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1 Introduction

Orthogonal functions have also received considerable attention in dealing with
various problems of dynamic systems. The main characteristic of this tech-
nique is that it reduces these problems to those of solving a system of alge-
braic equations thus greatly simplifying the problem. The available sets of
orthogonal functions can be divided into three classes. The first includes set
of piecewise constant basis functions (PCBFs)(e.g., Walsh, block-pulse, Haar,
etc.). The second consists of set of orthogonal polynomials (e.g., Laguerre,
Legendre, Chebyshev, etc.). The third is the widely used set of sine-cosine
functions in Fourier series. In these methods, a truncated orthogonal series
is used for numerical integration of nonlinear Volterra-Hammerstein integral
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equations, with the goal of obtaining efficient computational solutions. Typ-
ical examples are the Walsh functions [3], block-pulse functions [6], Laguerre
polynomials [5], Legendre polynomials [2], Chebyshev polynomials [4], Fourier
series [13], rationalized Haar series [11] and Hartley series [15]. The utilization
of these series has the common objective of representing models efficiently, and
calculating intermediate parameters rapidly for the given problem.

The orthogonal set of Haar functions is a group of square waves with magni-
tude of +2

i
2 , −2

i
2 , and 0, i = 0, 1, 2, · · · [10]. The use of Haar functions comes

from the rapid convergence feature of Haar series in expansion of functions
compared with that of Walsh series [1]. Lynch and Reis [7] have rationalized
the Haar transform by deleting the irrational numbers and introducing the
integral power of two. This modification results in what is called the rational-
ized Haar (RH) transform. The RH transform preserves all the properties of
the original Haar transform and can be efficiently implemented using digital
pipeline architecture [7]. The RH functions are composed of only three am-
plitudes +1, −1 and 0. Ohkita and Kobayashi [8,9] applied the RH functions
to solve linear ordinary differential equations [8] and linear first and second
order partial differential equations [8]. In [8], the solution y(t), 0 ≤ t ≤ T for
a linear second order ordinary differential equation is obtained at the points
tk = kT

N
, k = 0, 1, · · · , N − 1, where N is an integral value given by a power

of two. Further, Razzaghi and Ordokhani [12], used RH functions to solve
nonlinear Volterra-Hammerstein integral equations. In [12], the number of RH
functions in approximate solution is given by k = 2α+1, α = 0, 1, 2, · · ·, hence
for getting a high accuracy a large number of basis functions should be used.
However, this is not economical because of the requirement of large computer
memory.

In the present work we introduce an alternative computational method
for the solution of nonlinear Volterra-Hammerstein integral equations. This
method consists of reducing the solution of problem to a set of algebraic equa-
tions by expanding hybrid functions with unknown coefficients. These hybrid
functions, which consist of block-pulse functions and RH functions are intro-
duced. The operational matrices of integration and product are calculated and
then utilized to evaluate the unknown coefficients.

The paper is organized as follows : Section 2 is devoted to the basic formu-
lation of the hybrid functions of block-pulse and RH functions required for our
subsequent development, the operational matrices of integration and product
are also derived. In Section 3 we apply the proposed numerical method to the
numerical solution of nonlinear Volterra-Hammerstein integral equations, and
in Section 4 we report our numerical finding and demonstrate the accuracy of
the proposed method.
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2 Properties of Hybrid Functions

2.1 Hybrid of block-pulse and rationalized Haar func-
tions

Hybrid functions φnr(t), n = 1, 2, ..., N, r = 0, 1, ..., k − 1, k = 2α+1, α =
0, 1, 2, ... have three arguments, n and r are the order for block-pulse and
rationalized Haar functions respectively and t is the normalized time. They
are defined on the interval [0, 1) as

φnr(t) =

{
φr(Nt + 1 − n), n−1

N
≤ t < n

N

0, otherwise
(1)

Here, φr(t) = RH(r, t) are the rationalized Haar functions of order r which
are orthogonal in the interval [0, 1) and satisfy [8,9,12]:

RH(r, t) =

⎧⎪⎨
⎪⎩

1, J1 ≤ t < J1/2

−1, J1/2 ≤ t < J0

0, otherwise

where

Ju =
j − u

2i
, u = 0,

1

2
, 1.

The value of r is defined by two parameters i and j as

r = 2i + j − 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2i.

RH(0, t) is defined for i = j = 0 and is given by

RH(0, t) = 1, 0 ≤ t < 1.

Since φnr(t) is the combination of rationalized Haar functions and block-pulse
functions which are both complete and orthogonal, thus the set of hybrid
functions are complete orthogonal set. The orthogonality property is given by

∫ 1

0
φnr(t)φn′r′(t)dt =

{
2−i

N
, n = n′, r = r′

0, otherwise

where

r = 2i + j + 1, r′ = 2i′ + j′ + 1, i′ = 0, 1, 2, 3, . . . , j′ = 1, 2, 3, . . . , 2i′.
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2.2 Function approximation

A function f(t) defined over [0, 1) may be expanded in hybrid functions as

f(t) =
∞∑

r=0

∞∑
n=1

anrφnr(t), (2)

where anr are given by

anr = 2iN
∫ 1

0
f(t)φnr(t)dt.

The series in Eq. (2) contains an infinite number of terms. If we let i =
0, 1, 2, ..., α then the infinite series in Eq. (2) is truncated up to its first Nk
terms as

f(t) �
k−1∑
r=0

N∑
n=1

anrφnr(t) = AT B(t),

where
k = 2α+1, α = 0, 1, 2, ...,

A = [a10, a11, · · · , a1k−1, a20, a21, · · · , a2k−1, · · · , aN0, aN1, · · · , aNk−1]
T , (3)

B(t) = [φ10(t), φ11(t), · · · , φ1k−1(t), φ20(t), φ21(t), · · · , φ2k−1(t), · · · ,
φN0(t), φN1(t), · · · , φNk−1(t)]

T . (4)

Also, the integration of the cross,product of two vector B(t) in Eq. (4) is

W =
∫ 1

0
B(t)BT (t)dt =

1

N
diag.(D, D, ..., D), (5)

where W is the Nk × Nk matrix and

D =
1

N
diag.(1, 1,

1

2
,
1

2
,

1

22
, ...,

1

22︸ ︷︷ ︸
22

, ...,
1

2α
,

1

2α
, ..., ,

1

2α︸ ︷︷ ︸
2α

).

Now, let κ(t, s) be a function of two independent variable defined for
t ∈ [0, 1) and s ∈ [0, 1). Then κ can be expanded into hybrid functions as

κ(t, s) � BT (t)KB(s), (6)

where K is the Nk × Nk matrix and

K = (knr), knr = 22iN2
∫ 1

0

∫ 1

0
κ(t, s)φnr(t, s)dsdt, (7)

n = 1, 2, · · · , N, r = 0, 1, 2, · · ·k − 1.
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2.3 Operational matrix of integration

The integration of the vector B(t) defined in Eq. (4) is given by

∫ t

0
B(t′)dt′ � PB(t), (8)

where P is the Nk × Nk operational matrix for integration and is given by

P =
1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̂ H H · · · H H

O P̂ H · · · H H
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
O O O · · · P̂ H

O O O · · · O P̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also H is the k × k matrix represented by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 0 0 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and P̂ is the k × k operational matrix for rationalized Haar functions and is
given in [11,12] as

P̂ = P̂k×k =
1

2k

⎡
⎣ 2kP̂ k

2
× k

2
−Φ̂k

2
× k

2

Φ̂−1
k
2
× k

2

0

⎤
⎦ ,

where P̂1×1 = [1
2
], Φ̂1×1 = [1] and Φ̂k×k is given by

Φ̂k×k = [Φ(
1

2k
), Φ(

3

2k
), · · · , Φ(

2k − 1

2k
)],

with

Φ(t) = [φ0(t), φ1(t), · · · , φk−1(t)]
T .

2.4 The product operational matrix

Let

Ω(t) = B(t)BT (t), (9)
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where Ω(t) is Nk × Nk matrix. Using Eq. (1) we get

φnr(t)φn′r′(t) =

{
0, n �= n′

φr(t)φr′(t), n = n′.

From [12], we have

Ω(Nk)×(Nk)(t) = diag.(Ψ
(1)
k×k, Ψ

(2)
k×k, ..., Ψ

(N)
k×k), (10)

where

Ψ
(n)
k×k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φn0(t)
φn1(t)

·
·
·

φn(k−1)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
φn0(t), φn1(t), · · · , φn(k−1)(t)

]
, n = 1, 2, 3, · · · , N.

For N = 2 and k = 4 we have

Ω8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ10 φ11 φ12 φ13 0 0 0 0
φ11 φ10 φ12 −φ13 0 0 0 0

φ12 φ12
φ10+φ11

2
0 0 0 0 0

φ13 −φ13 0 φ10−φ11

2
0 0 0 0

0 0 0 0 φ20 φ21 φ22 φ23

0 0 0 0 φ21 φ20 φ22 −φ23

0 0 0 0 φ22 φ22
φ20+φ21

2
0

0 0 0 0 φ23 −φ23 0 φ20−φ21

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where φij, i = 1, 2, j = 0, 1, 2, 3 are functions of t.
Furthermore, by multiplying the matrix Ω(t) in Eq. (9) by the vector A in

Eq. (3) we obtain
Ω(t)A = ÃB(t), (11)

where Ã is Nk × Nk matrix and is given by

Ã = diag.(Ã
(1)
k×k, Ã

(2)
k×k, · · · , Ã(N)

k×k),

with

Ã
(n)
k×k =

⎡
⎢⎣ Ã

(n)
k
2
× k

2

H̃
(n)
k
2
× k

2

Â
(n)
k
2
× k

2

D̃
(n)
k
2
× k

2

⎤
⎥⎦ , n = 1, 2, 3, · · · , N

where
Ã

(n)
1×1 = [an0], n = 1, 2, · · · , N,

H̃
(n)
k
2
× k

2

= Φ̂k
2
× k

2
diag.[an(k/2), an(k/2+1), · · · , an(k−1)],
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Ĥ
(n)
k
2
× k

2

= diag.[an(k/2), an(k/2+1), · · · , an(k−1)]Φ̂
−1
k
2
× k

2

,

D̃
(n)
k
2
× k

2

= diag.[[an0, an1, · · · , an(k/2−1)]Φ̂k
2
× k

2
].

For N = 2 and k = 4 we have

Ã8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a10 a11 a12 a13 0 0 0 0
a11 a10 a12 −a13 0 0 0 0
a12

2
a12

2
a10 + a11 0 0 0 0 0

a13

2
−a13

2
0 a10 − a11 0 0 0 0

0 0 0 0 a20 a21 a22 a23

0 0 0 0 a21 a20 a22 −a23

0 0 0 0 a22

2
a22

2
a20 + a21 0

0 0 0 0 a23

2
−a23

2
0 a20 − a21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3 Solution of Nonlinear Volterra-Hammerstein

Integral Equations

Consider the following nonlinear Volterra-Hammerstein integral equations

y(t) = f(t) +
∫ t

0
κ(t, s)g(s, y(s))ds, o ≤ t ≤ 1 (12)

where f, g and κ are given continuous functions, which g(s, y(s)) nonlinear in
y(s). We assume that Eq. (12) has a unique solution y to be determined. To
solve for y(t), we approximate the solution not to Eq. (12), but rather to an
equivalent equation:

z(t) = g(t, y(t)), o ≤ t ≤ 1. (13)

From Eq. (12) we get

z(t) = g(t, f(t) +
∫ t

0
κ(t, s)z(s)ds). (14)

Suppose z(t) can be expressed approximately as

z(t) = AT B(t). (15)

Using Eqs. (6),(11) and (15) we get∫ t

0
κ(t, s)g(s, y(s))ds =

∫ t

0
BT (t)KÃB(s)ds.

From Eqs. (8) and (14) we get

z(t) = g(t, f(t) + BT (t)KÃPB(t)). (16)
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In order to construct the approximations for z(t) we collocate Eq. (16) in Nk
points. For a suitable collocation points we choose Newton-Cotes nodes as

tp =
2p − 1

2Nk
, p = 1, 2, · · · , Nk. (17)

Equation (16) can be expressed as

z(tp) = g(tp, f(tp) + BT (tp)KÃPB(tp)), p = 1, 2, · · · , Nk. (18)

Equation (18) can be solved for the unknowns anr, n = 1, 2, · · · , N, r =
0, 1, · · · , k − 1. The required approximations to the solution y(t) in Eq. (12)
are obtained as

y(t) = f(t) +
∫ t

0
κ(t, s)z(s)ds, 0 ≤ t ≤ 1.

Using Eqs. (6), (8) and (11) we get

y(t) = f(t) + BT (t)KÃPB(t). (19)

4 Illustrative Examples

We applied the method presented in this article to 2 examples given by Raz-
zaghi and Ordokhani [12] with N = 2 and k = 8. These examples were solved
by Razzaghi and Ordokhani [12] using rationalized Haar method with k = 16
and their result are provide for comparison.

4.1 Example 1

Consider the nonlinear Volterra-Hammerstein integral equation

y(t) = f(t) +
∫ t

0
κ(t, s)y2(s)ds, 0 ≤ t ≤ 1 (20)

where κ(t, s) = ts + 1, and

f(t) = −1

4
t5 − 2

3
t4 − 5

6
t3 − t2 + 1

The exact solution [12] is y(t) = t + 1. By using Eq. (18) the solution in
Eq. (20) is calculated. Table (1) represents the approximate solution using
the method in [12] with k = 16 together with the results obtained using the
present method with N = 2 and k = 8 and exact solution.
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t Method in [12] Present method Exact

with k = 16 with N = 2 and k = 8

0.0 1.005 1.0001 1

0.2 1.204 1.2003 1.2

0.4 1.400 1.4001 1.4

0.6 1.599 1.5998 1.6

0.8 1.801 1.8002 1.8

1 1.999 1.9999 2

Table 1. Approximate and exact solutions for Example 1.

4.2 Example 2

Consider the equations

y(t) = 1 + sin2(t) −
∫ t

0
3sin(t − s)y2(s)ds. 0 ≤ t ≤ 1, (21)

We solve Eq. (21) using the method in section 3. The computational result
for N = 2, k = 8 using the present method together with the rationalized Haar
method [12] for k = 16 and the exact solution y(t) = cos t.

t Method in [12] Present method Exact

with k = 16 with N = 2 and k = 8

0.0 1.0000 1.0000 1

0.2 0.9800 0.9801 0.9801

0.4 0.9210 0.9211 0.9211

0.6 0.8255 0.8253 0.8253

0.8 0.6969 0.6967 0.6967

1 0.5405 0.5403 0.5403

Table 2. Approximate and exact solutions for Example 2.

5 Conclusion

The hybrid of block-pulse and rationalized Haar functions and the associated
operational matrices of integration P and product Ã are applied to solve the
nonlinear Volterra-Hammerstein integral equations. The method is based upon
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reducing the system into a set of algebraic equations. The matrices P and Ã
have many zeros; hence is much faster than rationalized Haar functions and
reduces the CPU time and the computer memory, at the same time keeping
the accuracy of the solution. The numerical examples support this claim.
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